
On the need for efficient and scalable solvers for ill-

conditioned sparse matrix equations
J. Chen (jchen@pppl.gov), N. Ferraro (nferraro@pppl.gov), S. Jardin (jardin@pppl.gov)

Princeton Plasma Physics Laboratory

Challenge: Many problems of interest to research groups in the DOE Office of Science, and to a wider

group of scientists and engineers as well, involve large sparse matrix equations, =A X B , where the

matrices A are poorly conditioned. Our experience is in the implicit MHD equations for fusion

applications, but these types of equations also occur in other disciplines such as power grid simulations,

subsurface flow, circuit simulation, and computational cardiology. In each instance, the condition

number is very high, but for one or more different underlying reasons. This leads to difficulties in

iterative solutions as the number of iterations required for solution to a given tolorance normally

increases with the condition number.

Opportunity: Domain scientists or engineers, applied mathematicians, and computer scientists all look

at these problems differently. The domain scientist might understand the reason for the large condition

number, for example in terms of the wide range of time and spatial scales present in the underlying

physics equations. The domain scientist and applied mathematician may discuss different

preconditioning techniques based on addressing these underlying reasons. The computer scientist may

be the best one to implement the preconditioner and iterative solver on modern CPU/GPU hardware in

a scalable way. Perhaps the best way to approach this problem is to form an inter-disciplinary team

around each domain -specific sparse matrix A possessing its own unique properties, and to work

towards a solution for that specialized problem.

As a case in point, we refer to the sparse matrix used in the implicit MHD code M3D-C1 [1] to advance

the velocity one time step using the semi-implicit algorithm. This matrix has a wide range of

eigenvalues as it was formed by discritizing equations describing all MHD waves with oscillations ranging

from zone-to-zone to the size of the entire device. The code can also be run in 2 “reduced MHD”

regimes where only the shear-Alfven wave is present (NV=1), where that and the slow wave are present

(NV=2), or where all three waves are present, (NV=3 or full MHD). The geometry is a torus, which is

represented by high order C1 continuous finite elements in 3 dimensions. The elements are structured

in the direction going the long way around the torus, but unstructured in the toroidal planes at a given

toroidal angle. It was recognized that the underlying wave equations are stiffest within a given toroidal

plane where the zone dimensions are also smallest. This led to the development of a block-Jacobi

preconditioner that uses the sparse direct solver SuperLU_dist to concurrently factor each diagonal

block describing wave propagation within a given plane and to use those to form a preconditioner. The

efficacy of this approach can be seen in Figure 1 where we plot the magnitude of each of the

eigenvalues of the velocity matrix A before and after being preconditioned for NV=1, 2, and 3. It is

seen that the condition number for the full MHD case has been reduced from about 1015 to 30 by this

preconditioning technique.

mailto:jchen@pppl.gov
mailto:nferraro@pppl.gov

While this approach with the block-Jacobi preconditioner led to a workable solution method for the

M3D-C1 velocity matrix, it is not an optimal solution for the other matrices in M3D-C1 describing the

magnetic field and pressure evolution. The pressure equation is often dominated by a large anisotropic

thermal conductivity that is many orders of magnitude larger in the direction parallel to the magnetic

field than in the other directions. The ill-conditioning that results from this is not well addressed by the

block-Jacobi preconditioner. Also, we have yet to see much speedup when the block-Jacobi

preconditioned GMRES iterative solver is implemented on GPUs as compared to CPUs as it is

communication dominated.

Timeliness: There is a need for this now because matrices are getting larger and more poorly

conditioned, for example those in the implicit MHD applications describing ITER. Because of the large

physical size of ITER and because of its large magnetic field strength and projected temperatures and

densities, the condition number of the MHD matrices will be orders of magnitude larger than those now

used in modeling existing tokamaks. Also, the HPC hardware is getting more difficult to program

efficiently due to the CPU/GPU processors, communication bottlenecks, and memory hierarchies.

Figure 1 Plotted are all the eigenvalues of a full 3D M3D-C1 velocity matrix before (in black) and after (in red) the block-Jacobi
preconditioner has been applied for 1,2 and 3 velocity variables. The ratio of the largest to the smallest eigenvalue has been
reduced from about 1015 to approximately 30 for the 3 velocity variable case.

References:

[1] S. C. Jardin, N. Ferraro, J. Breslau, and J. Chen, “Multiple timescale calculations of sawteeth and other

global macroscopic dynamics of tokamak plasmas”, Comput. Science and Discovery 5 014002 (2012)

NV=1

number
0 5000

lo
g

1
0

 E
ig

e
n
v
a

lu
e
s

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

NV=2

number
0 5000 10000

NV=3

number
0 5000 10000 15000

New
modes

New modes
in this range

