LBL Updates

November, 2022

Topics

- Scaling Experiments on Perlmutter CPU
- One-sided Communication for Solvers
- M3D Benchmarking
- Batch 1D Toroidal Solves (Hans)
- · Q&A

superLU with M3DC1 128K matrix Scaling Experiments on Perlim utility 20,066,272 Nonzeros in U 1,919,417,190

One-sided Communication for Solvers

Network is noisy, nodes are quirky.

Matrix size min_mn 1,781,784

Nonzeros in L 1,920,066,272

Nonzeros in U 1,919,417,190

nonzeros in L+U 3837701678

Speedup Onesided vs. Twosided solve									
	1node	2nodes	4nodes	8nodes	16nodes	32nodes			
1core/node		1.00	1.02	1.17	1.39	0.95			
2cores/node	0.94	0.98	1.28	1.38	0.95	0.99			
4cores/node	1.15	1.27	1.34	0.93	0.98	0.94			
8cores/node	1.36	1.41	0.95	0.97	1.00				
16cores/node	1.47	0.94	0.95	0.96					
32cores/node	0.91	1.04	0.97						
64cores/node	0.98	0.93							
128cores/node	0.95								

M3D Benchmarking

- Performance trend mismatch between M3DC1 and standalone superLU
- Benchmarking the solve part in M3DC1 via PETSc interface

Cori Haswell	Factorization			Trisolve		
processes/plane	64	128	256	64	128	256
standalone superLU (one plane)	13.5s	13.3s	12.5s	0.19s	0.12s	0.10s
M3DC1 (time/count) 2 planes reported from PETSc	7.59s	6.89s	9.24s	0.09s	0.09s	0.10s

Batch 1D Toroidal Solves for C1 (Hans Johansen, hjohansen@lbl.gov)

Domain partitioning / system assumptions?

- Assume each poloidal plane has parallel decompositions consisting of (connected) subset of FEM nodes
- 2. 1D solve in toroidal direction has fragmented data:
 - 2x2 block tridiagonal periodic (Jardin write-up)
 - Data is distributed in subsets of toroidal slices
 - Each "line solve" has different non-trivial matrix entries (metrics, dx, velocity, etc.?)

$$\Phi^{n+1} = \Phi^{n} - \delta t V \left[\theta \frac{\partial \Phi^{n+1}}{\partial x} + (1-\theta) \frac{\partial \Phi^{n}}{\partial x} \right] + \delta t \alpha \left[\theta \frac{\partial^{2} \Phi^{n+1}}{\partial x^{2}} + (1-\theta) \frac{\partial^{2} \Phi^{n}}{\partial x^{2}} \right] - \delta t \varepsilon \left[\theta \frac{\partial^{4} \Phi^{n+1}}{\partial x^{4}} + (1-\theta) \frac{\partial^{4} \Phi^{n}}{\partial x^{4}} \right]$$

$$\left[\mathbf{M} + \delta t \theta \left[V\mathbf{N} + \alpha \mathbf{P} + \varepsilon \mathbf{Q}\right]\right] \bullet \mathbf{Y}^{n+1} = \left[\mathbf{M} - \delta t (1 - \theta) \left[V\mathbf{N} + \alpha \mathbf{P} + \varepsilon \mathbf{Q}\right]\right] \bullet \mathbf{Y}^{n}$$

1 toroidal plane subdomain for node parallel partition?

Approach / assumptions

- Batch, block-tridiagonal solves are best solved in parallel
- 2. Consolidating data will reduce communication during solve
- 3. "Neighbor" comms are better than all-reduce or all-to-all
- 4. Load balancing to distribute all solves / comms, no idle procs

Combine two approaches

 Batch (each system is different) block tridiagonal solves (pivoting?):

Example of Problem Class Block is a system with $n_r = 1$, N = 8, $\hat{N} = 4$, and n = 2

$$AX = \begin{pmatrix} 13 & 15 & 29 & 31 & & & & \\ 14 & 16 & 30 & 32 & & & & \\ \hline 1 & 3 & 17 & 19 & 33 & 35 & & & \\ 2 & 4 & 18 & 20 & 34 & 36 & & & \\ \hline & & 5 & 7 & 21 & 23 & 37 & 39 \\ & & 6 & 8 & 22 & 24 & 38 & 40 \\ \hline & & & & 9 & 11 & 25 & 27 \\ & & & & & 10 & 12 & 26 & 28 \end{pmatrix} \begin{pmatrix} x_{0,0} \\ x_{1,0} \\ x_{2,0} \\ x_{3,0} \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{pmatrix} = D.$$

 Rank / system "consolidation" to remove communication in solve

