.
A
rreeeere "'|

BERKELEY LAB

Lawrence Berkeley National Laboratory

=

—

Sparse Direct Solvers

= Sparse direct solvers are used to solve challenging systems:
* LU factorization (SpLU)
* L-and U-solve (SpTRSV)

= SpLU factorization can be extremely expensive:
* Memory hungry
* Computationally expensive

= Solution:

* Factor once and use as a preconditioner across multiple solves
1.e., multiple GMRES solves call SpTRSV on every iteration all using the same factors
* Shifts the focus to SpTRSV performance

multi-GPU SpTRSYV is imperative but challenging

= SpTRSV is an important kernel for a variety numerical simulations

* GPUs have become a first-class compute citizen
 110/147 system use NVIDIA Volta chips in 2020, Top500 list!!

* Demand for ever finer-resolution problems calls for SpTRSV to exploit larger
scales of parallelism
= the slow pace in HBM memory capacity scaling
= Can not always fit into a single GPU's memory

[1] https:/ /www.top500.org/

Sparse Triangular Solver (SpTRSV)

= Compute solution vector x from a sparse linear system, Lx=b

©
D Q) (b
@3 X & =
4 () ()
©@®©
(D (9
12 13
13) (%)
(8x8) (8x1) (8x1)
sparse dense dense
known unknown known

Naive BSP SpTRSV

* Naive approach:
(0) = solve the system one equation (row) at a time
= can be optimized to (selectively) parallelize over
column updates or row reductions

® @ O
& ©
@
©
@G
@®
@

Recast SpTRSV as a DAG

* Computation = Directed Acyclic Graph

= FEach node in the DAG is a small dense matrix-vector

= Use level sets

* Blocks in the same level can be solved concurrently (0 (D Lo

A e ol

SpTRSV in SuperLU: Message Driven

@ i i = SuperLU imposes a 2D block cyclic

P3| P4 | P5 process layout

3x3 process decomposition

= Two types of computation:

1 @ Solves (on-diagonal blocks)
PRI * MatVec (off-diagonal blocks)

/ = Two types of communication:
p) @ » Block column broadcast

 Block row reduction
15)|d6

NVSHMEM has potential

(but bad implementations can destroy it)

* NVSHMEM is a parallel programming interface based on OPENSHMEM

 one-sided communication for NVIDIA GPU clusters

Vv uses GPU-initiated data transfers

. . . . h doubl t_nbi tl)l Kk
v provides signaling operations and o nvehmem double put warp
point-to-point synchronization - nvshmem_double_put
operations to notify receivers

[—
o
(']

X point-to-point synchronization

operations limits the number of thread
blocks that can be concurrently scheduled 10"
on one V100 GPU to 80 (the number of

SMs) to avoid potential deadlocks 4 16 6B4yte3256 1024 4096

Bandwidth (MB/s)
S

Multi-GPU SpTRSYV vs. cusparse_csrsv2()

~]

[11-GPU (one node)
I 2-GPU (one node)
I 6-GPU (one node)
[112-GPU (two nodes)
B 18-GPU (three nodes) | -

Experimented on Summit:

= Cuda 10
= Nvshmem 1.1.3
= Grdcopy 2.0

@)
|
|
|

)
|

N SN

- Up to 2.5x i
using 6 GPUs
L (one Summit node) -

* bind one process to one GPU
= Px1 process layout (column broadcast)
= use nvshmem_double _put_nbi_block()

W

speedup vs. cusparse csrsv2()

M3DC1 matrix

s1_mat_0_507744
nnzinL 8.80E+08
Nsupers 9827

Multi-GPU SpTRSYV using two CUDA streams

WAIT (for notifications), stream[0]

[thread block 0 (column broadcast) thread block 1 (row reduction)]

for each thread t: additional work except waiting:

While expecting more tasks: (recorded in the pre-processing pharse) local GEMV
idx:r_lvshmem_int_wait_until_any(flag_x, mask of the buffer) fmod(l)--
M_clidx]=1 0: active in wait, 1. masked off if fmod(I)==0 NVSHMEM send (by thread) Isum
0/0/0 1100/ 1110001010
L tO J1 tl J | t2 J 1 t3 J t4 J

if | am the diagonal process in charge of K:
spin wait until the diagonal block is unlocked fmod(l)==0

NVSHMEM send: local TRSV
nvshmemx_double put_nbi_block() else: (I am off-diagonal process)
nvshmem_fence() While flag x[idx] =1,
nvshmemx_int_signal() NVHSMEM send x
local GEMV _

(VJola]2]3]a] fmod()-- _E

NG if fmod(1)==0 NVSHMEM send (by thread) Isum
wait for WAIT successfully launched
Number of local super

SOLVE (GEMV/TRSV, send data and notification), stream|[1] nodes in that GPU

Multi-GPU SpTRSV performance on Summit GPUs

using different process layouts

Px1 process layout (column broadcast) 1xP process layout (row reduction) 2D process layout
= NVSHMEM send using thread blocks = NVSHMEM send using threads * mixed
7 . . 7 7
[]1-GPU (one node) [[711-GPU (one node) I 6-GPU
- (one node)
6l [l 2-GPU (one node) | 6l I 2-GPU (one node)| | 5 I 112-GPU (two nodes)

B 6-GPU (one node)
[112-GPU (two nodes)
B 18-GPU (three nodes) | -

B 18-GPU (three nodes)

LA
T

L
T

h
T

I
.
I

7xe

b
b
N

%57

X9
9X¢

speedup vs. cusparse csrsv2()
speedup vs. cusparse csrsv2()
speedup vs. cusparse csrsv2()

[a—
T
e
T

|
—t
=

It's important to understand what constraint the performance

* Some numerical methods lend themselves to simple performance analysis

* DAG-based SpTRSV demands more sophistication

= Solution:
* construct a critical path performance model
* assess our observed performance relative to machine capabilities.

Critical path Performance model

= Architecture Characterization

* Memory bandwidth

828 GB/s 828 GB/s 828 GB/s

80 SM = 64 warps 3GBfs = bw =1 ca supernodes ~ >2GB/S =g 5pm =2 warps
8 warps
» NVSHMEM bandwidth (optimized) e intra-socket

103 | | —#— intra-node
—8— inter-node

e NVSHMEM Performance
differs with GPU affinities

e Intra-socket is 4x faster than inter-node

Bandwidth (MB/s)

4 8 16 32 64 128 256 512 1024 2048 4096
Bytes

Critical path Performance model

| SPTRSV Characteri Z ation (O process 0 O process | @ process 3 O process 4

 Initial Critical path: based on level-set using BFS
* Refined Critical path: process decomposition

* Memory bandwidth scales with the number of blocks
(GEMV/TRSV) in the same level until the aggregate
bandwidth reach the peak:

__accumulated Bytes
- aggrated bw

Fmat-vec per gpu

e Communication:

log2(#out) * sz , SZ
Teomm per gpu — Z Lpet + BW. + Z (logZ(#m) * (Lpet + BW.)) ——————— -
level net levels net

broadcast reduction

|
|
|
|
/
|
/
|
[
il‘l
.:I‘
f‘ —
/
/
/
— - - /
J/
_

O off-di O di ‘ps .
oiag 6 Critical path could become longer due to limited resources

SpTRSV performance differs with critical paths

Compare to our smgle GPU solution
Matrix #supernodes DAG levels nnz L One Summit node
2 GPU 6GPU 12 GPU 18 GPU

s1_mat_0_507744 9,827 8.80E+08 1.2x 1.3x 0.7x 0.8x
Li4244 362 188 5.18E+08 1.5x 3.5x 3.7x 2.7X
=3 modeled communication time M modeled computation time @ measured
180 707 6 GPU
S1 Li

160 | ol S1:

140 | = 7,922 messages on the critical path
. 120} Y = 1.3 GB/s memory bandwidth
é 100 + é 40 +
= 2 Li:
= 80F = I ’
—~ i 30

270 messages on the critical path
5.2 GB/s memory bandwidth

o
-

._.
o

(=)

Summary

* Multi-GPU SpTRSV using CUDA streams

* Bring experience for DAG-based computations on emerging accelerated architectures, e.g.,
GPU-GPU communication using nvshmem

* Core specialization on GPUs for DAG-based computations: more complex producer-
consumer relationship than stencils ---- the producer (sender) and the consumer (receiver)
can swap roles in turn to dispatch new work (message).

* DAG performance analysis can be extremely challenging
* Extend our SpTRSV performance model for GPUs
* Accounts for matrix sparsity, process layout, network/memory bandwidth/latency
* Enables performance analysis for DAG-based computations
* Helps understand performance bottlenecks

-

-~
- A
rreeeere

BERKELE A8

e —

=~ A
UNIVERSITY OF /\l)
CALIFORNIA BERKELEY LAB

Lawrence Berkeley National Laboratory

_ . f‘i’“” U.S. DEPARTMENT OF
e gz 2 == (VUJENERGY 3

- 4 : .- - ; : y $Ar Ao AL ,_':/ " —
o o— . WU T ——

