Pellet-Ablation Code-Camp Debrief

by

Brendan C. Lyons¹

C.C. Kim², R. Samulyak³, N.M. Ferraro⁴, S.C. Jardin⁴, C.F. Clauser⁴, J. McClenaghan¹, L.L. Lao¹

¹General Atomics
²SLS2 Consulting
³Stony Brook University
⁴Princeton Plasma Physics Laboratory

Presented at the M3D-C1 Developers & Users Meeting August 10th, 2020

Code Camp Held August 3-6, 2020 on Coupling MHD Codes to Lagrangian-Particle Ablation Code

- Different physical models at disparate scales
 - MHD codes (M3D-C1 & NIMROD) describe macroscopic dynamics
 - Evolution of the plasma equilibrium
 - Rapid global instabilities
 - Ionization, recombination, and radiation of diffuse impurities
 - LP code describes local dynamics
 - Ablation of solid mass from pellet
 - Impurity dynamics in dense cloud
- Output of the week
 - Finalized file-based data-exchange format
 - Finished M3D-C1 implementation to read file (directly or redistributed)
 - Made plan for predictor-corrector modeling of DIII-D

State of Each LP Written to Single File, Either for Full Cloud or Grad-B Drifted Material

- First line has total time of simulation & mass of each LP
 - Each LP has same total mass, so volume effectively changes
 - These are used to give the rate of deposition
- Each line is a separate LP, with position and densities of each charge state

All units are cgs except Temperature is in eV Line 1: time interval, s, particle mass, g Columns are

- 1 x, transverse coordinate, cm
- 2 y, transverse coordinate, cm
- 3 z, longitudinal coordinate, cm

4 Vx, transverse velocity, cm/s
5 Vy, transverse velocity, cm/s
6 Vz, transverse velocity, cm/s

7 T [eV]
8 rho, density, g/cm³
9 P, pressure, g/(cm s²)

10 electron heat deposition power density,

11 radiation power density, g/(cm s^3)

12 number density of neutral atoms, 1/cm³

13 1+: number density of 1+ ions, 1/cm^3
14 2+: number density of 2+ ions, 1/cm^3
15 3+
16 4+
17 5+
18 6+
19 7+
20 8+
21 9+
22 10+ number density of fully ionized ions, 1/cm^3
23 e number density of electrons, 1/cm^3
24 averaged ionization

M3D-C1 Can Read This File and Interpret in Two Ways

iread_lp_source=1

- Each LP is considered a deltafunction particle source, deposited on finite elements directly
- Need sufficient resolution, both of LPs and FEs, to get smooth source (seems okay in 2D, but 3D noisy)
- To-do: deposited toroidally, but cloud should be field-aligned
- iread_lp_souce=2
 - Total number of particles of each charge state tabulated from file
 - Redeposited as source for each charge state on ipellet distributions

M3D-C1 Can Read This File and Interpret in Two Ways

iread_lp_source=1

- Each LP is considered a deltafunction particle source, deposited on finite elements directly
- Need sufficient resolution, both of LPs and FEs, to get smooth source (seems okay in 2D, but 3D noisy)
- To-do: deposited toroidally, but cloud should be field-aligned
- iread_lp_souce=2
 - Total number of particles of each charge state tabulated from file
 - Redeposited as source for each charge state on ipellet distributions

First Coupled Simulations will Use Predictor-Corrector Method

- Iterate independent simulations of MHD and LP codes
 - Run pellet injection in MHD code with analytic, Parks ablation formula
 - Send plasma states along pellet path to LP code to compute ablation rate at each point
 - Rerun MHD codes with LP ablation rates
 - Iterate between codes until convergence

Test case for DIII-D modeling

- 1 mm Ne pellet using extruder parameters
- 160606, standard case for SPI modeling
- 171322, super-H target for upcoming small-pellet ablation experiment
- Latter will be used for predict-first of experiment

DIII-D 171322 @ 2730 ms

