

Discussion on doing matrix element
calculation on GPU for M3D-C1

The loop layers of M3D-C1
● Loop over all elements

– Loop over basis function (nu)
● Calculate the integral of (mu, F[nu]) using

quadratures
– Loop over test function (mu)

Parallization over element loop
● Loop over all elements (MPI and OpenMP)

– Loop over basis function (nu)
● Calculate the integral of (mu, F[nu]) using

quadratures
– Loop over test function (mu)

Parallization over element loop
● Loop over all elements (MPI and OpenMP)

– Loop over basis function (nu)
● Calculate the integral of (mu, F[nu]) using quadratures

– Loop over test function (mu)
● Issues with parallization over elements

– Calculation in on element is heavy
– Insertion of matrix element requires serial excution (OpenMP

critical) and calls to SCOREC library

Parallization over basis and test
● Loop over all elements (MPI)

– Loop over basis function (nu) (OpenACC)
● Loop over test function (mu) (OpenACC)

– Calculate the integral of (mu, F[nu]) using quadratures
● Calculation for one OpenACC kernel is light (memory efficient)
● Jobs are independent, no serial part is needed.

Element paralization using CUDA MPS
● CUDA Multi-Process Server (MPS) is a feature that allows multiple

CUDA processes to share a single GPU context. each process
receive some subset of the available connections to that GPU.

● MPS allows overlapping of kernel and memcopyoperations from
different processes on the GPU to achieve maximum utilization

● Requirement
– Launch MPS server before the program begins
– Officially supported by Summit cluster

List of changes required
● Offload global variables required for element calculation
● Offload element quadrature results (*79)
● Reduce dimension of test function variables in element

calcualtion
– Replace intx with int in metricterms.f90

● Make all the temporary variables private for OpenACC
kernels

Test results
● We test the code on traverse cluster
● 4 planes with 6770 elements on each
● numvar=3 isplitstep=1
● 4 nodes 64 cores per node vs. 4 GPUs per node
● 4*32 MPI processes
● Time taken for velocity matrix terms calculation

– CPU 40s / 34s (Open MP 4 threads)
– GPU 6.7s

● OpenACC kernel takes 1541MB for each process

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

