Effect of Resistive Wall on Thermal Quench H. Strauss HRS Fusion

H. Strauss, Effect of Resistive Wall on Thermal Quench in JET Disruptions, Phys. Plasmas **28**, 032501 (2021); doi: 10.1063/5.0038592.

H. Strauss, Thermal Quench in ITER Disruptions, Phys. Plasmas *submitted (2021)*

1

TQ in locked mode disruptions is a fast event, $\tau_{TQ} \sim 1 ms$. It is preceded by a slower "minor disruption" caused by tearing modes. What causes the fast termination TQ? What happens to the fast TQ in ITER?

[Devries 2016, JET]

[Sweeney, 2018, DIIID]

Resolving the TQ in JET

history of a JET locked mode disruption with time in units of wall time $\tau_{wall} = 5ms$. (The same as in DIIID).

The TQ is caused by the growth of a single mode on a timescale $\tau_{TQ} \approx 1/\gamma \approx 0.3 \tau_{wall} = 1.5 ms$. Simulations and theory suggest it is a resistive wall tearing mode (RWTM).

RWTM growth rate is

$$\gamma \tau_A = c_0 S^{-1/3} S_{wall}^{-4/9} \tag{1}$$

where $S_{wall} = \tau_{wall} / \tau_A$.

Simulations show the TQ depends on τ_{wall} in JET.

(a) τ_{TQ} in Alfvén time units as a function of S_{wall} . The curve is fitted to a RWTM growth time. For large S_{wall} the RWTM not important and τ_{TQ} is independent of S_{wall} . Left vertical line is JET (and DIIID) value, right is ITER. (b) T.

TQ time is

$$\tau_{TQ} \approx \left(\frac{1}{\gamma}, \frac{a^2}{\chi_{\parallel} b_n^2}\right)_{min} \tag{2}$$

Simulations and theory: $c_0 \sim 1$, $b_n \sim 10^{-3}$

RWTM Theory

The linear growth rate of the tearing mode is

$$\gamma \tau_A = 0.55 \left(\frac{mq'r_s}{q^2}\right)^{2/5} (\Delta' r_s)^{4/5} S^{-3/5}$$
(3)

where r_s is the rational surface and m is the poloidal mode number. Zero pressure circular large aspect ratio geometry is assumed, with no toroidal current for $r > r_s$. Assume that $\Delta' = 0$ if the wall is an ideal conductor, Then

$$\Delta' r_s = \dots + \frac{4m^2 f}{\gamma \tau_{wall}}.$$
(4)

where

$$f = \frac{(r_s/r_w)^{2m}}{[1 - (r_s/r_w)^{2m}]^2}$$
(5)

Substituting in the tearing dispersion relation (3) gives (1), with m = q = 2, where

$$c_0 = 2.46 \left(\frac{q' r_s}{q}\right)^{2/9} f^{4/9} \tag{6}$$

5

TQ Theory

During the TQ, heat travels along stochastic magnetic field as

$$\frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} r(\chi_{\parallel} b_r^2 + \kappa_{\perp}) \frac{\partial T}{\partial r}$$
(7)

where b_r is the normalized asymmetric radial magnetic field, assuming circular flux surfaces for simplicity. Integrating, the total temperature is given by

$$\frac{\partial \langle T \rangle}{\partial t} = a(\chi_{\parallel}b_n^2 + \kappa_{\perp})T'$$
(8)

where $\langle T \rangle = \int Tr dr$, $T' = \partial T/\partial r$ at r = a, and $b_n = b_r$ at the wall. Assume that $T'/\langle T \rangle = -a^{-3}$. The normal magnetic field at the wall is $b_n = b_{n0} \exp(\gamma t)$ where b_{n0} is the initial amplitude, and γ is the RWTM growth rate.

Substituting for b_n in (8) and integrating in time, from t = 0 to τ_{TQ} ,

$$1 = \frac{\chi_{\parallel} b_n^2}{2\gamma a^2} [\exp(2\gamma \tau_{TQ}) - 1]$$
(9)

An *ad hoc* fit to (9) and simulations is given by (2).

ITER

In ITER, RWTM is much more stable. $\tau_{wall}^{ITER} = 50 \tau_{wall}^{JET}$.

Parallel thermal conduction with collisional and collisonless [Rechester, Rosenluth, 1978] limits

 τ_{TQ} with ITER parameters. $1/\gamma$ for ITER and JET, (2) with model (10), $b_n = 10^{-3}, 2 \times 10^{-3}$. (b) $\tilde{\psi}$, (c) T.

Collisional regime, TQ limited by RWTM, self mitigating.

Collisionless regime, RWTM unimportant - standard model disruption.

ITER Implications

- Locked mode disruptions will be different in ITER than in JET, DIIID
- Collisional regime, TQ time controlled by RWTM, self mitigating
- Collisionless regime, TQ time controlled by internal modes, standard model
 Future Work
- simulate DIIID locked mode disruptions
 - Sweeney NF 58, 056022 (2018), shot 154576
 - minor or precursor part of disruption simulated with NIMROD, ideal wall
 - major disruption not simulated, need resistive wall time $\approx 5 ms$, like JET
- ITER disruptions with MGI-type edge cooling in progress
- non locked mode disruptions: high β , other scenarios?