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Abstract
The capability to model the nonlinear magnetohydrodynamic (MHD) evolution of stellarator
plasmas is developed by extending the M3D-C1 code to allow non-axisymmetric domain
geometry. We introduce a set of logical coordinates, in which the computational domain is
axisymmetric, to utilize the existing finite-element framework of M3D-C1. A C1 coordinate
mapping connects the logical domain to the non-axisymmetric physical domain, where we use
the M3D-C1 extended MHD models essentially without modifications. We present several
numerical verifications on the implementation of this approach, including simulations of the
heating, destabilization, and equilibration of a stellarator plasma with strongly anisotropic
thermal conductivity, and of the relaxation of stellarator equilibria to integrable and
non-integrable magnetic field configurations in realistic geometries.
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(Some figures may appear in colour only in the online journal)

1. Introduction

A major advantage of the stellarator concept over the tokamak
is its superior magnetohydrodynamic (MHD) stability [1]. Not
requiring plasma currents to generate the confining magnetic
fields, stellarators are generally free of current-driven instabil-
ities that can be disruptive in tokamaks. Still, stellarator plas-
mas can be subject to pressure-driven instabilities, and designs
usually rely on linear stability analysis to avoid them, which
in turn imposes limits on the theoretically achievable plasma
beta.

However, stellarator plasmas are often observed to be non-
linearly stable when driven beyond linear stability thresholds
in experiments [2]. Linearly unstable modes are seen to grow
but typically saturate at harmlessly low levels, implying that
linear stability constraints tend to be overly conservative and
restrictive. Hence, it would be useful to consider nonlinear sta-

∗ Author to whom any correspondence should be addressed.

bility criteria instead, which may expand operation windows
for present devices and improve designs and lower costs for
future ones.

Unfortunately, systematic investigations on this idea have
been impeded by the lack of a state-of-the-art nonlinear
MHD code for stellarators. Most existing toroidal MHD codes
are designed for tokamak applications and therefore assume
axisymmetric computational domains. While some simple
stellarators can be modeled using such codes [3–5], most real-
istic stellarator designs do not permit an axisymmetric surface
between the plasma and the coils, and therefore cannot be
treated using axisymmetric domains. To our knowledge, the
M3D [6] and MIPS [7] codes have developed the capability
to allow non-axisymmetric domains, but they have not been
used for simulations at transport timescale. Lately, NIMROD
[8] and JOREK [9] have also been exploring this possibility.

In this work, we fill this need by extending the M3D-
C1 code [10] from tokamak to stellarator geometry. For time
advance, M3D-C1 implements a split-implicit scheme that
allows for time steps larger than Alfvénic, which realizes sta-
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ble transport-timescale simulations [11]. For 3D spatial dis-
cretization, M3D-C1 uses high-order finite elements with C1

continuity (see section 2 for details), which are constructed
on an axisymmetric mesh. To utilize this finite-element frame-
work, we introduce a set of logical coordinates, in which the
computational domain becomes axisymmetric. A C1 mapping
connects the logical coordinates to the physical (R, Z,ϕ) coor-
dinates so that we can use the chain rule to calculate derivatives
in the latter, in terms of which the existing physics equations
are written. This way, we can readily use the MHD mod-
els within M3D-C1 without introducing new metric factors or
coordinate singularities, and the physics coding carries over
essentially without modification.

We present results from several numerical tests to verify the
implementation of this approach. First is a convergence study
on a boundary-value problem, solving Laplace’s equation in a
stellarator-shaped domain. Then, we perform nonlinear MHD
simulations of the heating of a rotating-ellipse stellarator,
which are done in either a non-axisymmetric or axisymmetric
domain, and compare the results for benchmarking. Finally,
we demonstrate the capability to treat realistic geometries by
studying the relaxation of VMEC [12] equilibria, including
cases where flux surfaces generally stay intact or break up due
to pressure-driven currents.

This paper is organized as follows. In section 2, we describe
our approach to extending M3D-C1 to stellarator geometry. In
section 3, we present numerical results to verify the imple-
mentation of this approach. Summary and discussion follow
in section 4.

2. Approach to stellarator geometry

Let us first review how M3D-C1 treats 3D tokamak geome-
try, where cylindrical coordinates (R, Z,ϕ) are used. [The order
of coordinates does not imply handedness and is merely cho-
sen for convenience; M3D-C1 actually uses a right-handed
(R,ϕ, Z) coordinate system]. An axisymmetric domain is dis-
cretized using wedge-shaped C1 elements, which are tensor
products of reduced quintic triangular elements [13] in the
(R, Z) plane and Hermite cubic elements [14] in the toroidal
(ϕ) direction. In such an ‘extruded’ element, a scalar function
g(R, Z,ϕ) can be projected onto basis functions ν(R, Z,ϕ):

g(R, Z,ϕ) =
18∑
j=1

4∑
k=1

g jkν jk(R, Z,ϕ), (1)

where ν jk(R, Z,ϕ) = ξ j(R, Z)hk(ϕ) and ξ(R, Z) and h(ϕ)
denote the basis functions of reduced quintic and Hermite
cubic elements, respectively. The degrees of freedom (DoFs)
g jk are given by (g, gR, gZ , gRR, gRZ , gZZ) and their ϕ deriva-
tives on all six nodes of the element. (Coordinates in subscripts
denote partial derivatives.) In the Galerkin method, deriva-
tives up to second order are allowed on these C1-continuous
basis functions ν (up to fourth order considering integration
by parts) [14].

The M3D-C1 finite elements described above must be
constructed on an axisymmetric mesh, which is natural for

Figure 1. Toroidal cross sections of (a) an axisymmetric mesh in the
logical coordinates, and (b) the non-axisymmetric mesh that it maps
to in the physical coordinates, at eight different toroidal angles. The
mapping is generated using an HSX-like VMEC equilibrium.

tokamak simulations. However, the capability to treat non-
axisymmetric computational domains is essential for model-
ing realistic stellarators with complex geometries. To facilitate
this, we introduce a set of logical coordinates (x, y, ζ), in which
the domain is axisymmetric. These coordinates connect to the
physical (R, Z,ϕ) coordinates via a C1-diffeomorphicmapping

R = R(x, y, ζ), Z = Z(x, y, ζ), ϕ = ζ. (2)

While it is possible to consider more general mappings
between the logical and physical toroidal angles, here we sim-
ply equate ζ and ϕ for practicality. In principle, the mapping
(2) does not need to have any physical meanings, but a par-
ticularly convenient choice is to utilize the outputs of equi-
librium codes like VMEC [12], which are given in terms of
the geometries of nested flux surfaces, R(s, θ, ζ) and Z(s, θ, ζ).
With s being a surface label and θ being a poloidal angle,
we can use a polar–Cartesian transformation, x =

√
s cos θ
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and y =
√

s sin θ, to obtain the logical coordinates. Figure 1
shows such a mapping generated using an HSX-like VMEC
equilibrium [15].

Since the computational domain is axisymmetric in the log-
ical (x, y, ζ) coordinates, we can readily utilize the existing
M3D-C1 finite-element framework for spatial discretization by
using (x, y, ζ) in lieu of (R, Z,ϕ), as is shown in figure 1(a). In
this case, a scalar function g is now projected onto logical basis
functions ν(x, y, ζ),

g(x, y, ζ) =
18∑
j=1

4∑
k=1

g jkν jk(x, y, ζ), (3)

where ν jk(x, y, ζ) = ξ j(x, y)hk(ζ) and the DoFs gjk are given
by (g, gx, gy, gxx , gxy, gyy) and their ζ derivatives on the nodes.
While these basis functions allow derivatives up to second
order in (x, y, ζ), the existing physics equations are written in
terms of their derivatives with respect to the physical (R, Z,ϕ)
coordinates, which we can obtain using the chain rule. Specif-
ically, first-order physical derivatives are given by

⎛
⎝νR

νZ

νϕ

⎞
⎠ = J

⎛
⎝νx

νy

νζ

⎞
⎠ , (4)

where the Jacobian matrix J is

J =

⎛
⎝Rx Zx 0

Ry Zy 0
Rζ Zζ 1

⎞
⎠

−1

=
1
D

⎛
⎝ Zy −Zx 0
−Ry Rx 0

A B D

⎞
⎠ , (5)

with

A = RyZζ − RζZy, (6a)

B = RζZx − RxZζ , (6b)

D = RxZy − RyZx. (6c)

The transformations of second derivatives are much more
cumbersome, which we summarize in appendix A. Note that
the discrete equations are derived using the Galerkin method
assuming that first derivatives (νR, νZ , νϕ) are continuous.
This means that the coordinate mapping (2) must be C1-
diffeomorphic, which we choose to guarantee by represent-
ing it with our C1-continuous basis functions: R(x, y, ζ) =∑

R jkν jk, Z(x, y, ζ) =
∑

Z jkν jk.
Meanwhile, we also need to keep track of the Jacobian

determinant when performing volume integrals:
∫

g dV =

∫
g R dR dZ dϕ =

∫
g RD dx dy dζ. (7)

Another subtlety is that for boundary conditions to be imposed,
the DoFs g jk also need to be transformed from logical to
physical derivatives. The treatment is discussed in detail in
appendix B. Notably, all the modifications described above
are made on the level of basis functions, such that no signif-
icant changes to the extended MHD models implemented in
M3D-C1 are required.

Figure 2. Convergence test on a boundary-value problem in an
HSX-shaped domain (only one field period is used):
(a) mean-squared error E versus numerical resolution N; (b) a cross
section of the numerical solution φ at ϕ = π/4. The parameters
used are m = 2, n = 1, R0 = 0.25, ε = 0.5, Ra = 1.4, and Za = 0.

Finally, we remark that such a coordinate mapping is a com-
mon approach when structured finite elements are used to dis-
cretize shaped domains. In fact, NIMROD [16] and JOREK
[17] already use axisymmetric mappings in tokamak geometry.
This was not necessary for M3D-C1 since the wedge-shaped
elements can mesh arbitrary axisymmetric domains directly,
but stellarator geometry requires the implementation of a
non-axisymmetric mapping because the elements are struc-
tured in the toroidal direction. Moreover, unlike NIMROD
and JOREK, M3D-C1 uses C1 elements and hence requires
the transformation of second derivatives, which introduces
some complication (cf appendix A). Also, both NIMROD
and JOREK use Fourier discretization toroidally, and there-
fore efforts to adapt these codes to non-axisymmetric domains
would presumably somewhat differ from the approach taken
here.

3. Numerical verifications

3.1. Boundary-value problem

First, let us verify the spatial discretization of a non-axis
ymmetric domain by considering a boundary-value problem.
Specifically, we solve Laplace’s equation in 3D

∇2φ = 0, (8)

3
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Figure 3. Total thermal energy versus time in simulations using a
cylindrical (solid) or a rotating elliptical (dashed) domain. The
number of elements at each toroidal plane is 1389 (1 K) in lower
resolution runs and 5131 (5 K) in higher resolution runs.
Simulations in the cylindrical domain require more toroidal planes
(32 and 64) than the rotating elliptical domain (8 and 16) for
comparable accuracy. The simulation parameters are B0 = 1,
R0 = 1, Ra = 1.4, Za = 0, ε = 0.8, σ = 0.05, w = κ⊥ = η = 10−6,
κ‖ = 1, and μ = μc = 10−4.

where φ is a scalar field. We consider not toroidal but periodic
cylindrical geometry, where the analytical solution comprises
components

φmn = εmnIm(nr/R0) cos(mθ − nz/R0). (9)

Here, m and n are integers denoting poloidal and toroidal
(axial) mode numbers, respectively, and Im denotes modi-
fied Bessel function of the first kind. The periodic cylindri-
cal coordinates (r, θ, z) relate to (R, Z,ϕ) by R = Ra + r cos θ,
Z = Za + r sin θ, andϕ = z/R0, where R0 is an effective major
radius and (Ra, Za) locates the axis of the cylinder.

In a stellarator-shaped domain as depicted in figure 1(b), we
impose Dirichlet boundary condition on φ using the boundary
value of the solution (9). Then, we obtain numerical solutions
to (8) while increasing the numerical resolution consistently in
all three dimensions with the number of toroidal planes N as an
indicator. In figure 2(a), the mean-squared error with respect
to the analytical solution shows convergence close to fourth
order versus increasing numerical resolution, which verifies
our approach to spatially discretizing the non-axisymmetric
domain.

3.2. Dynamical benchmark

Next, we simulate the heating of a rotating-ellipse stellarator
in periodic cylindrical geometry. The simulation can be done
in either an axisymmetric or non-axisymmetric computational
domain so we can use the original (tokamak) version of M3D-
C1 for benchmarking.

Specifically, we initialize with a vacuum magnetic field
B = ∇φ with the potential φ satisfying (8), including an
m = 2, n = 1 component of solution (9),

φ = B0[z + 2εR0I2(r/R0) cos(2θ − z/R0)], (10)

Figure 4. Final snapshot of pressure p at ϕ = 0 in the higher
resolution simulations using (a) the rotating elliptical domain and
(b) the cylindrical domain.

where B0 denotes the strength of the toroidal (axial) field. This
vacuum field generates rotating elliptical flux surfaces near
the axis when ε < 1, and we choose ε = 0.8 here, which pro-
vides a rotational transform ι = 0.2 and elongation e = 3 on
the axis [18]. Hence, we can simulate this stellarator in a non-
axisymmetric, rotating elliptical domain with lengths of semi-
major axis a = 0.3 and semi-minor axis b = 0.1. Meanwhile,
we can also simulate it in an axisymmetric, cylindrical domain
with minor radius a = 0.3, akin to the NIMROD simulations
in [4]. In both cases, the last closed flux surface is limited at
a = 0.3, so the behavior of the plasma, heat transport in par-
ticular, should be quite similar, even though exact agreement
should not be expected.

While two-fluid and other effects are available in M3D-C1,
we solve the single-fluid extended MHD equations in these
simulations, including the momentum equation for the fluid
velocity v (in dimensionless units)

ρ(∂tv + v · ∇v) = j × B −∇p−∇ ·Π, (11)

the energy equation for the fluid pressure p

∂t p+ v · ∇p+ Γp∇ · v=(Γ− 1)(η j2−∇ · q −Π : ∇v+Q),
(12)

and the induction equation for the magnetic field B

∂tB = ∇× (v × B − ηj), (13)

4
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Figure 5. Poincaré plots of (a) the initial magnetic field that is
interpolated from a W7-X VMEC equilibrium (normalized by Tesla
and meter), and (b) the relaxed magnetic field at t = 1000. The
simulation parameters are κ⊥ = η = 10−6, κ‖ = 1, and
μ = μc = 10−4. Only one of five field periods is simulated.

with the current density j given by Ampere’s law, j = ∇× B.
Here we do not solve the continuity equation but hold the
mass density ρ = 1 such that (12) is essentially a tempera-
ture equation. (Otherwise, the agreement would be not as good
due to the discrepancy in the density evolution beyond the last
closed flux surface, which would undermine the purpose of
this benchmark). The stress tensor is given by Π = −μ(∇v +
∇vT) − 2(μc − μ)(∇ · v)I and the heat flux q = −κ⊥∇T −
κ‖bb · ∇T , with b = B/B and the temperature T = Mp/ρ,
where M is the ion mass. Transport coefficients include resis-
tivity η, isotropic and compressible viscosities μ and μc, and
perpendicular and parallel thermal conductivities κ⊥ and κ‖,
andΓ = 5/3 is the adiabatic index. An axisymmetric Gaussian
heat source Q = w/(2πσ2) e−r2/(2σ2) is applied in the simula-
tions to heat the plasma, with w and σ denoting the heating
rate and the Gaussian width, respectively.

Figure 6. Poincaré plot of the magnetic field at t = 100 in the
relaxation of a high-beta W7-AS VMEC equilibrium (normalized by
Tesla and meter). The simulation parameters are κ⊥ = η = 10−6,
κ‖ = 1, and μ = μc = 10−3. Only one of five field periods is
simulated.

In figure 3, we see an agreement on the growth of ther-
mal energy in the early stage, which verifies that simulations
in the non-axisymmetric domain model anisotropic heat trans-
port as accurately as those in the axisymmetric domain. In fact,
we find that the axisymmetric domain requires much higher
toroidal resolution to produce comparable results, which sug-
gests that the non-axisymmetric domain is more efficient in
treating the helical structure. (Similar findings have also been
reported in NIMROD simulations [8]). This is not surprising
since the mesh is better aligned with the flux surfaces in the
non-axisymmetric domain. In the later stage, an m = 5, n = 1
interchange instability is triggered and the plasma eventually
equilibrates. The onsets of the instability depend on the pertur-
bations, which are not prescribed but spontaneous, and hence
do not agree exactly. Still, the equilibrium structures in the final
equilibria do show qualitative agreement in figure 4. In sum-
mary, the newly implemented stellarator extension can model
MHD instabilities and anisotropic heat transport with simi-
lar accuracy to the tokamak version but lower computational
costs.

3.3. VMEC equilibria

Finally, we demonstrate that our approach can treat realistic,
strongly shaped stellarator geometries by examining the relax-
ation of VMEC equilibria. That is, we set up initial conditions
in M3D-C1 by interpolating VMEC equilibria and then solve
(11)–(13) without source terms. Due to the low near-axis res-
olution in VMEC data, we use Zernike polynomials [19] for
radial interpolation to ensure smoothness. These polynomials
guarantee analyticity near the magnetic axis and have recently
been used in stellarator equilibrium codes like SPEC [20] and
DESC [21] as well.

The first case we study is a W7-X equilibrium with no net
toroidal current and no pressure [22], which is close to but not
exactly a vacuum field. Figure 5(a) shows the initial magnetic
field constructed in M3D-C1, where flux surfaces are nested as

5
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is assumed in VMEC. Figure 5(b) shows the relaxed magnetic
field at t = 1000, where the majority of flux surfaces stay intact
and barely displaced. An m = 11 island chain has emerged at
the ι = 10/11 surface, which is not surprising because VMEC
solutions are known to be inaccurate at rational surfaces where
current singularities can open up islands [23, 24]. Overall, this
case exemplifies that M3D-C1 can, to a large extent, sustain a
VMEC equilibrium that is supposed to be relatively accurate.

In contrast, the second case we consider is a W7-AS high-
beta equilibrium where pressure-induced breaking of flux sur-
faces has been shown [25] using the PIES code [26]. Figure 6
shows the magnetic field configuration at t = 100 with a large
stochastic region near the edge as well as a pronounced m = 13
structure. These features are also seen in figure 7(A) in [25],
which was obtained using PIES from the same VMEC equi-
librium. Due to the enhanced heat loss by the stochastic mag-
netic field and the absence of a source, pressure decreases at
a rate comparable to the evolution of the magnetic geometry
and a near-equilibrium state could not be reached here. There-
fore, a quantitative comparison with PIES results has not been
performed and will be left for future work.

4. Summary and discussion

In this work, we develop the capability to model the nonlin-
ear MHD evolution of stellarator plasmas by extending the
M3D-C1 code to allow non-axisymmetric domain geometry.
We introduce a set of logical coordinates, in which the compu-
tational domain is axisymmetric, to utilize the existing finite-
element framework of M3D-C1. Via the chain rule, the C1

mapping from the logical to the physical (R, Z,ϕ) coordinates
facilitates calculations of derivatives in the latter, in terms of
which the existing physics equations are written. This way,
no significant changes to the extended MHD models within
M3D-C1 are required.

Several numerical verifications on the implementation of
this approach are presented. First is a convergence test on
a boundary-value problem in stellarator geometry. Then we
compare nonlinear simulations of a rotating-ellipse stellara-
tor in a non-axisymmetric domain to those in an axisymmet-
ric domain, and the results show good agreement in terms of
the heating, destabilization, and equilibration of the plasma.
Finally, we show proof-of-principle simulations of the relax-
ation of VMEC equilibria to integrable and non-integrable
magnetic field configurations, which demonstrate our capabil-
ity to treat realistic stellarator geometries.

The simulations in section 3.3 are fixed-boundary for
including only the plasma region. We can initialize free-
boundary simulations once an interface with the vacuum
region of free-boundary VMEC [27] is implemented. This
could facilitate more rigorous comparisons with more sophis-
ticated equilibrium codes such as PIES [26], HINT [28], and
SPEC [29]. We also have plans to verify M3D-C1 against lin-
ear stability codes such as TERPSICHORE [30] and CAS3D
[31]. Furthermore, validation against experimentally observed
MHD events such as the sawtooth-like oscillations induced by
current drive in W7-X [32] or the core collapses in inwardly

shifted high-beta LHD configurations [2] would be of interest
as well.
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Appendix A. Transformations of second derivatives

Here, we summarize the expressions of second-order physical
derivatives. Those involving (R, Z) only are

νRR = [Z2
yνxx + Z2

xνyy − 2ZxZyνxy − GνR

+ (ZyZxy − ZxZyy)νx + (ZxZxy − ZyZxx)νy ] /D2,

(A1a)

νZZ = [R2
yνxx + R2

xνyy − 2RxRyνxy − FνZ

+ (RyRxy − RxRyy)νx + (RxRxy − RyRxx)νy ] /D2,

(A1b)

νRZ = [(RxZy + RyZx)νxy − RyZyνxx − RxZxνyy

− GνZ − (ZyRxy − ZxRyy)νx

− (ZxRxy − ZyRxx)νy ] /D2, (A1c)

where we have defined

F = RxDy − RyDx , G = ZyDx − ZxDy. (A2)

To calculate second-order derivatives involving ϕ, we first
obtain the following expression from equation (4):

νϕ = −RζνR − ZζνZ + νζ . (A3)

Making use of equation (A3), we have

νRϕ = −RζνRR − ZζνRZ + νRζ , (A4a)

νZϕ = −RζνRZ − ZζνZZ + νZζ , (A4b)

νϕϕ = −RζνRϕ − ZζνZϕ + νϕζ . (A4c)

Note that ∂ζ does not commute with ∂R and ∂Z , so

νRζ = νζR − (Dζ/D)νR + (Zyζ/D)νx − (Zxζ/D)νy,

(A5a)

νZζ = νζZ − (Dζ/D)νZ + (Rxζ/D)νy − (Ryζ/D)νx,

(A5b)

6
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νϕζ = −RζνRζ − ZζνZζ + νζζ − RζζνR − ZζζνZ ,

(A5c)

where

νζR = (Zy/D)νxζ − (Zx/D)νyζ , (A6a)

νζZ = (Rx/D)νyζ − (Ry/D)νxζ . (A6b)

A subtlety here is that due to the extruded nature of the
M3D-C1 elements, mixed second-order derivatives such as νxζ

and νyζ (but not νxy) are continuous as well. In the original
(tokamak) version, this means that νRϕ and νZϕ are contin-
uous, such that mixed high-order derivatives like νRRϕϕ are
allowed and used in equations. However, in non-axisymmetric
geometry, νRϕ and νZϕ are no longer continuous for they also
depend on ν xx , etc. That is, we can take strictly no more than
second-order physical derivatives on the basis functions in
the stellarator version. Hence, some changes such as integra-
tion by parts are made to the physics equations to avoid these
now-prohibited high-order mixed derivatives.

Appendix B. Treatment of boundary conditions

In order to impose boundary conditions, we first need to
transform the nodal DoFs from logical (x, y, ζ) deriva-
tives (g, gx , gy, gx , gxy, gyy, gζ , gxζ , gyζ , gxxζ , gxyζ , gyyζ ) to
those in terms of the semi-physical (R, Z, ζ) coordinates,
(g, gR, gZ , gRR, gRZ , gZZ , gζ , gRζ , gZζ , gRRζ , gRZζ , gZZζ ). [For reas
ons explained in appendix A, it is impossible to transform the
logical DoFs into physical (R, Z,ϕ) derivatives]. The inverse
transformation is given by

gx = RxgR + ZxgZ , (B1a)

gy = RygR + ZygZ, (B1b)

gxx = RxxgR + ZxxgZ + R2
xgRR

+ Z2
x gZZ + 2RxZxgRZ , (B1c)

gxy = RxygR + ZxygZ + RxRygRR

+ ZxZygZZ + (RxZy + RyZx)gRZ, (B1d)

gyy = RyygR + ZyygZ + R2
ygRR

+ Z2
y gZZ + 2RyZygRZ , (B1e)

gxζ = RxgRζ + ZxgZζ + RxζgR + ZxζgZ, (B1f)

gyζ = RygRζ + ZygZζ + RyζgR + ZyζgZ, (B1g)

gxxζ = RxxgRζ + ZxxgZζ + R2
xgRRζ

+ Z2
x gZZζ + 2RxZxgRZζ

+ RxxζgR + ZxxζgZ + 2RxRxζgRR

+ 2ZxZxζgZZ + 2(RxZxζ + RxζZx)gRZ, (B1h)

gxyζ = RxygRζ + ZxygZζ + RxRygRRζ

+ ZxZygZZζ + (RxZy + RyZx)gRZζ

+ RxyζgR + ZxyζgZ + (RxζRy + RxRyζ )gRR

+ (ZxζZy + ZxZyζ )gZZ

+ (RxζZy + RxZyζ + RyζZx + RyZxζ )gRZ, (B1i)

gyyζ = RyygRζ + ZyygZζ + R2
ygRRζ

+ Z2
y gZZζ + 2RyZygRZζ

+ RyyζgR + ZyyζgZ + 2RyRyζgRR

+ 2ZyZyζgZZ + 2(RyZyζ + RyζZy)gRZ. (B1j)

Note that ζ derivatives are always taken after R and Z
derivatives here. The direct transformation from logical to
semi-physical DoFs is rather cumbersome. In practice, it is
more convenient to numerically invert the inverse transforma-
tion (B1).

Now, let us consider a 3D toroidal boundary specified
by Rb(θ, ζ) and Zb(θ, ζ), with the in-plane unit normal and
tangential vectors are given by, respectively,

n⊥ = n1R̂ + n2Ẑ, t = −n2R̂ + n1Ẑ, (B2)

where

n1 = Zb
θ/[(Rb

θ)
2 + (Zb

θ )2]1/2,

n2 = −Rb
θ/[(Rb

θ)
2 + (Zb

θ )2]1/2. (B3)

Accordingly, we denote the in-plane normal and tangen-
tial derivatives as gn = n⊥ · ∇g and gt = t · ∇g, respectively.
Although n⊥ is not actually normal to the boundary, in M3D-
C1, the magnetic and velocity fields are expressed in terms of
a set of scalar fields (ψ, f , F, U,ω,χ):

B = ∇ψ ×∇ϕ−∇⊥ f ϕ + F∇ϕ, (B4a)

v = R2∇U ×∇ϕ+ ωR2∇ϕ+ R−2∇⊥χ, (B4b)

such that it is actually the in-plane normal derivative
that needs to be constrained in practice. In the mean
time, the other tangential derivative is simply give by
gζ . Therefore, we can transform the semi-physical DoFs
(g, gR, gZ , gRR, gRZ , gZZ , gζ , gRζ , gZζ , gRRζ , gRZζ , gZZζ ) to (g, gn,
gt, gnn, gnt, gtt, gζ , gnζ , gtζ , gnnζ , gntζ , gttζ), i.e., the boundary
DoFs. The transformation is given by

gn = n1gR + n2gZ, (B5a)

gt = −n2gR + n1gZ, (B5b)

gnn = n2
1gRR + 2n1n2gRZ + n2

2gZZ , (B5c)

gnt = κgt − n1n2gRR + (n2
1 − n2

2)gRZ + n1n2gZZ, (B5d)

gtt = −κgn + n2
2gRR − 2n1n2gRZ + n2

1gZZ , (B5e)

gnζ = n1gRζ + n2gZζ + λgt, (B5f)
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gtζ = −n2gRζ + n1gZζ − λgn, (B5g)

gnnζ = n2
1gRRζ + 2n1n2gRZζ + n2

2gZZζ

+ 2λ(gnt − κgt), (B5h)

gntζ = −n1n2gRRζ + (n2
1 − n2

2)gRZζ + n1n2gZZζ

+ κgtζ + κζgt + λ(gtt − gnn + κgn), (B5i)

gttζ = n2
2gRRζ − 2n1n2gRZζ + n2

1gZZζ

− κgnζ − κζgn − 2λ(gnt − κgt), (B5j)

where κ is the curvature of the boundary, and

κ = (RθZθθ − ZθRθθ)/(R2
θ + Z2

θ )3/2, (B6a)

λ = (RθZθζ − ZθRθζ)/(R2
θ + Z2

θ ), (B6b)

κζ = (RθζZθθ + RθZθθζ − ZθζRθθ − ZθRθθζ)/(R2
θ + Z2

θ )3/2

− 3κ(RθRθζ + ZθZθζ)/(R2
θ + Z2

θ ), (B6c)

where the superscript b is dropped for convenience. Then, we
can impose boundary conditions on these boundary DoFs.
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