
Final presentation of M3DC1 group

GPU Hackathon Princeton
June 2021

Team: M3DC1
Member: Jin Chen, Chang Liu, Chen Zhao (PPPL)
Mentors: Levi Barnes (NVIDIA), James Norris 



Introduction to M3D-C1 2

• M3D-C1 is a finite element code solving the fluid equation in magnetically 
confined fusion plasma.

• We use the Galerkin method to construct a sparse matrix to represent the PDE

• In Galerkin method, one needs to calculate an inner product for every 
matrix element.

𝜇, 𝐴𝜈 = න
𝑉

𝜇 𝑥 𝐴 𝑥 𝜈 𝑥 𝐽 𝑑𝑥 =

𝑖

𝜇𝑖𝐴𝑖𝜈𝑖𝐽𝑖

• We want to optimize the matrix element calculation and run it on GPUs.

• In current implementation, the physics part (calculating different terms in 
PDE) and the integral calculation are mixed together.

to change this, go to Insert > Header and Footer...



Separate the physics part and the integral calculation 3

• When trying to run both parts on GPU, we encounter a lot of OOM 
problems.

• The physics part is very complicated and involved many (>20) large arrays

• However, most of the computation time is spent on the integral calculation.

• This part can be written as nested for-loops and many operations are 
independent.

• We can try to separate the two parts and only do GPU optimization on the 
integral calculation.

• However, it involves significant change to the code structure

to change this, go to Insert > Header and Footer...



Matrix element calculation (10 terms) gets 11x speedup on GPU 4

0

10

20

30

40

50

60

70

80

Original Separation GPU

Time (s)

Matrix assembling
(PETSc on CPU)

Matrix element
calculation (on GPU)

Calculation time for Galerkin
matrix in a 3D mesh with 495424 
elements using 4 Traverse nodes 
(128 MPI processes, 16 GPUs) 

Nsight Compute result:
Achieved occupancy is 23.91%, 
Theoretical occupancy is 25%

SOL SM: 27.16%
SOL Memory: 40.8%



Matrix element calculation (70 terms) gets 61x speedup on GPU 5

0

50

100

150

200

250

300

350

400

450

Separation GPU

Time (s)

Matrix assembling
(PETSc on CPU)

Matrix element
calculation (on GPU)

Calculation time for Galerkin
matrix in a 3D mesh with 495424 
elements using 4 Traverse nodes 
(128 MPI processes, 16 GPUs) 



Optimization of the original version 6

• We tried to use OpenACC and test the code on CPU/GPU, serially and parallelly. 

• The ijacc code on gpu can beat the jacc code on cpu.



Problems encountered 7

• GPU memory (global, local, shared) is limited and one needs to be careful to 
avoid OOM error.

• We need to combine MPI and OpenACC, in which case many MPI processes 
need to share a single GPU on a node.

• We need to do a lot of communications between CPU and GPU before and 
after each kernel.

• We try to use acc atomic to deal with dependency and conflicts, but 
found that the current PGI compiler does not support acc atomic for 
double precession complex number (128bit).



What we learned 8

• With Multi-Process Service (MPS), OpenACC works well with OpenMPI.

• Optimize the OpenACC parallelization on nested loops

• Use acc loop collapse for 2-layer and 3-layer nested loops

• Try to use CUDA shared memory rather than local memory or registers

• Change the order of nested loop and rearrange the data to reach better 
coalescing for memory reading and writing on GPU

• Use the async feature to do the CPU-GPU data copy and CPU calculation at 
the same time

• With these optimizations, we got significant speedup for the matrix 
element, but the matrix assembling is handled by PETSc on CPU, and it is 
taking the major part of computation time now.



Future plan 9

• Continue work on optimizing the original version of the code to solve OOM 
problem

• Try to implement more physical terms and see if we can get better 
performance gain.

• Reach the PETSc group to see if they can help optimize the matrix 
assembling part


