Generalizing 2D Adaptation for M3D-C1

by

Brendan C. Lyons¹, N.M. Ferraro²

¹General Atomics

²Princeton Plasma Physics Laboratory

August 11th, 2020

1

Newer Use Cases would Benefit from Generalized Adaptation

- Currently, M3D-C1 has two adaptive meshing options available through the SCOREC libraries
 - Adapt to Ψ_N
 - Adapt to error
- We've also hijacked the $\Psi_{\rm N}$ adaptation to allow us to adapt to coil and pellet locations, by setting $\Psi_{\rm N}$ to 1 in those areas
- Generalized adaptation not linked to Ψ_N would be useful

Proposal: M3D-C1 Defines the Sizes and Unit Vectors Directly

M3D-C1 defines anisotropic sizes

- Unit vectors for each dimension
- Need to know how SCOREC sizes translate to real space

Permits many options on our end

- Define very fine adaptation in small area (removes linkage on previous slide)
- Gradient scale lengths (of pressure, temperature, current) could be used to define element size, instead of implicitly through Ψ_{N}
- Could also more easily resolve resistive wall, rational surfaces, etc.

Real-space gradients stronger here than here, since Ψ_N expands, but elements currently required to be same size

Proposed APIs

API #1

- M3D-C1 sets size information for nodes or elements directly, whatever SCOREC uses
- call m3dc1_set_adapt_size(inode, size_x, size_y, unit_x, unit_y)
- Following m3dc1_scorec/src/m3dc1_sizeField.cc
 - $h[0] = size_x$ and $h[1] = size_y$
 - $-R[0][0] = unit_x[0], R[1][0] = unit_x[1], R[0][1] = unit_y[0], R[1][1] = unit_y[1]$
- Does SCOREC need a way of defining sizes on new nodes as they're created, or is that taken from the original nodes?

API #2

- M3D-C1 defines fields for size and unit vectors, which get evaluated by SCOREC
- call m3dc1_set_adapt_size(size_x, size_y, unit_xr, unit_xz, unit_yr, unit_yz)
- SCORE evaluates the size_ and unit_ fields and assigns them to h and R

