
LBL Updates
October, 2021

LBL Updates

• Continued work on multi-GPU U-Solve

• works with NVSHMEM on Summit

• NVSHMEM/ROCSHMEM installation/runtime issues on
Perlmutter(NVIDIA) and Spock(AMD)

• Under investigation; necessary prerequisites for multi-GPU matsolves

• 3D Code

• Now allow for uneven block row distribution for matrices (A,B)

Q&A

1. I wonder whether there is a plan to do MatSolve on GPU. In my tests, I found
that when setting the matrix type to mpiaijcusparse, then superlu_dist can do
the factorization using GPU, but the iterative solver is still running on CPU,
which can involves CPU-GPU communications and is slow.

• GPU SpTRSV (w/NVSHMEM) in SuperLU development branch (not the release version)

• Will document compilation process / PETSc options

• However, there are some requisite vector transformations that haven’t been ported to the GPU (functional
but not necessarily performant)

2. Related to the previous question, I wonder if it is possible to offload the matrix
completely after the factorization, so that communication during the iterative
solving is not needed.

• Assumes factored matrix fits on the GPU (no GPU-GPU communication)

• Assumes PETSc support/configured properly (no CPU-GPU communication)

• Assumes vector transformations have been ported to GPU

• Small CPU-GPU communication for convergence checks is unavoidable

Q&A

3. I tried to use superlu_dist on GPU with MPI. I found that if the
mpi ranks is equal to the number of GPUs, then each rank will
occupy a GPU. For more MPI ranks, multiple ranks will share
a GPU. I wonder what is the best strategy then, should I set
the rank to be equal to # of GPUs?
• For single-GPU matsolves, #MPI>=#GPU (Jacobi blocks per MPI>=1)

• For multi-GPU matsolve (w/NVSHMEM), #MPI == #GPUs

• See caveats in Q1,2

4. How does superlu_dist interact with ptscotch? What would
happen without it?
• SuperLU/PETSc currently uses either METIS, min degree

• You could link with ptscotch instead of METIS (same interface/config option)

Q&A

5. OpenMP implementation… lack of support in nvidia compiler for
OMP5 features… taskloop

6. Need multi-GPU support for iterative solver…

a. PETSc support for multi-GPU

b. NVSHMEM support on Perlmutter

c. blas1 vector operations (to obviate CPU-GPU communication
after L/U-solve)

d. try single-GPU branch (known PETSc support, but may have
blas1 performance issues in c.)

(multi)GPU-accelerated iterative solvers

while(!converged){

<<<?>>>Matvec(); // CPU has to launch kernel

<<<?>>>Dot(); // CPU has to launch kernel

result=<<<?>>>l2norm(); // CPU has to launch kernel

if(result<tol)converged=1;

}

Control flow runs on CPU (CPU launches kernels and checks convergence)

Computations run on GPUs

(small) batched iterative solvers

• CPU launches a GPU kernel of independent solvers.

• GPU Kernel includes a thread block for each independent system

• As thread blocks (systems) are self-contained, convergence checks
can be inside the thread block (CPU doesn’t need to be involved)

