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ABSTRACT

We use the new simulation capabilities of the extended-magnetohydrodynamic (MHD) code, M3D-C1, to investigate the nonlinear MHD
properties of a reactor-scale quasisymmetric stellarator equilibrium. Our model captures the self-consistent evolution of the magnetic field,
temperature, density, and flow profiles without imposing restrictions on the structure of the first. We include the effects of resistivity using a
realistic temperature-dependent Spitzer model, along with a model for heat transport that captures the key physical characteristic, namely,
strongly anisotropic diffusion in directions perpendicular and parallel to the magnetic field. We consider a quasi-axisymmetric, finite-pres-
sure equilibrium that was optimized for self-consistent bootstrap current, quasi-symmetry, and energetic particle confinement. Our assess-
ment finds that the equilibrium is highly unstable to interchange-like pressure-driven instabilities near the plasma edge. The initially unstable
modes rapidly destabilize other modes in the direction of the N-fold rotational symmetry (toroidal, in this case). For this equilibrium, N=2,
meaning destabilization of a large number of even-numbered toroidal Fourier modes. Thus, field-periodicity is likely to be an important fac-
tor in the nonlinear MHD stability characteristics of optimized stellarators.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0215594

I. INTRODUCTION

The success of Wendelstein 7-X," together with advances in opti-
mization,” has driven a surge of interest in stellarators as a fusion
power plant concept. Like tokamaks, stellarators rely on externally gen-
erated magnetic fields to confine plasma into topologically toroidal
configurations.” A defining characteristic of stellarators is the inten-
tional breaking of the continuous toroidal symmetry, nominally pre-
sent in tokamaks, ie., J, # 0, where ¢ is the toroidal angle. This
means that, unlike tokamaks, stellarators are not reliant on currents
driven in the plasma to generate a confining magnetic field. Plasma
current is a key driver of magnetohydrodynamic (MHD) instabilities,
which can be detrimental to confinement. From this perspective, stel-
larators offer advantages with respect to macroscopic stability.

Magnetic field lines lying on a magnetic surface are confined to it.
To the lowest order, charged particles in a plasma are confined to a
magnetic field line. This can make continuously nested magnetic surfa-
ces a desirable characteristic for global confinement in stellarator plas-
mas. Since magnetic field lines are described by a Hamiltonian system,

when axisymmetry is broken, magnetic field structure is no longer
guaranteed to consist of continuously nested magnetic surfaces. In
other words, three-dimensional (3D) magnetic fields can be non-
integrable.”* Consequently, stellarator magnetic fields are notoriously
difficult to design’” precisely because the magnetic field structure is
not known a priori. Despite this, there exist approximate symmetries
of the magnetic field, known as quasi-symmetry (QS), that can reduce
neoclassical particle transport and, therefore, improve confinement in
3D magnetic fields.” This motivates, at least in part, the recent explo-
sion of interest in quasi-symmetric configurations.”"’

It is widely held that stellarators are more robust to macroscopic
instabilities than tokamaks.” This is supported by experimental obser-
vations on the Large Helical Device (LHD), which have shown that lin-
ear MHD stability thresholds can be exceeded without significant
degradation of energy confinement.'' Earlier stellarator optimization
efforts sought absolute stability against linear ideal MHD modes as
part of the optimization criteria.'>'” More recent studies, however,
suggest that such a stringent stability constraint trades off against coil
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complexity.'* For the development of stellarators as a viable fusion
power plant concept, this is problematic since coil complexity is a
major driver of cost.'”'® In contemporary optimization, a concerted
effort has been made by the stellarator community to focus on QS,
energetic particle confinement, and turbulent transport.2 In this work,
we analyze the nonlinear MHD properties of an optimized, finite-
beta, reactor-scale stellarator equilibrium, designed in accordance
with these principles.” Our study demonstrates that, when opti-
mizing for finite-f quasi-axisymmetric equilibria, MHD stability is
at least as important a target for optimization. This motivates the
development of more sophisticated MHD stability metrics than
what is currently available.

The remaining sections are organized as follows: in Sec. II, we
describe the methods used for the numerical simulations. In Sec. 111,
we present the results and analysis. Discussion and conclusions are in
Sec. IV.

Il. METHOD

Our simulations use the high-fidelity, extended-MHD code,
M3D-C1,'" that now accommodates strongly shaped, non-
axisymmetric computational domains.'” To date, in stellarator geome-
try, the code has been compared to the PIES equilibrium code'” as well
as to experiments on W7-X for simulating sawteeth-like phenomena.”’
We use a single-fluid model that includes heat transport, resistivity,
and viscosity, with conducting wall boundary conditions. The full set
of equations can be found in Jardin et al.'® For convenience, the
single-fluid equations are repeated in Appendix A. For the simulations
presented, there is no vacuum region between the initial plasma
boundary and vacuum vessel, i.e., we consider a limited plasma. Both
the temperature and current are assumed to vanish at the wall. The
density at the wall is fixed at its initial value and, therefore, acts as an
implicit source. The shape of the computation domain is the same as
the shape of the equilibrium plasma. The equilibrium under consider-
ation was developed using the SIMSOPT optimization framework”'
and designed for energetic particle confinement, quasi-symmetry, and
self-consistent bootstrap current, assuming a magnetic field with con-
tinuously nested magnetic surfaces.'” According to theory, these three
properties are critical for a range of high-performance stellarators;
energetic particle confinement is critical for burning fusion plasmas,””
quasi-symmetry is a common strategy for reducing neoclassical trans-
port of particles,S while, in stellarators, bootstrap current can be stabi-
lizing against magnetic islands.””** On the other hand, MHD stability
was not considered in this optimization. A widely used metric for lin-
ear ideal MHD stability in stellarators is the so-called magnetic well,
which is the average curvature on a magnetic surface.”” If a surface is
linearly stable to perturbations of the local pressure gradient, then the
surface is said to possess a magnetic well. For the equilibrium consid-
ered here, a posteriori analysis shows that there is a magnetic well for
all surfaces.

We initialize M3D-Cl1 with the quasi-axisymmetric equilibrium
in Landreman et al."” that was optimized for § = 2.5% (see Sec. VIC
therein). Here, f is the ratio of the plasma pressure to the magnetic
pressure. In this study, we keep the viscosity () and heat conductivity
coefficients (i, 1) fixed. The viscosity is fixed at
v = 3.65 x 10~* kg/ms, which is comparable to the values used in the
MIPS code for nonlinear MHD simulations of stellarators.” The value
is approximately two orders of magnitude higher than what might be
expected experimentally. This, however, does not negatively impact
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the simulations presented. This is because viscosity tends to damp
growth rates, ie., be stabilizing, for MHD instabilities with higher
poloidal and toroidal Fourier mode numbers, m and #, respectively.
For the heat transport model used in this study, the heat flux, g, is
related to the electron temperature, T,, by

B
— KHE.VTE‘ (1)

q=—-x,VT,
For our work, we set i /] = 107° and a perpendicular heat conduc-
tivity that corresponds to x|, = 2.18 m?/s. In M3D-Cl, the transport
coefficients are user input. For the purpose of this study, the primary
consideration is that the simulations include a model for heat transport
that captures realistic anisotropy with y, that is representative of
experimentally observed transport values for quasisymmetric
plasmas.”’
We consider four resistivity profiles: one that is constant and
three Spitzer-resistivity models scaled to various values. The general
functional form is

MR, 3, 2) = g 1+ 10T, (R, 6, 2)] @

where 7. and 7, are constants and T, is the electron temperature. The
normalization constant is 7., = 2.74 Qm. For the constant model,
we choose {5, = 107%, 5, = 0}. For the Spitzer model, we use 1, =
{0} and 5, = {1,10, 100}. This is the Spitzer resistivity model scaled
by Ho-

The entire plasma is contained within the computational domain,
and no symmetries (discrete or continuous) are imposed on the solu-
tions. The simulations presented are run on a semi-structured 3D
mesh with 72 toroidal planes, corresponding to 8.64 x 10° 3D ele-
ments. The compute time for each simulation is approximately 4
x10° CPU-hours, corresponding to a wall-clock time of 14 days.
Convergence studies were performed to identify optimal runtime
parameters. No hyper-diffusion parameters are applied.

lll. RESULTS AND DISCUSSION

We start the M3D-C1 simulations from an initial state that has
nested magnetic surfaces and follow the subsequent nonlinear evolu-
tion. In Fig. 1, we present Poincaré sections of the magnetic field
[1(a)-1(c)] at t = 0t4 and t = 82574 for both the constant and 7,
= 1 Spitzer resistivity models. The full sequence of Poincaré sections
for the constant resistivity model is shown in Appendix B (see Fig. 6).
The corresponding electron temperature profiles are shown in Figs.
1(d)-1(f). Overall, the equilibrium is highly unstable to multiple MHD
modes that grow on Alfvénic timescales. We also find the plasma evo-
lution to be qualitatively identical, regardless of resistivity model. This
is indicative of an ideally unstable plasma. Modes with high poloidal
and toroidal Fourier mode numbers, m and #, respectively, appear
almost immediately near the plasma edge. Within approximately
50074, a chaotic region with a thickness that is around 5%-10% of the
minor radius is formed near the plasma boundary. Over the next
3007y, the chaotic layer grows considerably as additional moderate to
high-(m, n) modes begin to develop on the remaining outer flux surfa-
ces. By around 80074, the chaotic layer has expanded to nearly 25% of
the minor radius. The chaotic layer continues to expand until any con-
finement is effectively lost as the core is enveloped by a sea of chaotic
magnetic fields. In Fig. 2, we show a Poincaré section for the constant
resistivity case, as a representative example. We also observe the
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FIG. 1. (Top) Poincaré sections of the magnetic field and (bottom) cross sections (¢p = 45°) of the electron temperature profile at the initial, intermediate, and final time of a
high-fidelity nonlinear MHD simulation starting from a two-field-period quasi-axisymmetric stellarator equilibrium, optimized at 2.5% plasma beta. The equilibrium was optimized
for quasisymmetry, good fast particle confinement, and self-consistent bootstrap current. The simulation shows the rapid growth of moderate toroidal and poloidal Fourier mode
number MHD modes, with elongated mode structure, leading to rapid destruction of the initial flux surfaces.

development of two core instabilities, with m =5 and m = 3, that have
much lower growth rates. Consequently, they do not reach a signifi-
cant amplitude in the time simulated here. The simulations are
stopped once a large volume of chaotic field has formed, as the plasma
is no longer confined (discussed below). This occurs at different rates
for each of the profiles. Hence, the simulations are stopped at different
times. Since the unstable modes are internal in character, they are
unaffected by the boundary conditions chosen for this study.

To explain the appearance of temperature gradients despite the
presence of a significant volume of chaotic magnetic fields [see Figs.
1(b), 1(c), 1(e), and 1(f)], we can consider the pressure relaxation time
(Trelaxation)- For the equilibrium under consideration, which has a minor
radius a = 1.704 m, we note that that Truation ~ @°/y, = 1.33 s. By
contrast, 150074 (c.f. Fig. 2) corresponds to ~ 700 us. Thus, tempera-
ture gradients remain because the magnetic surfaces break up so quickly
that the temperature profile has not had time to relax. In the single-fluid
MHD model, pressure is the product of the temperature and density.
Hence, our observation is consistent with previous work,”® which dem-
onstrated, both numerically and experimentally, that pressure gradients
can persist in regions where the magnetic field is chaotic. In our case,
the observed breakup of magnetic surfaces is due to changes in the mag-
netic field that are produced by rapidly growing MHD instabilities. This

is mechanistically distinct from the break up of magnetic surfaces due
to currents induced by equilibrium pressure gradients.”

To quantify the observed plasma dynamics, we Fourier decom-
pose the kinetic energy and compute approximate growth rates for
each toroidal Fourier mode by taking the derivative of the logarithm of
the kinetic energy with respect to time. (M3D-C1 itself is not a spectral
code.) Because the absolute values may be small, we apply a Gaussian
kernel with standard deviation =514 to get a relatively smooth esti-
mate of the growth rates as a function of time. In Fig. 4, for each resis-
tivity model, we plot growth rates as a function of time for even-
numbered toroidal Fourier modes with 6 < n < 30. We find that at
~ 20074, a large number of these modes begin to develop. The largest
growth rates correspond to the toroidal Fourier modes with largest #.
To confirm this, in Fig. 3, we plot the maximum growth rate of even-
numbered toroidal Fourier modes with 6 < n < 30 for each resistivity
model considered. For all resistivity models, the even-numbered toroi-
dal Fourier modes with n > 6 have positive maximum growth rates,
indicating that these modes are unstable. In each case, modes with the
largest overall growth rates are the toroidal Fourier modes where
20 <n < 28.

The substantial number of toroidal Fourier modes that were
destabilized can be explained by considering the N-fold rotational
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t=1500.0Tx

R (m)

FIG. 2. Poincaré section of the magnetic field for the constant resistivity case show-
ing destruction of almost all magnetic surfaces.

symmetry of the equilibrium. In this case, N= 2. This discrete symme-
try leads to coupling of Fourier modes in the toroidal direction. Thus,
an instability with toroidal Fourier mode number #, can couple to
other toroidal Fourier modes with n; = Ing=N for | € 7. For the
N =2 equilibrium, this implies that a single unstable eigenmode will
be composed of numerous even-numbered toroidal Fourier modes,
which is consistent with what is observed.

Finally, we remark on some differences in the nonlinear behavior
between the constant and Spitzer resistivity profiles, which are temper-
ature dependent. While evident in Fig. 4 for toroidal Fourier modes
with 20 < n < 30, in Fig. 5, we plot the growth rate for just n = 30, for
clarity. In Fig. 5, at first, the growth rate increases linearly for both the
temperature dependent and independent resistivity profiles. At
t ~ 50014, the growth rate for the constant resistivity profile plateaus,
which is characteristic of the linear growth phase of MHD instabilities.
At t &~ 70074, the growth rate decreases toward zero, which suggests
the mode is tending toward nonlinear saturation. By contrast, for the
temperature-dependent models, the growth rate does not plateau after
the initial phase. Instead, we see a decrease rate of change of the growth
rate followed shortly thereafter by a significant increase, before it peaks
and tends toward zero. The secondary increase in the growth rate of

1.0+

0.81

Max(Growth rate) [1072 - 1]

0.6
= Nspitzer
0.4 — 10- Nspitzer
0.21 — 100" Nspitzer
Nconstant
5 10 15 20 25 30

Toroidal Fourier mode (n)

FIG. 3. Maximum growth rate for even-numbered toroidal Fourier modes with 6 <
n < 30 for each resistivity model considered.
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FIG. 4. Approximate growth rates of the kinetic energy for even-numbered toroidal
Fourier modes with 6 < n < 30, for all four resistivity models. Growth rates are esti-
mated by taking the derivative of the logarithm of the kinetic energy with respect to time.

the cases with temperature dependent resistivity is suggestive of strong
nonlinear interactions, which are accelerating the growth of those
modes. Further work is warranted to investigate the details of these
interactions, which could be understood, for example, by undertaking
an energy transfer analysis. Evidently, the Spitzer resistivity profiles are
more realistic. So, although beyond the scope of the present work,
these observations do highlight the potential need to proceed with cau-
tion when using linear approximations to predict nonlinear MHD
behavior in stellarators.
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Nconstant
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N
ul

1.001
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FIG. 5. Approximate growth rate of the kinetic energy for n= 30, for each of the

resistivity models. Growth rates are estimated by taking the derivative of the loga-
rithm of the kinetic energy with respect to time.
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IV. CONCLUSIONS

The extended-MHD code, M3D-C1, has been applied to cal-
culate the nonlinear evolution of a finite-beta, reactor-scale stella-
rator equilibrium that was optimized for quasi-axisymmetry,
energetic particle confinement, and with self-consistent bootstrap
current.

We performed a series of high-fidelity simulations to model the
nonlinear MHD evolution of this initial state. We use a single-fluid
MHD model that evolves the magnetic field, temperature, density, and
flow. Importantly for stellarators, we do not impose constraints on the
structure of the magnetic field. Thus, it (along with the other fluid vari-
ables) evolves self-consistently with the plasma dynamics that include
effects due to resistivity, viscosity, and anisotropic heat conductivity.
We use a reduced model for heat transport that captures the most cru-
cial physics property, namely, strong anisotropy in the directions per-
pendicular and parallel to the magnetic field which has a ratio of 107°.
We consider four different resistivity profiles: one that is constant, a
temperature dependent Spitzer model, and two others that are scaled
versions of the latter.

The simulations find that the equilibrium is highly unstable to
pressure-driven  MHD modes. The behavior is qualitatively
unchanged for the different resistivity profiles. This, together with
the fast onset, suggests that the equilibrium is ideally MHD unsta-
ble. The magnetic field rapidly develops a chaotic layer near the
plasma edge that continues to grow in time, until the magnetic field
ceases to be confining.

The destabilization of a large number of toroidal Fourier modes
is related to the N-fold rotational symmetry of the equilibrium
(N'=2). This discrete symmetry leads to coupling of Fourier modes in
the toroidal direction. For an equilibrium with N=2, an unstable
even-numbered toroidal Fourier mode couples, in principle, to all
other Fourier modes with even toroidal mode number. The same is
true of an odd-numbered toroidal Fourier mode. In this case, the single
unstable eigenmode consisted of many even-numbered toroidal
Fourier modes.

Finally, we observed some notable differences in the nonlinear
behavior of the high-n Fourier modes between the temperature
dependent and independent resistivity profiles. In the case with
constant resistivity, the growth rates plateau before decreasing and
tending to zero. This is evidence of the linear growth phase of an
MHD instability, followed by nonlinear saturation. On the other
hand, the temperature dependent profiles experience a second
phase where the growth rate accelerates. This suggests there are
strong nonlinear interactions that provide additional drive to the
mode.

The observations of this work offer new insight into the criteria
that are important for stellarator optimization. Foremost, field-
periodicity plays an important role in nonlinear MHD stability, espe-
cially if there is a linearly unstable mode. Given the interest in relaxing
linear ideal MHD stability as an optimization constraint, this trade-off
should be understood. Second, simulations with the (more realistic)
Spitzer resistivity profile observe nonlinear interactions that accelerate
the growth of unstable toroidal Fourier modes. By contrast, the simula-
tion with a constant resistivity profile predicts nonlinear saturation.
This difference is important to consider when developing reduced
models for nonlinear MHD in stellarators, especially for application to
optimization.

pubs.aip.org/aip/pop
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APPENDIX A: SINGLE-FLUID M3D-C1 EQUATIONS

The M3D-C1 equations used in this study are reproduced
from Jardin et al.'® as follows:

on
54— V- (nv) =0, (A1)
v

nmi<E+U~Vv):]XB—VP—V'H+F7 (A2)
%+V.VP+VPV.v:(y—I)[Q—V~q+r]]2—'v~F—H:V’U] (A3)

1
J=—V xB, (A4)

Ho
%:Vx(va)—VX(iﬂ% (A5)

where 7 is the number density, v is the fluid velocity, m; is the ion
mass, J is the current density, B is the magnetic field, p is the pres-
sure, IT is the viscous stress tensor, and F and Q denote external
forces and heat sources, respectively. The adiabatic constant is
y = 5/3, n is the resistivity, q is the thermal heat flux, and g is the
vacuum permeability.

APPENDIX B: MAGNETIC FIELD EVOLUTION WITH
CONSTANT RESISTIVITY

The full sequence of Poincaré sections for the case with con-
stant resistivity, shown as a function of time in Fig. 6.
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FIG. 6. Poincaré sections of the magnetic field for the case with constant resistivity. Shown as a function of time for 0 < t < 14257, (top left to bottom right).
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