Effect of M3D-C1 Boundary Conditions on Flow

by

Brendan C. Lyons¹, C.C. Kim², S.C. Jardin³, N.M. Ferraro³

¹General Atomics²SLS2 Consulting³Princeton Plasma Physics Laboratory

September 13th, 2021

M3D-C1 and NIMROD are Seeing Very Different Flow Patterns

- M3D-C1 no-flow boundary conditions are causing unphysical flows in simulations with large density sources
 - First observed in 3D pellet benchmark
 - Subsequently seen in simplified tests
- M3D-C1 observes open-field-line region (OFLR) flow is opposite sign of outflow from source
- NIMROD observes flow entrained with outflow from source

2

Difference in 3D Pellet Benchmark Likely Caused by Flow

- M3D-C1 seeing later radiation spike and coincident MHD instability onset
- Flow pattern strikingly different even before time traces diverge, especially in open-field-line region (OFLR)

Simulation Without Source Gives Similar Results Between Codes

Some structure right at LCFS and reverses in OFLR

Simulation Without Source Gives Similar Results Between Codes

Same structure, but toroidal flow magnitude different (resolution difference?)

Stationary Source at 2.2 m Reproduced Flow Discrepancy

M3D-C1: Strong parallel outflow from source, but return flow near X-points & in OFLR

Stationary Source at 2.2 m Reproduced Flow Discrepancy

NIMROD: Similar outflow magnitude, but no return flow (same direction in OFLR)

7

M3D-C1 Results With Poloidal Slipping Allowed Look Much More Similar to NIMROD

M3D-C1 No-Flow Boundary Conditions Force Vorticity and Compression Components of Velocity to Zero Separately

• M3D-C1 use a potential formulation for velocity

$$ec{u}=R^2
abla U imes
abla arphi+R^2\omega
abla arphi+rac{1}{R^2}
abla_{\perp}\chi$$

- Boundary conditions come from components of this
 - No toroidal slipping (inoslip_tor=1): $\omega = 0$
 - No poloidal slipping (inoslip_pol=1): $R\frac{\partial U}{\partial n} + \frac{1}{R^2}\frac{\partial \chi}{\partial \tau} = 0$
 - No normal flow (inonormalflow=1): $-R\frac{\partial U}{\partial x} + \frac{1}{R^2}\frac{\partial \chi}{\partial x} = 0$
- The second two are currently implemented such that each term is zero, not the sum
 - No poloidal slipping: $\partial U/\partial n = 0$ and $\chi = 0$
 - No normal flow: U = 0 and $\partial \chi / \partial n = 0$

9

• This was likely unseen before because χ typically small 4 GENERAL ATOMICS

So With No-Slip and No-Normal Flow, Terms are Separately Zero

Flow Components For No-Slip

But They Shouldn't Be... Just Their Sum

Flow Components For Slipping

11

Fix In-Progress, But New Boundary Conditions are Unstable

- Seems to be working alright before instability (i.e., properly coded) but should be confirmed
- Cause of numerical instability?
 - Regularization?
 - Fewer BCs (4 \rightarrow 2)
 - How to stabilize while maintaining physical solution

Some Final Thoughts

- N.B. This issue exists for some of the magnetic field BCs and needs to be fixed there too
- Could this affect VDE simulations? Seems like flow on the boundary would be important there
- Seems to suggest trouble using reduced MHD (e.g., JOREK includes parallel, compressible flow, but not perpendicular)

13