Experimental Summary: Neon Pellet Ablation Measurements (MP2019-25-06)

by

D. Shiraki¹, L. Baylor¹, N. Eidietis², J. Herfindal¹, E. Hollmann³, Z. Popovic³, I. Bykov², T. O'Gorman², M. Knolker², T. Osborne², A. Dvorak¹

- ¹ Oak Ridge National Laboratory
- ² General Atomics
- ³ University of California, San Diego

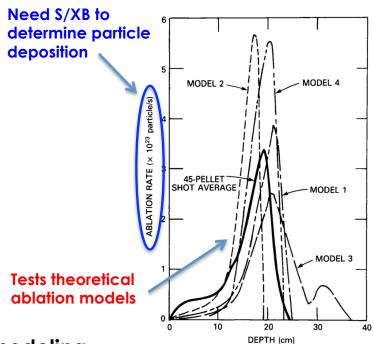
Presented at the

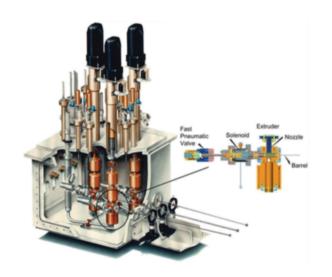
DIII-D Disruption Mitigation Physics Group Meeting March 18, 2021

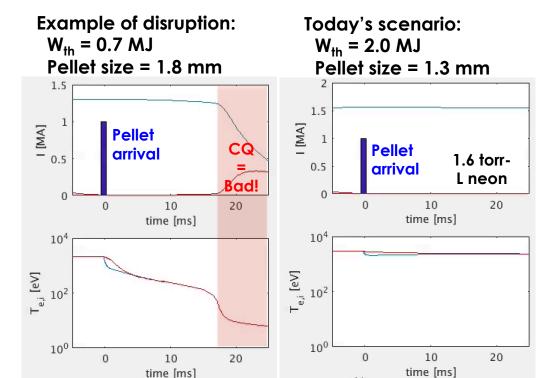
Goal of this experiment is to characterize neon pellet ablation profiles, and determine Ne-I S/XB values

- S/XB photon efficiency relates number of photons to ionization events
 - Values for neon are theoretically known but not experimentally measured
- Measurements of neon pellet ablation rates and profiles, along with kinetic profiles, are needed to test theoretical ablation models
 - Analogous to early pellet-fueling studies with hydrogenic pellets

 This is a "basic science" experiment to enable modelingexperiment comparisons for disruption mitigation studies




Fig. 1. Ablation profiles for ISX-B shot sequence 15678-15700.


M. Gouge, et al. Fusion Tech. 1991

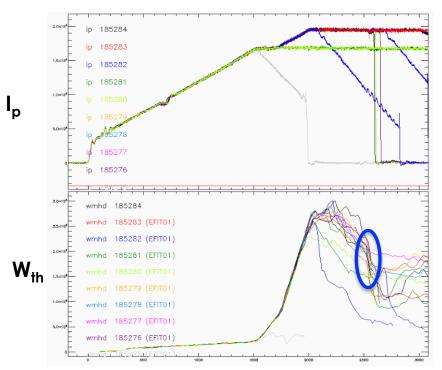
Small intact (un-shattered) pellets will be injected into high-W_{th} plasmas

 Pellets will be injected from RPI system typically used for core fueling and ELM pacing

OD KPRAD simulations of single neon pellet

Shot Plan (0.5 day)

- 1. Reproduce target discharge, based on 179118
 - Initially wrong EFC algorithm, but plasma still ran
- 2. Ne pellet injection at 2.0 MJ
 - Collect required measurements (see previous slide)
- 3. Establish (approximate) lower bound of W_{th} that survives Ne pellet
 - Reduced NBI power
- 4. Scan NBI power to vary ablation conditions
 - Two to three power levels within range established in Steps 2 and 3
 - Collect required measurements

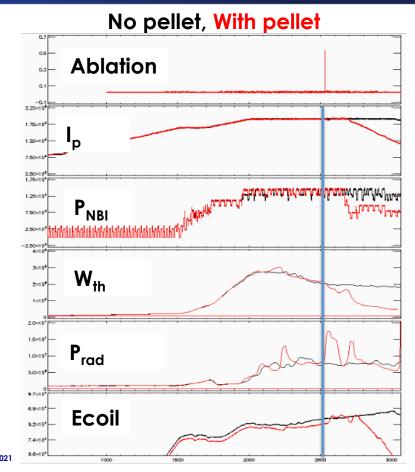

Total: 15 shots

1 shot

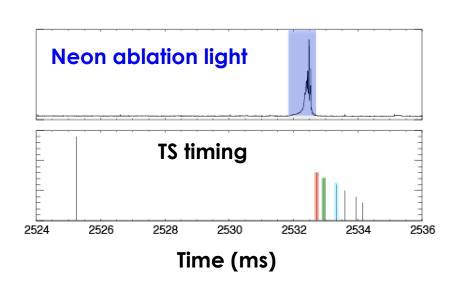
14 shots

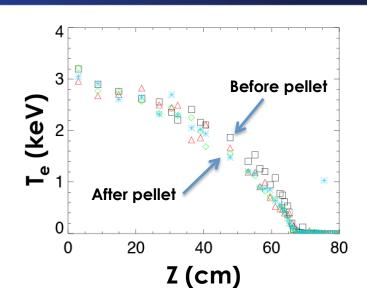
(Sort of)

Some variation of stored energy occurred naturally

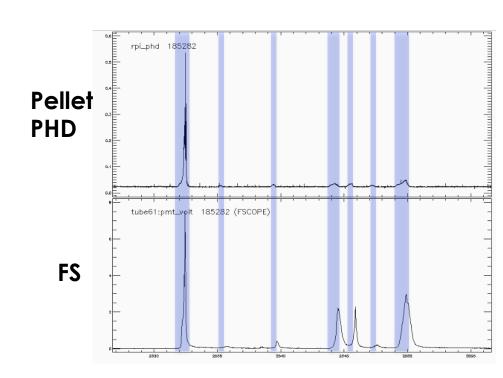


 $\sim 1.9 \pm 0.5$ MJ at time of pellet


Plasma survives neon pellet

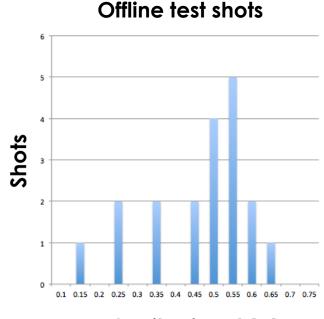

- Radiative perturbation occurs on a longer timescale than the ablation
- Should be ignorable for ablation studies
 - Should check profiles to be sure....

TS triggered asynchronously show only modest perturbations to profiles



- Fast camera ran well
- Filterscopes supplement fast cam and pellet phototiode
- Survey spectrometer had trouble seeing Ne-I

Pellets often broken, analysis will focus on first piece


- Photodiode, filterscopes, and fast cameras all see late fragments
- Small time shift (FS comes later)
 - PHD is at 135
 - FS is at?
- PHD sees smaller fragments, FS more even
 - Do we know why?

Pellet mass (of the leading piece) is relatively reproducible

- Some shots lack cavity measurement due to noise
 - Will likely focus on shots with mass measurement
- From offline shots taken after the experiment, usually within ±10%
- Pellet mass needed for absolute magnitude of S/XB factor
 - Still need to determine "voltage to mass" conversion

Cavity signal (V)

