Update on M3D-C1 Disruption Mitigation Modeling

by

Brendan C. Lyons¹, S.C. Jardin², N.M. Ferraro², C.C. Kim³

¹General Atomics ²Princeton Plasma Physics Laboratory ³SLS2 Consulting

Virtually presented at the ITER DMS Task Force - 3D MHD Modeling Meeting January 26th, 2022

Velocity Boundary Conditions

2

First Seen in Pellet Benchmark, M3D-C1 & NIMROD Seeing Different Flow Patterns with Strong Density Source

M3D-C1: Strong parallel outflow from source, but return flow near X-points & in OFLR

First Seen in Pellet Benchmark, M3D-C1 & NIMROD Seeing Different Flow Patterns with Strong Density Source

NIM ROD: Similar outflow magnitude, but no return flow (same direction in OFLR)

M3D-C1 No-Flow Boundary Conditions Force Vorticity and Compression Components of Velocity to Zero Separately

• M3D-C1 use a potential formulation for velocity

$$ec{u}=R^2
abla U imes
abla arphi+R^2\omega
abla arphi+rac{1}{R^2}
abla_{\perp}\chi$$

- Boundary conditions come from components of this
 - No toroidal slipping (inoslip_tor=1): $\omega = 0$
 - No poloidal slipping:
 - No normal flow (inonormalflow=1):

$$R\frac{\partial U}{\partial n} + \frac{1}{R^2}\frac{\partial \chi}{\partial \tau} = 0$$
$$-R\frac{\partial U}{\partial \tau} + \frac{1}{R^2}\frac{\partial \chi}{\partial n} = 0$$

- The second two are currently implemented such that each term is zero, not the sum
 - No poloidal slipping (inoslip_pol=1): $\partial U/\partial n = 0$ and $\chi = 0$
 - No normal flow (inonormalflow=1): U = 0 and $\partial \chi / \partial n = 0$
- This was likely unseen before because χ typically small

New, Correct Boundary Conditions Implemented, but Not Robust

- Summed boundary conditions implemented as inoslip_pol=2 and inonormalflow=2
- Using both is unstable (perhaps not enough constraints?)
- inoslip_pol=2 and inonormalflow=1 is sometimes stable
 - Amounts to 3 BCs: $R\frac{\partial U}{\partial n} + \frac{1}{R^2}\frac{\partial \chi}{\partial \tau} = 0$, U = 0 and $\partial \chi / \partial n = 0$
 - Value of x not fixed
 - Requires stronger regularization

- 6

New Poloidal Flow Boundary Condition Does Not Significantly Change 3D Benchmark Results

- Reran with old normal flow condition but new poloidal flow condition
- Increased regularization
- Near identical time histories, despite change in velocity profiles (see following slides)

Comparison of Midplane Cuts

- Cuts are taken through midplane
- Downstream of pellet location
- R components roughly normal
- Z components roughly poloidal

Poloidal Flow Better but Not Perfect

Toroidal Flow Better in Edge, but Differs in Core

Radial Flow Still Very Different (NIMROD Has Single Sign)

Electron Density in Good Agreement Early, But Diverges

Impurity Density in Even Better Agreement Early, But Diverges

Toroidal Current Density Still Very Different

Temperature Consistent with Current Discrepancies

Some Thoughts

- Radial flow is small but clearly very different
 - NIMROD radial flow has single sign, and grows in amplitude
 - Early kinking of plasma inward at φ =0?
- Charlson pointed out that the gradient of the flow at the boundary appears opposite between M3D-C1 and NIMROD
- Maybe we do need to get the normal flow condition correct, but how to do it stably?
- Maybe the difference in edge temperature and current is unrelated?

JET Plume Modeling

17

M3D-C1 JET modeling of realistic plumes underway

- Consider two refence plumes emailed to task force
 - JET pure neon:
 - 30 fragments with 1.71 mm radius
 - 150 m/s speed
 - JET 5% Ne/ 95% D
 - 85 fragments with 1.21 mm radius
 - 300 m/s
- Pure neon is slower due to greater mass of pellet

With Realistic Speeds, Both Plume Induce Instability at Same Time

With Realistic Speeds, Both Plume Induce Instability at Same Time, But Faster, Mixed Pellet Gets Much Father Into Plasma

Reversing Speeds Shows Larger Impact For Pure Neon

Fast Ne timescale set by pellet speed, others set by radiative collapse time?

Future Work

JET Simulations

- Continue slow, mixed pellet through thermal quench
- Complete sensitivity scans
- Reverse number of shards between plumes
- Detailed radiation asymmetry validation
- KSTAR plume simulations with multi-injections

22

Additional Slides

23

3D, Nonlinear Benchmark Between M3D-C1 & NIMROD for Realistic, Injected Pellet is Well-Underway

- Past 2D axisymmetric benchmark achieved excellent agreement: Lyons et al. PPCF 2019
- 3D nonlinear MHD
 - Fixed boundary
 - Single-temperature equation
- Pellet/deposition parameters
 - 3 mm radius, pure neon
 - 5 cm poloidal and 2.4 m toroidal half-width
 - 200 m/s with realistic trajectory
 - Ablation by local electron density and temperature according to model by Parks
- Work has motivated code development and provided insight into SPI physics

<u>M3D-C1 Modeling of DIII-D 160606 @ 2990 ms:</u> 0.7 MJ, 1.28 MA

M3D-C1 and NIMROD are Seeing Very Different Flow Patterns

- M3D-C1 no-flow boundary conditions were causing unphysical flows in simulations with large density sources
 - First observed in 3D pellet benchmark
 - Subsequently seen in simplified tests
- M3D-C1 observes open-field-line region (OFLR) flow is opposite sign of outflow from source
- NIMROD observes flow entrained with outflow from source

25

Difference in 3D Pellet Benchmark Likely Caused by Flow

- M3D-C1 seeing later radiation spike and coincident MHD instability onset
- Flow pattern strikingly different even before time traces diverge, especially in open-field-line region (OFLR)

So With No-Slip and No-Normal Flow, Terms are Separately Zero

Flow Components For No-Slip

But They Shouldn't Be... Just Their Sum

Flow Components For Slipping

Fix In-Progress, But New Boundary Conditions are Unstable

- New boundary conditions have been properly coded
- Summed condition on normal flow always causes numerical instability
- Summed condition on poloidal flow
 - Can be stable, but not always
 - Requires stronger regularization to maintain reasonable values of χ

