Chirping and bursting of TAEs in NSTX #141711

- Significant excitation of toroidicityinduced Alfven eigenmodes (TAEs) were observed in NSTX 141711 with NBI (Podesta NF 2012)
 - Down-chirping and chirping of TAE with n=1-6 characterized by period of <1ms.
 - TAE avalanche can be triggered by large down-chirping, resulting in significant EP loss.

415

414

413

412

115

100

85

410

411

Frequency and amplitude evolution during TAE chirping

Kinetic-MHD simulation TAE in NSTX

- Kinetic-MHD code M3D-C1-K was upgraded to simulate Alfven eigenmodes in NSTX driven by high-energy beam particles.
 - Classical EP distribution calculated using NUBEAM was used for particles initialization and δf calculation.
 - Toroidal rotation profile can be included in both MHD and particle simulation.
- TAE frequencies from linear simulation are consistent with experiments and previous M3D-K results (D. Liu PoP 2015)
 - Frequency spacing between different n modes comes from both dispersion of TAE and Doppler shift of rotation.

n

Down-chirping of TAE captured with nonlinear kinetic simulation

- By enabling the nonlinear terms in the kinetic simulation, the frequency chirping of the mode can be reproduced.
 - Down-chirping dominates, which is consistent with experiments
 - Chirping timescale consistent with experiment (<1ms)
- Analysis of particle phase space reveals the dominant wave-particle resonance comes from passing particles near resonant flux surface.
- In the saturation stage, resonant particles get splitted into clump and hole regions moving in different directions, consistent with the frequency chirping theory.

irot=1 eqsubtract=1

- Numerical instability can arise when using ifbound=1
 - Setting ifbound=2 seems help. Maybe due to this damping term:

if(ifbound.eq.2) then
 r_bf = r_bf - regular*intx3(trial(:,:,OP_1),r2_79,lin(:,OP_1))

end if

- May also be related to non-zero edge rotation
- Using semi-implicit method with thimp=1.0 can lead to suppression of TAE when rotation velocity is large
 - Can be avoided by forcing Crank-Nicholson for convection due to v0

tempx = v2vun(trialx,vz079,lin,rho79)
ssterm(:,u_g) = ssterm(:,u_g) - 0.5 *dt*tempx
ddterm(:,u_g) = ddterm(:,u_g) + (1.-0.5*bdf)*dt*tempx

Using Caramana method (imp_mod=1) can lead to numerical instability when irot=1