Soft Beta Limit Studies (SBL)

σ

NSTX Shot 124379 @640 ms

$$\beta = 7\%$$
 $I_P = 990 \text{ kA } q(0) = 1.29$

Meshes max_size min_size l 5.0 cm 0.8 cm 5.0 cm 0.4 cm 5.0 cm 0.2 cm 4.0 cm 4.0 cm 2.0 cm 2.0 cm 4.0 cm 1.0 cm 2.0 cm 1.0 cm

#

Α

В

С

D

Ε

F

G

Original Mesh: 5 cm Mesh A: 0.8 cm in center

Equilibrium linearly unstable to many ideal modes

Toroidal mode number "n"

Nonlinear Development of surfaces and temperature

Poincare Plots \rightarrow

Change in Temperature from time t=0 \rightarrow

G46F

Summary of 0 < t < 1200 τ_A

Unstable (4,3) mode grows up, breaks magnetic surfaces near and interior to rational surface, causing central temperature and pressure to decrease, stabilizing plasma

Central mesh density doubled again for convergence check

Mesh A: 0.8 cm

Mesh B: 0.4 cm

10 cm x 10 cm square in center

Comparison of Poincare Plots (grid A on top, fine grid B on bottom)

Result of Convergence Study

Not clear this has converged on Fine Grid. Will try one more round of refinement

However, it is clear original 2D case was unstable, saturated 3D case is stable.

Comparison of magnetic energy toroidal harmonics using Meshes A and B

Introduce Grid C with additional refinement in center

Grid A: 0.8 cm

Grid B: 0.4 cm

Grid C: 0.2 cm

These are close-ups of 2cm x 2cm square in center of grid (near magnetic axis)

Comparison of midplane current profiles at 3 times for Grids A,B,C

Convergence study #1: Midplane temperatures for 5 meshes at 2 times

Meshes A, B, C have 5 cm zones in outer region and 0.8, 0.4, 0.2 cm in inner region

Meshes F, G have 4 cm and 2 cm zones in outer region and 1 cm in inner region

Convergence study #2: q-profiles at t=1200 from the 5 meshes

• q-profiles from solutions on the 5 meshes agree except for the very center (diagnostic problem?)

Generate a family of equilibrium by Bateman scaling

A Bateman scaling factor of 0.9 produces a more unstable equilibrium with q(0) = 1.2 and $\beta = 8.2$ %

We find that it also saturates nonlinearly and leads to a new stable but slightly non-axisymmetric equilibrium

Bateman scaling keeps the current density fixed (P' and FF') but varies the toroidal field to generate a family of equilibrium from a given geqdsk file

Bateman scaled equilibrium with BS=0.9, q(0) = 1.2, $\beta=8.2\%$ also saturates but final state has multiple n modes

More realistic: Start with stable equilibrium and apply heating power: First in 2D

Summary

- NSTX equilibrium 124379 @640 ms found to be linearly unstable to ideal MHD modes that saturate at modest amplitude with small non-axisymmetric n=3 toroidal harmonic
- Higher beta equilibrium obtained by Bateman scaling are much more unstable linearly, and saturate with n=3,4,5,6 toroidal harmonics which lead to stochastic surfaces
- Calculations performed with actual Spitzer resistivity, S = 10⁸ and with variable fine meshes
- Now attempting to start with lower-beta equilibria, apply heating source to drive it through the beta limit. Should stay at marginal stability.
- Future: Can we examine other high- β NSTX equilibria that are linearly unstable to see if they also saturate nonlinearly?