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Sparse Direct Solvers

▪ Sparse direct solvers are used to solve challenging systems:
• LU factorization (SpLU)
• L- and U-solve (SpTRSV)

▪ SpLU factorization can be extremely expensive:
• Memory hungry
• Computationally expensive

▪ Solution:
• Factor once and use as a preconditioner across multiple solves

i.e., multiple GMRES solves call SpTRSV on every iteration all using the same factors
• Shifts the focus to SpTRSV performance
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▪ SpTRSV is an important kernel for a variety numerical simulations

▪ GPUs have become a first-class compute citizen
• 110/147 system use NVIDIA Volta chips in 2020, Top500 list[1]

▪ Demand for ever finer-resolution problems calls for SpTRSV to exploit larger 
scales of parallelism
▪ the slow pace in HBM memory capacity scaling
▪ Can not always fit into a single GPU's memory 

multi-GPU SpTRSV is imperative but challenging

[1] https://www.top500.org/



Sparse Triangular Solver (SpTRSV)

▪ Compute solution vector x from a sparse linear system, Lx=b
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Naïve BSP SpTRSV

L

▪ Naive approach: 
▪ solve the system one equation (row) at a time
▪ can be optimized to (selectively) parallelize over 

column updates or row reductions
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▪ Computation = Directed Acyclic Graph
▪ Each node in the DAG is a small dense matrix-vector
▪ Use level sets
▪ Blocks in the same level can be solved concurrently 
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Recast SpTRSV as a DAG



3x3 process decomposition
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▪ SuperLU imposes a 2D block cyclic 
process layout 

▪ Two types of computation:

• Solves (on-diagonal blocks)
• MatVec (off-diagonal blocks)

▪ Two types of communication:

• Block column broadcast
• Block row reduction

6

SpTRSV in SuperLU:  Message Driven
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NVSHMEM has potential
(but bad implementations can destroy it)

▪ NVSHMEM is a parallel programming interface based on OPENSHMEM 

• one-sided communication for NVIDIA GPU clusters

✓ uses GPU-initiated data transfers

✓ provides signaling operations and 
point-to-point synchronization 
operations to notify receivers

✗ point-to-point synchronization 
operations limits the number of thread 
blocks that can be concurrently scheduled 
on one V100 GPU to 80 (the number of 
SMs) to avoid potential deadlocks

6.5x

2.3x

nvshmem_double_put_nbi_block

nvshmem_double_put_warp

nvshmem_double_put
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Multi-GPU SpTRSV vs. cusparse_csrsv2()

M3DC1 matrix

s1_mat_0_507744 

nnz in L 8.80E+08

Nsupers 9827

Up to 2.5x 
using 6 GPUs 
(one Summit node) 

Experimented on Summit: 
▪ Cuda 10
▪ Nvshmem 1.1.3
▪ Grdcopy 2.0

▪ bind one process to one GPU
▪ Px1 process layout (column broadcast)
▪ use nvshmem_double_put_nbi_block()
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Multi-GPU SpTRSV using two CUDA streams

WAIT (for notifications), stream[0]

SOLVE (GEMV/TRSV, send data and notification), stream[1]

thread block 0  (column broadcast) thread block 1 (row reduction)

0 ……

wait for WAIT successfully launched 

1 2 3 4 …… …… Ng

for each thread t:

While expecting more tasks: (recorded in the pre-processing pharse)

idx=nvshmem_int_wait_until_any(flag_x, mask of the buffer)

M_c[idx]=1

for each thread block K: (SOLVE)

if I am the diagonal process in charge of K: 

spin wait until the diagonal block is unlocked fmod(I)==0 

local TRSV

else: (I am off-diagonal process)

While flag_x[idx] !=1;

NVHSMEM send x

local GEMV

fmod(I)--

if fmod(I)==0 NVSHMEM send (by thread) lsum

0: active in wait,  1: masked off

NVSHMEM send: 

nvshmemx_double_put_nbi_block()

nvshmem_fence()

nvshmemx_int_signal()

Number of local super 

nodes in that GPU

additional work except waiting:

local GEMV

fmod(I)--

if fmod(I)==0 NVSHMEM send (by thread) lsum
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Multi-GPU SpTRSV performance on Summit GPUs
using different process layouts

Px1 process layout (column broadcast)
▪ NVSHMEM send using thread blocks

1xP process layout (row reduction)
▪ NVSHMEM send using threads

2D process layout
▪ mixed

3x
2

4x
3 6x

3
3x
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It's important to understand what constraint the performance

▪ Some numerical methods lend themselves to simple performance analysis

▪ DAG-based SpTRSV demands more sophistication

▪ Solution:
• construct a critical path performance model
• assess our observed performance relative to machine capabilities.
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Critical path Performance model
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▪ Architecture Characterization

• Memory bandwidth

• NVSHMEM bandwidth (optimized)

• NVSHMEM Performance 

differs with GPU affinities

• Intra-socket is 4x faster than inter-node

4
x



Critical path Performance model
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Critical path could become longer due to limited resources 
off-diag diag

broadcast reduction
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SpTRSV performance differs with critical paths 

Matrix #supernodes DAG levels nnz L

Compare to our single GPU solution

One Summit node 2 Summit nodes 3 Summit nodes

2 GPU 6GPU 12 GPU 18 GPU

s1_mat_0_507744 9,827 388 8.80E+08 1.2x 1.3x 0.7x 0.8x

Li4244 362 188 5.18E+08 1.5x 3.5x 3.7x 2.7x

6 GPU
S1: 

▪ 7,922 messages on the critical path
▪ 1.3 GB/s memory bandwidth

Li: 
▪ 270 messages on the critical path
▪ 5.2 GB/s memory bandwidth
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▪ Multi-GPU SpTRSV using CUDA streams

• Bring experience for DAG-based computations on emerging accelerated architectures, e.g., 
GPU-GPU communication using nvshmem

• Core specialization on GPUs for DAG-based computations: more complex producer-
consumer relationship than stencils ---- the producer (sender) and the consumer (receiver) 
can swap roles in turn to dispatch new work (message).

▪ DAG performance analysis can be extremely challenging

• Extend our SpTRSV performance model for GPUs 

• Accounts for matrix sparsity, process layout, network/memory bandwidth/latency

• Enables performance analysis for DAG-based computations

• Helps understand performance bottlenecks

Summary
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