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Abstract
Runaway electrons may be generated in a tokamak during the start up, during normal operation
and during a plasma disruption. During a disruption, runaway electrons can be accelerated to
high energies, potentially damaging the first wall. To predict the consequences of runaway
generation during a disruption, it is necessary to consider resonant interactions of runaways with
the bulk plasma. Here we consider the interactions of runaways on low mode number tearing
modes. We have developed a fluid runaway electron model for the 3D MHD code M3D-C1

(Jardin et al 2012 J. Comput. Sci. Discovery 6 014002). To benchmark, we have reproduced the
MHD linear tearing mode results (with runaway electrons) in a circular cylinder presented in
previous analytic studies (Helander et al 2007 Phys. Plasmas 14 104142) and have extended
them here with a numerical eigenvalue calculation. We find that the low mode number tearing
mode has a rotation caused by the MHD - runaways interaction and the perturbed toroidal
current scale length is much smaller with runaways than without and decreases as the runaway
speed increases.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In the first phase of a typical tokamak disruption, confinement
is lost and a “thermal quench” occurs, drastically decreasing
the temperature of the discharge and thereby increasing its res-
istivity, η ∼ T−3/2

e . The increased resistivity produces a large
electric field parallel to the magnetic field, E|| = ηJ|| where
J|| is the electrical current density parallel to the magnetic
field. This, in turn, causes the “current quench” in which the
tokamak plasma current decays in this highly resistive plasma.
During the current quench, the parallel electric field can often
exceed the critical electric field for runaway generation [1–3]
causing a runaway electron population to form. The electrical
current from these runaway electrons can continue to increase
as the current from the bulk electrons decreases, until the
entire discharge current is being carried by the runaways. This
paper is concerned with calculating the macroscopic stability
of these runaway discharges.

Section 2 describes the fluid runaway electron model that
has been incorporated into the initial-value M3D-C1 code [4].

Section 3 describes a method we have developed to solve
for linear MHD stability as an eigenvalue problem using
the reduced MHD equations but including the fluid runaway
terms. In section 4 we present solutions of the linearizedMHD
equations, including runaways, described in section 2 and
compare the results with those of the eigenvalue approach for
both a (1,1) and (2,1) resistive instability. Section 5 presents a
summary and conclusions.

2. Fluid runaway electron model in M3D-C1

TheM3D-C1 code is an implicit extended-magnetohydrodynamic
(MHD) code that utilizes high-order C1 continuous finite ele-
ments in three dimensions. It has options for reduced MHD
or full MHD, linear or non-linear, cylindrical or toroidal geo-
metry. It includes options for impurity transport and radiation
[5] and the interaction of the tokamak plasma with a res-
istive wall [6]. The code uses an unstructured mesh in the
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(R,Z) plane (cylindrical or Cartesian coordinates). For non-
linear 3D calculations the mesh is extruded in a structured
way in the third dimension to form triangular prism elements.
The unstructured triangular mesh is constructed using a user-
defined “size field” and can thus be made to have small tri-
angles and hence high resolution around certain rational sur-
faces or other locations where large gradients are expected to
develop [7].

We have implemented a fluid runaway electron model in
M3D-C1 which is similar to that used in previous studies [8–
10], although the curvature drift term in [8] is not included.
The total runaway current density JRE is represented as

JRE =−nREe(c
B
B
+

E×B
B2

). (1)

Here E and B are the electric andmagnetic fields. The runaway
electron number density obeys the continuity equation

∂nRE
∂t

− e−1∇· JRE = SRE. (2)

Here SRE is the runaway source rate, including Dreicer [1] and
avalanche [2] mechanisms.

As introduced in section 1, the runaway electron current
can interact with the bulk plasma. We apply the fluid model
runaway current in the bulk plasma momentum time advance
as

ρ
dV
dt

= (J− JRE)×B−∇p+ enREE. (3)

Here the last term is present when deriving a bulk fluid
momentum equation when runaways are present so that nRE+
ne = ni and by ignoring the inertia of the runaways [8]. Insert-
ing equation (1) into equation (3), the magnetic force caused
by the E×B drift of the runaways cancels the perpendicular
electric force of the runaways and we have

ρ
dV
dt

= J×B−∇p+ enREE · b̂b̂. (4)

Here b̂= B/B is the unit vector along the field line. To be con-
sistent with the Helander model [12] which we used in sec-
tion 3, we did not include the last term in equation (4). The
resistivity only affects the current carried by the bulk electrons,
so that the generalized Ohm’s law becomes:

E+V×B= η(J− JRE) (5)

We presently time advance the magnetic field using the
split-implicit method described in [4] using a fixed runaway
density and then time advance the runaway density by solv-
ing equation (1) and (2) implicitly for nRE using the θ-implicit
method [11], but using fixed magnetic and electric fields. The
momentum is conserved in this fluid runaway electron model
in the limit that the momentum and drag of the runaway elec-
trons is negligible. In the linearized equations solved here, the
bulk fluid density is not advanced in time.

3. Eigenvalue solution from reduced MHD
equations with runaway electrons

We have developed a numerical procedure to solve the set of
reduced MHD equations with runaways [12] as a generalized
eigenvalue problem. Consider the linearized equations:

ωψ− k||ϕ= iη
(
∇2

⊥ψ+ j
)
, (6)

ω∇2
⊥ϕ− k||∇2

⊥ψ =
mj′0
r
ψ, (7)

(
k|| +ωvA/c

)
j=

mj′RE0
r

(ψ+ vAϕ/c) , (8)

Here (ψ,ϕ, j) are the normalized linearized magnetic vector
potential, electric potential and runaway current density per-
turbation. They are taken to vary in space in time as (cyl-
indrical coordinates) ψ(r,θ,z, t) = ψ(r)ei(nz−mθ−ωt), ∇2

⊥ =
d/rdr(rd/dr)−m2/r2, ( ) means d(...)/dr, j0 is the total equi-
librium current, jRE0 is the equilibrium runaway current, k|| =
n−m/q(r), vA is the Alfven velocity based on the toroidal
magnetic field and c is the speed of the runaway electrons.
Note that ω=ωr+iγ is a complex number containing the real
frequency and the growth rate of the mode. Equations (6)–(8)
can be written in matrix form

ω

I 0 0
0 ∇2

⊥ 0
0 0 vA/c

ψϕ
j


=

 iη∇2
⊥ k|| iη

k||∇2
⊥ +mj′0/r 0 0
mj′RE0/r mj′RE0vA/rc −k||

ψϕ
j

 . (9)

We next apply the finite difference method to equation (9).
The continuous functions ψ(r),ϕ(r), j(r) are replaced by their
values at N+ 1 equally spaced discrete points: ri= iδr for
i= 0, ...,N where δr= a/N . Using standard centered second-
order finite differences for the derivative operator, equation (9)
becomes a 3 N× 3 N discrete generalized eigenvalue matrix
equation that can be solved by standard techniques. Bound-
ary conditions are: ψ(0) = ψ(a) = 0,ϕ(0) = ϕ(a) = 0, j(0) =
j(a) = 0.. The beta was 1.10−7 and the density was uniform
since we are trying to model a post-thermal quench plasma
where the beta is near zero and all the current is being car-
ried by the runaways. Note that we do not include the run-
away source terms since we are focusing on the runaway-
MHD interaction and the runaway generation rate is much
smaller than the MHD instabilities growth rate.

3.1. m = 1, n = 1 resistive kink mode

Consider a cylindrical equilibrium with q(r) = 0.85+
3.4(r/a)2 as shown in figure 1 and with inverse aspect ratio
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Figure 1. (a) Current profile and the (b) safety factor profile for
(1,1) resistive kink mode with run away electron simulation.

ε= 0.1. With the full equilibrium current being carried by
the runaway electrons, i.e. j0 = jRE0 in equation (9), we solve
for the stability of the m = 1, n = 1 mode. The unstable
eigenfunction for the magnetic flux and runaway electron
current density are shown in figures 2(a) and (b) for a case
with η/µ0vAϵa= 2× 10−5,c/vA = 200,N= 5000 intervals.
For comparison, we also show in figure 2 the eigenfunction
of a conventional resistive kink for the same equilibrium but
with jRE0 = 0.

It is seen that the mode structure of the real part of mag-
netic flux ψ for the runaway discharge is the same as that for
the conventional (1,1) resistive kink mode structure [13] but
it also has a non-zero imaginary part which the conventional
discharge does not. It is seen in figures 2(b) and (c) that the
runaway current is much more highly peaked around the q= 1
surface at r= 0.275a, with the scale length about 10−3a, than
is the toroidal current of the conventional (1,1) resistive kink
mode (scale length about 0.1a) and it also has a highly peaked
imaginary part while the conventional (1,1) mode does not,
which confirms previous studies [9].

The real frequency and growth rate for this case are 0.011
vA/a and 0.035 2 vA/a. For the conventional (1,1) resistive kink
mode, the growth rate is 0.028 3 vA/a and the real frequency
is zero [13, 14]. The fact that we are finding a non-zero real
frequency when runaways are included implies that the run-
away electron current can interact with the (1,1) resistive kink
mode to give the mode a rotation. In our calculation, the non-
uniformity of the equilibrium runaway current jre0 is the main
factor which causes the mode to have an imaginary part. If
we set jre′0 = 0, using a uniform equilibrium runaway cur-
rent profile, the eigenvalue changes from (0.011, 0.035 2) to
(0.000,0.035 2) and the imaginary part of themagnetic flux and
current disappears. The reason for this can be seen from equa-
tion (8). If the equilibrium runaway current gradient vanishes,
the runaway current perturbation does not affect the electric
and magnetic field of bulk plasma, which implies that without
runaway-MHD interactions, the rotation will not occur. This
indicates that the rotation driven by the runaway current is
mainly due to the gradient of the runaway electron current.

The speed of the runaway electrons, that we have been
denoting by c, also affects the (1,1) resistive kink mode. As
shown in figure 3(a), when c< 10vA, both the mode growth
rate and real frequency increase almost linearly with c/vA until
c/vA= 10, at which point they become almost independent of
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Figure 2. (a) Magnetic flux structure, (b) runaway/toroidal current
structure and (c) close up of runaway current structure near the
singular surface of the (1,1) resistive kink mode with and without
runaway electrons.
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Figure 3. (a) eigenvalues and (b) current structures of (1,1) resistive
mode with runaway electrons with different runaway speed.
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Figure 4. (a) Current profile and the (b) safety factor profile for
(2,1) tearing mode with run away electron simulation.

it. The scale length of the radial structure of the perturbed cur-
rent density does, however, depend on the magnitude of c/vA
as shown in figure 3(b). The scale length becomes smaller at
higher runaway speeds [12] even as the growth rate and real
frequencies remain fixed.
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Figure 5. (a) Magnetic flux structure, (b) runaway/toroidal current
structure and (c) close up of the runaway current structure near
singular surface of the (2,1) tearing mode with runaway electrons.

3.2. m = 2, n = 1 tearing mode

We have also calculated the eigenmodes and eigenfunction of
a m = 2, n = 1 mode in the equilibrium shown in figure 4
with q(r) = 1.15+ 5.75(r/a)2 for a case with η/µ0vAϵa=
2× 10−5,c/vA = 200, inverse aspect ratio ε= 0.1, N= 8000
intervals. Figure 5(a) shows that the magnetic flux of the (2,1)
tearing mode with runaways also has an imaginary part and
the real part is shifted relative to the non-runaway structure.
The (2,1) tearing mode is thus more perturbed by the runaway
current than is the (1,1) resistive kink mode. Figures 5(b) and
(c) shows that the eigenfunctions corresponding to the current
density when runaways are present are much more peaked at
the q= 2 surface than for the conventional (2,1) tearing mode.
It also has an imaginary part which the conventional tearing
mode does not.

The eigenvalue for the configuration with runaways was
found to be γ = 0.00627vA/a,ωr =−0.0088vA/a, compared
to γ = 0.00613vA/a,ωr = 0 when runaways are absent. We
have also verified that, as for the (1,1) mode, forcing the cur-
rent density gradient to vanish reduced the imaginary eigen-
structure and real frequency to 0. The effect of the runaway
electron velocity on the current eigenmode is also similar to
that shown in figure 3 for the (1,1) mode, but the scale length
of the (2,1) tearing mode is about 10−4a, which is much smal-
ler than that for the (1,1) resisitive kink mode with the same
runaway speed as shown in figure 6

4. M3D-C1 linear simulations with fluid model
runaway electrons

Here we compute the stability of the same class of equilibria
considered in section 3, but using the time-dependentM3D-C1
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Figure 6. Runaway current structure of (1,1) resistive kink and
(2,1) tearing mode with c/vA= 100.

Figure 7. Mesh used for (1,1) resistive kink mode with runaway
electrons case with M3D-C1. Shown are the finite element mesh
(blue) and the separatrix (red). The mesh has approximately 20000
elements.

code. To be consistent, we have run the code in the cylindrical,
reduced MHD and linear modes.

4.1. m = 1, n = 1 resistive kink mode with runaway electrons

We have calculated the (1,1) mode described in section 3.1
using the same dimensionless parameters described there and
in figure 1. We used the adaptive mesh illustrated in figure 7
where the typical size of the smallest triangles at the q= 1 sur-
face was d= 3× 10−4a. There is no equilibrium flow V0 and
the initial electric field E0 is also zero. Here we also turned
off the runaway source terms since we want to focus on the
runaway-MHD interaction after the runaway current has sat-
urated.

We illustrate the perturbed magnetic flux at 4 times in the
M3D-C1 calculation in figure 8. From analysis of the rotation,
we see that it corresponds to a real part of the frequency of
ωr = 0.011vA/a, in good agreement with the value 0.011vA/a
found in section 3.1. Figure 9 and figure 10 show the perturbed
runaway electron density and parallel current density for the
(1,1) mode as calculated by M3D-C1. The mode structure is
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Figure 8. Time evolution poloidal of magnetic perturbation psi
structure with (a) t= 500τA, (b) t= 1000τA, (c) t= 1500τA, (d)
t= 2000τA.
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Figure 9. (a) Poloidal structure of runaway electron density
perturbation and (b) (1,1) Fourier component of runaway density of
(1,1) resistive kink mode with runaways.

peaked near the q = 1 rational surface which is shown in fig-
ure 10. The runaway current structure is also consistent with
the results shown in figures 2(b) and (c). We have also per-
formed the simulations using the same profiles without run-
aways and the result is in agreement with previous studies [9]
in that there is no rotation.

We illustrate the time-step convergence properties of the
M3D-C1 computed growth rate in figure 11. It is seen that
the converged growth rate in the limit of ∆t= 0 is about
0.03 545vA/a, while the numerical eigenvalue solution is about
0.035 2vA/a as shown in figure 11, only about a 1% deriva-
tion from the M3D-C1 result. The growth rate and real fre-
quency are converged when the element size is smaller than
1× 10−3a. We used a minimum mesh size of 3× 10−4a to
clearly see the radial structure of the runaway current.

We show in figure 12 the growth rate of the (1,1) mode as a
function of resistivity for both the Ire/I0 = 0 (no runaways in
equilibrium) and Ire/I0 = 1 (100% runaway current in equilib-
rium) cases for both the M3D-C1 and eigenvalue calculations.
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Figure 10. (a) Poloidal structure of parallel current perturbation and
(b) (1,1) Fourier component of runaway current density of (1,1)
resistive kink mode with runaways.
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Figure 11. Time-step convergence of m = 1, n = 1, mode (solid
line) and the numerical solution of the eigenfunction (circle).
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Figure 12. (1,1) resistive kink mode with runaway electrons
eigenvalues and M3D-C1 simulation with different resistivitiy, the
dashed line is the 1/3 scaling law of the resistive mode, the solid
lines are the results from numerical eigenvalue calculation and the
dots and circles are the results from M3D-C1 simulation.
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Figure 13. Poloidal magnetic flux psi structure time evolution with
t= 100τA (a), t= 150τA (b), t= 200τA (c), t= 250τA (d).

For the case with no equilibrium runaways, both codes show
the expected η1/3 asymptotic scaling at small η but a turnover
at larger η, so that γ decreases with increasing η [16]. For the
cases with 100% of the current being carried by the runaways,
the small η results are similar, but the large η turnover is much
less pronounced.

4.2. m = 2, n = 1 tearing mode with runaway electrons

For the (2,1) tearing mode, we used a runaway speed of
c/vA= 20 and the same safety factor profile as shown in fig-
ure 4. The other input parameters are the same as for the (1,1)
resistive kink in section 4.1.

The perturbed magnetic potential for the (2,1) mode from
the M3D-C1 calculation is shown in figure 13 at 4 times.
From analyzing these, we conclude the real frequency was
|ωr|= 0.01vA/a compared to 0.008 8 for the eigenvalue code.
There is also no rotationwithout runaways in theM3D-C1 sim-
ulation. For this calculation, the mesh was refined about the q
= 2 surface similar to what was done for the (1,1) mode at the
q= 1 surface, but using higher resolution with d= 2× 10−4a.
The runaway density and current density are shown in fig-
ure 14 and figure 15. The runaway current is peaked near the
q = 2 rational surface as shown in figure 15. In figure 15 we
can see that the structure of the M3D-C1 result is consistent
with that calculated by the eigen-solver when the latter is run
with c/vA= 20. We also performed a similar time step con-
vergence study for the (2,1) tearing mode with runaways. The
growth rate extrapolated to∆t= 0 is about 0.006 5vA/a and the
numerical eigenvalue solution is about 0.00 627vA/a, which
gives a deviation of about 4%. The growth rate and real fre-
quency are also converged when the element size is smaller
than 1× 10−3a. We used a minimum mesh size of 2× 10−4a
to clearly see the radial structure of the runaway current.
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Figure 14. (a) Poloidal structure of runaway electron density
perturbation and (b) normalized radial structure of the m = 2, n = 1
mode with runaway electron.
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Figure 15. (a) Poloidal structure of parallel current density and (b)
normalized radial structure of the m = 2, n = 1 mode with runaway
electron.
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Figure 16. Time-step convergence of m = 2, n = 1, mode(solid
line) and the numerical solution of the eigenfunction(circle).

We also show in figure 17 the growth rate of the (2,1) mode
as a function of resistivity for both the Ire/I0 = 0 (no runaways
in equilibrium) and Ire/I0 = 1 (100% runaway current in equi-
librium) cases for both the M3D-C1 and the eigen-solver. The
trend is similar to that of figure 12 for the (1,1) mode.
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Figure 17. (2,1) tearing mode with runaway electrons eigenvalues
and M3D-C1 simulation with different resistivitiy, the dashed line is
the 3/5 scaling low of the tearing mode, the solid lines are the results
from numerical eigenvalue calculation and the dots and circles are
the results from M3D-C1 simulation.

5. Summary and discussion

We have implemented a runaway electron fluid model in the
3D, fully non-linear, finte beta MHD code M3D-C1. The code
now has the ability to calculate MHD instabilities including
runaway electron current. In this paper, we have shown that it
yields the correct results in the limit of a low-beta, linear, cyl-
indrical plasma. The linear results of the (1,1) resistive kink
and (2,1) tearing mode with runaway electrons have been veri-
fied against a numerical eigenvalue solution.

We also find that the runaway electron current can affect
low mode number tearing mode toroidal current structure.
The unstable mode is considerably more peaked around the
rational surface when runaways are present. We also find that
the radial scale length of toroidal current decreases as the run-
away speed increases, consistent with previous studies [12].

The growth rate of the unstable mode is largely unaffected
by the presence of runaways in the limit of small resistivity,
η→ 0. However, at larger resistivities, the growth rate with
runaways can be considerably larger than that without. The

runaway current also causes a real frequency (rotation) and
imaginary magnetic flux and current component to the (1,1)
and (2,1) mode which has not previously been observed. It
is a wave propagating in the plasma with a finite omega and
a non-zero m and n number so that its volume integral van-
ishes. The electromagnetic wave propagation is mainly caused
by the non-uniformity of the runaway current, which induces
a phase velocity difference near the peaked runaway current
perturbation and disappears when the initial runaway distribu-
tion is uniform. The magnitude of both the growth rate and
real frequency are largely unchanged as the runaway velocity
c changes from 10 < c/vA < 200, even as the perturbed current
density becomes much more localized. Other benchmarks will
be performed in the future as opportunities present themselves.
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