M3D-C1 ZOOM Meeting 02/27/2023

Upcoming Meetings

CS Issues

- 1. RPI Update on Meshing and Adaptation
- 2. Cubic Hermite interpolation ... J. Chen
- 3. New Latex documentation -
- 4. NERSC Time
- 5. Changes to github master since last meeting
- 6. Regression tests
- 7. isurface now gone

Physics Studies

- 1. Tool for setting mesh parameters in sizefieldParam ...Andreas
- 2. Tracking down a code "bug"...Dingyun + SJ
- 3. New insights into infernal modes
- 4. DREKAR....observations from Shadid seminar
- 5. M3DC1 makes GA Weekly Theory Summary
- 6. Chen Zhao, Brendan Lyons updates
- 7. Anything else

In attendance

Steve Jardin Hank Straus Adelle Wright Andreas Kleiner Jin Chen Chen Zhao Nate Ferraro **Brendan Lyons** Cesar Clauser Priyanjana Sinha Mark Shephard Seegyoung Seol Usman Riaz

Upcoming Meetings

Sherwood Theory	May 8-10	Knoxville, TN
EPS	July 3-7	Bordeaux, France (abstracts due Feb 28)
TSDW	July 19-21	Princeton, NJ
APS	Oct 30 – Nov 1	Denver, CO

RPI update on Meshing Capabilities and Adaptation

Cubic Hermite Interpolation

J. Chen to present

New LaTex Documentation

A cleaned version of M3DC1 user's guide is uploaded to M3DC1/doc and this version compiles on all machines using the command "pdflatex M3DC1.tex".

.pdf version is available on m3dc1.pppl.gov

All C1input variables are now documented (sectin 6)

Appendix B (SCOREC API) now eliminated . (Thanks to Seegyoung)

- A section on GITHUB has been added (similar to the old documentation)
- I am working on updating the IDL postprocessor documentation.
- Also added a section on publications.

NERSC Time 2023

mp288

- MP288 usage rate is a bit high
- Also, 10k GPU node hours
- Cori to go away end of April 2023

Changes to github master --after 2023-01-25

Nate Ferraro

01/30/23: Fixed bug in rmp.f90 where sf array was being allocated with length 0 when iread_ext_field=0

01/30/23: Changes to allow restarting 3D simulation with extsubtract=1 from 2D simulation with extsubtract=0

- **02/07/23**: Removed more isurface=1 coding
- **02/08/23**: more changes removing isurface=1 option
- 02/08/23: Updates to .gitignore to ignore intermediate build/latex files
- **02/09/23**: Change debugging flags in stellar.mk

02/09/23: Minor change to vmec interpolation to fix floating point exception

02/22/23: Added new scalar diagnostics E_MPC, E_MTC, E_MPV, E_MTC to track poloidal and toroidal magnetic energy in the conductor and vacuum region. Updated energy.pro and energy_conservation.pro to account for this. Updated "version" to 43

Jin Chen:

01/30/23: Changes made for BGMG optimization

02/11/23: function call interface minor change

Changes to github master --after 2023-01-25

Seegyoung Seol

01/30/23: adding config.sh, makefile and readme for traverse gpu

- **02/04/23**: adding config.sh and makefile for traverse.nvhpc
- **02/06/23**: fixing linking error with Perlmutter_gpu
- 02/07/23: adding config.sh and makefile for Perlmutter_GPU
- **02/21/23**: readme for m3dc1_scorec removed
- **02/21/23**: adding readme for stand-alone adaptation test

S. Jardin:

01/31/23: Added GITHUB section to Latex documentation

Brendan Lyons:

02/01/23: IDL scripts for line integration and energy-conservation monitoring

Yao Zhou 02/17/23: Added ikappafunc=21

Local Systems

- PPPL centos7(02/27/23)
 - 7 jobs PASSED
- PPPL greene (02/27/23)
 - 5 jobs PASSED
- STELLAR (02/27/23)
 - 7 regression tests **PASSED** on stellar
- TRAVERSE_gpu(11/04/22)
 - Compilation error (being looked at by Seegyound , Jin, and Chang)

NERSC

- Perlmutter_cpu (02/19/23)
 6 jobs PASSED
 NCSX failed with very small difference in C1ke
- Perlmutter_gpu (02/19/2023)
 - pellet, RMP, & RMP_nonlin, adapt all PASSED
 - KPRAD_2D, KPRAD_restart, NCSX all failed with very small differences
 - adapt not submitted
- Perlmutter-nvidia(02/19/23)
 - Batchfiles not available

isurface

• Nate is removing the isurface=1 option

Now only in 4 places !!

isurface has now been removed from the input manual!

Tool for adjusting mesh parameters

For use in defining sizefieldParam

Andreas to discuss

Dingyun is trying to reproduce a case in my 2020 paper

Need to find when these differences first occur:

git log --after 2018-06-30 > logout

git clone https://github.com/PrincetonUniversity/M3DC1

git checkout 8a6a036

Had to:

- remove wrrestartglobal from output.f90 and restart.f90
- Comment out MPI_Comm_split in newpar.f90
- Copy stellar.mk from current version

Progress on debug

07/02/18	baselii	ne			
02/07/19	good				
01/12/20	good with kappa0 halved				
02/10/20	good	"	"	"	
02/21/20	good	"	"	<i>u</i>	
02/27/20	now ru	unning	(had to	comment out MPI_Comm_split)	
03/10/20	bad				
06/02/20	bad				
01/05/21	bad				

New Insight into Infernal Modes

For a mode with toroidal mode # n to be unstable, there has to be a poloidal mode number m such that m/n is in the low shear region

- n=2 NO3/2 is too high shear
- n=3 YES.....4/3 is low shear
- n=4 NO.....5/4 not resonant, 6/4 too high
- n=5 YES.....7/5 is low shear

DREKAR

- SIAM presentation by John Shadid (Sandia) at Arizona State (thanks Adelle)
 - Title: Scalable Multiphysics Block Preconditioning for Solution of Implicit Stabilized Finite Element Resistive MHD Formulations with Application to Magnetic Confinement Fusion
- This was developed by the <u>other</u> disruption SciDAC, run out of LANL
- Goal was to develop a new code in the class of JOREK, M3D-C1, NIMROD
- However, they use only linear finite elements and need to impose a Div B constraint
- Results presented were underwhelming.
 - VDE with S=10⁴
 - Mostly concentrated on scaling studies (# of processors)

GA Theory Summary week of Feb 24

THEORY AND COMPUTATIONAL SCIENCE

The next generation of large tokamaks, including ITER, will be equipped with a disruption mitigation system (DMS) that can be activated if a disruption is deemed to be imminent. The goal of the DMS is to lessen the thermal and electromagnetic loads from the disruption without generating enough high-energy (runaway) electrons to damage the device. The DMS of choice for ITER is presently the injection of a frozen impurity pellet, which shatters into many pieces during the injection process. Variations of this DMS are presently being tested on many experiments. One such DMS experiment on DIII-D was modeled using the M3D-C1 nonlinear 3D extended MHD code (Jardin et al., 2012 J. Comp. Sci. Discovery), The model includes neon pellet injection and ablation, impurity ionization, recombination, and radiation, and runaway electron formation and subsequent evolution, including both Dreicer and avalanche sources. Reasonable agreement with the experimental results was obtained for the timescale of the thermal and current quench and for the magnitude of the runaway electron plateau formed during the mitigation. This provides a partial validation of the M3D-C1 DMS model.

Kudos Chen Zhao

Update on other Jobs

zhaoc@fusion.gat.com

Simulation of DIII-D disruption with pellet injection and runaway electron beam

C. Zhao^{1,2}, C. Liu², S. C. Jardin², N. M. Ferraro², B. C. Lyons^{1,2} ¹⁾General Atomics, San Diego, CA, United States of AmericaGeneral Atomics, San Diego, CA, United States of America

- Chen's paper is going through DIII-D review
- Intends to send it to PRL

- Brendan, status of ITER DM run?
- Other

That's All I have

Anything Else ?