
Part II. Perfect conducting first wall
Recently. Boozer has claimed (with a simple model) that, even in a perfect 
conducting ITER first wall limit: 
• a cold VDE could occur (no active controls will be effective in this situation) and
• q(a) could drop down to ~2 even when the plasma current is still large (𝐼 =
~0.75 𝐼( -- 11.25 MA for ITER --), therefore allowing halo currents to emerge.



Boozer’s models
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Circular cross-section large aspect-ratio approximation:

Boozer uses this expression in a simplified VDE problem and gets:
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𝐼∗𝑞∗ = 𝐼(𝑞( leads to the previous result. But, from the force balance, he gets

And 𝐼∗ can be expressed as (bx is the x-point position)
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Combining all this we can get 
𝑞 = 𝑞 ⁄𝛿 𝑡 𝑏

𝛿 = 𝑍?@A 𝑡 − 𝑍?@A 0

We need to define bx/b

Boozer’s perfect-conductor-limit model:

Wall current is calculated with the 
image method. 
DOES NOT consider CQ induction!

Example (ITER): if BCD
B
= 1 → 𝐼∗ = 0.81𝐼( = 12.2 MA



ITER – thin wall – ideal wall limit– Cold VDE
We explore a case in which the first wall acts as an ideal conductor
TQ was initiated at the beginning à Te falls from 25 keV down to 30 eV
(this triggers the Current quench)

We found that this case is very stable!

wall

plasma

Plasma+wall



ITER – thin wall – ideal wall limit– Cold VDE

Current quench induction is very important in the 
side walls

t = 0.01 s



Approaching to Boozer’s model: Rectangular wall
To approach the Boozer’s model, we simulate a VDE with a very conductive rectangular wall.
Side walls are placed as far as possible

• Top/bottom walls are equidistant to the magnetic axis
• Separatrix (bx/b) is ~ 1

• With this assumption, I_* ~ 0.81 I_0 = 12.1 MA

With a TQ, the result is unstable even when ‘Ip’ > I_*

Elongation seems to play a role even in the ideal conducting wall limit (?)

Equilibrium evolution
without TQ

TQ initiated at t=0

We initiated a TQ at t=0 in order to produce a CQ.



Approaching to Boozer’s model: Rectangular wall
Bringing the side walls closer improves the stability

M1 M2 M3



Approaching to Boozer’s model: Rectangular wall

M1M2M3

M1

M2

M3

Bringing the side wall closer improves the stability (as already shown with ITER first 
wall model) 

BUT… ALL OF THEM STILL SEEM TO BE UNSTABLE (EVEN M3)

Equilibrium w/o TQ



So… Are the initial configurations ideally unstable?
We ran the linear version of the code and we found that 
M1 equilibrium is stable under small perturbation (Case A in figure)

Z growth rate = 0.    (eps = 1.e-3)

Is the COMPLEX version set appropriately?

• Case A is the evolution of the equilibrium
• Case B is a restart from a 2D non-linear run.

I was expecting here to find it unstable.

A

B

C1input changes from 2D to Complex (case B):
• irestart = 1  à 3
• imp_bf = 0  à 1
• linear = 0     à 1
• eps = 1.e-8  à 1.e-2
• ntor =                0

2D non-linear

Complex



So… Are the initial configurations ideally unstable?

However… when setting a TQ, the plasma gets an initial displacement that 
might lead it to an ideally instable condition.

We ran the linear version of the code and we found that M1 equilibrium is stable 
under small perturbation

Z growth rate = 0.    (eps = 1.e-3)

Dash line is the time for TS1 (next slide)
Halo currents seem to be
significant during this 
phase



Current densities at TS=1 (t=0.49 ms)

Negative toroidal
Halo currents
(repelling the 
small inward 
motion?)

Since the side walls are far away, part of the ‘response’ due to plasma changes is 
produced in the open field line region



So… can we produce a CQ w/o dropping 𝛽 and w/o 
halo currents?

Thermal quench produces a fast drop in plasma beta. This contracts the plasma and also heats the halo region. 
Even with a very high kappar, some halo can emerge during the TQ.
To avoid this. We started a series of simulation:
• No Thermal quench
• Increasing eta_fac = 1 à 10e5 to induce a current quench.
• Kappa_perp is slightly adjusted to balance ohmic heating from the CQ. 

(a) 𝜅G = 4×10JK

(b) 𝜅G = 7×10JK

(c) 𝜅G = 1×10JL

𝜅G = 2.4×10J/

(a)
(b)

(c)

(a)

(b)

(c)



Comparing with Boozer’s model

Equilibrium
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