M3D-C1 ZOOM Meeting

06/05/2023

Upcoming Meetings

CS Issues

- 1. LBL Report -- LBL
- 2. Preliminary Frontier results Chang Liu
- 3. Adaptation update -- RPI
- 4. Reduced precision SuperLU ... Jin Chen
- 5. Perlmutter_cpu update
- 6. NERSC Time
- 7. Changes to github master since last meeting
- 8. Regression tests
- 9. Debug for Dingyun's application

Physics Studies

- 1. Double Tearing Mode in NSTX
- 2. Anything else

In attendance

Steve Jardin Hank Straus Chang Liu Jin Chen Brendan Lyons **Cesar Clauser** Priyanjana Sinha Chen Zhao Andreas Kleiner Nate Ferraro M. Yoo

Mark Shephard Seegyoung Seol Usman Riaz Nan Ding Yang Liu Sherry Li Hans Johansen

Upcoming Meetings

EPS	July 3-7	Bordeaux, France
TSDW	July 19-21	Princeton, NJ
IAEA	Oct 16-21	London, UK
APS	Oct 30 – Nov 1	Denver, CO
AAPPS-DPP	Nov 12-17	Nagoya, JP

LBL Update

LBL

Preliminary Frontier Results

Chang Liu

Adaption Update

RPI?

Reduced Precision SuperLU

On June 5, Sherry writes:

Jin,

Did you use runtime option: -mat_superlu_dist_single_precision

The code looks correct, i.e., correctly using sizeof(float) in the memory tracker for single precision. I

also did a standalone test, using single and double examples in EXAMPLE/ dir:

\$ mpiexec -n 1 pddrive big.rua

** NUMfact space (MB): (sum-of-all-processes)

L\U: 1.98 | Total: 10.24

\$ mpiexec -n 1 psdrive big.rua
** NUMfact space (MB): (sum-of-all-processes)
L\U: 1.03 | Total: 5.44

You can see that single precision uses about half of the memory. I suspect that you did not use the single precision version. Sherry

Jin replies (same day):

I did use "-mat_superlu_dist_single_precision". To be sure it's passed to PETSc, I have used options_left to check it. PETSc didn't report that it was unused

perlmutter_cpu update

- Large jobs with 73 K vertices(N) and 98 K vertices (L) with 380 vertices/partition
 - 192-N-09 with 192 partitions, 380 v/p, 64 planes, 64 cpu/node: runs ok!
 - 192-N-10 with 192 partitions, 380 v/p, 32 planes, 64 cpu/node: runs ok!
 - 128-K-09 with 128 partitions, 386 v/p, 64 planes, 64 cpu/node: runs ok!
 - 128-K-10 with 128 partitions, 386 v/p, 32 planes, 64 cpu/node: runs ok!
 - 256-L-09 with 256 partitions, 384 v/p, 64 planes, 64 cpu/node: segmentation v
 - 256-L-10 with 256 partitions, 384 v/p, 32 planes, 64 cpu/node: runs ok!
- Smaller meshes with 9 K vertices (B) and 19 K vertices (H)
 - Normally run ok with 128 cpu/node and 150-200 vertices/partition
 - Also run ok with 64 cpu/node and 300-400 vertices/partition

Thanks to Jin for correcting my options_bjacobi file with -sub_mat_mumps_icntl_14 100

NERSC Time 2023

mp288

- MP288 usage rate is a bit high but leveling off
- Also, 8.0k GPU node hours
- Cori is gone!
- I have contacted DOE to see the likelihood of getting more time no response to date

Changes to github master --after 2023-05-21

Yao Zhou:

06/02/23: Fixed bug on tepsifkappar

Nate Ferraro:

05/23/23: Some changes to the random perturbation initialization routine to use the correct values ofor psi when external coils are present

Local Systems

- PPPL centos7(06/04/23)
 - 7 jobs PASSED
- PPPL greene (06/04/23)
 - 5 jobs PASSED
- STELLAR (06/04/23)
 - 7 regression tests **PASSED** on stellar
- TRAVERSE_gpu(11/04/22)
 - Compilation error (being looked at by Seegyound , Jin, and Chang)

NERSC

- Perlmutter_cpu (06/04/23)
 6 jobs PASSED
 NCSX failed with very small difference in C1ke
- Perlmutter_gpu (02/19/2023) 06/04/23: will not compile
 - pellet, RMP, & RMP_nonlin, adapt all PASSED
 - KPRAD_2D, KPRAD_restart, NCSX all failed with very small differences
 - adapt not submitted

Dingyun is trying to reproduce a case in my 2020 paper

Need to find when these differences first occur:

git log --after 2018-06-30 > logout

git clone https://github.com/PrincetonUniversity/M3DC1

git checkout 8a6a036

Had to:

- remove wrrestartglobal from output.f90 and restart.f90
- Comment out MPI_Comm_split in newpar.f90
- Copy stellar.mk from current version

Progress on debug

Differences first appear on 11/17/20

• Mostly concerned with bf to bfp change bf = f, bfp = f'

$$\mathbf{B} = \nabla \psi \times \nabla \varphi - \nabla_{\perp} f' + F \nabla \varphi \qquad \qquad R^2 \nabla \bullet \nabla_{\perp} f = F - F_0$$
$$R^2 \nabla \bullet \nabla_{\perp} f' = F'$$

- The two versions agree exactly in 2D !
- The two versions agree fairly well in 3D if f = f' = 0, and these results can be very different from f and f' nonzero
- Differences can appear in this and other problems at long time
- These differences likely due to differences in truncation error. Convergence studies should be performed

Run49, fp, op=1 11_17_20: 17:00 Commit: b572e1e7

> Run48, f, op=11 11_17_20: 14:48 Commit: 43061986

t=4500

t=9000

t=13500

Try turning off certain terms

Double Tearing Mode in NSTX

From: Yuh, et al, Phys. Plasma (2009)

Some MHD activity starting at about 270 ms

DTM Eigenfunction and growth rate

Linear χ at 247 ms

q-profile in geqdsk file is smooth. However, when we recompute the equilibrium in M3D-C1, oscillations appear

Linear growth rate as a function of linear mesh size for spitzer η and spitzer x 10

NSTX Reversed Shear shot 129169 @ t=247 ms

Systematic study of DTM in circular torus has begun

- This should recover analytic DTM results at low pressure
- However, at higher pressure, there will be some competition with infernal modes
- Stay tuned for coming results.

That's All I have

Anything Else ?