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ABSTRACT

Nonresonant internal modes can be difficult to anticipate as there is no resonant surface in the plasma. However, equilibria that are unstable
to multiple nonresonant magnetohydrodynamic (MHD) modes may be more prone to global loss of confinement since these instabilities
generate spatially extended linear displacements, potentially enhancing magnetic field line chaos via nonlinear interactions. Here, we
successfully predict the unstable nonresonant pressure-driven modes for equilibria with zero shear in the plasma core, irrational q on axis,
and a central pressure gradient, which is consistent with pre-crash profiles in sawtoothing tokamak plasmas in the large-aspect-ratio limit. A
criterion for identifying nonresonant modes most likely to be unstable is developed from the convergents of the continued fraction represen-
tation of q0. A higher-order analysis of the standard Energy Principle reveals the conditions under which these modes are expected to domi-
nate. Linear growth rate spectra, as a function of toroidal mode number (up to n¼ 30), calculated using the initial-value extended-MHD
code, M3D-C1, recover the characteristic dependence observed for ideal infernal modes. Nonresonant modes have also been invoked in some
ideal sawtooth crash models. This work provides a mechanism to predict the mode numbers of infernal modes and, potentially, the width of
some post-sawtooth-crash profiles.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0032489

I. INTRODUCTION

Linear stability analysis of internal modes in magnetohydrody-
namics (MHD) typically focuses on resonant instabilities, that is,
instabilities with poloidal and toroidal mode number,m and n, respec-
tively, such that q ¼ m=n somewhere in the plasma volume. One
reason for this is because the effect of magnetic field line bending is—
generally—strongly stabilizing everywhere except in the vicinity of a
resonant surface, where it vanishes. Thus, a perturbation that decreases
the potential energy and corresponds to a linear instability according
to the standard Energy Principle1 is most likely to be associated with
resonant surfaces in the plasma.

In hybrid tokamak scenarios2 and stellarators, where the mag-
netic shear can be small, the stabilizing effect of magnetic field line
bending can also be small. Under these conditions, a perturbation may
decrease the potential energy and lead to a linearly unstable (m, n)
mode, even without a corresponding mode rational surface in the
plasma.

Nonresonant modes are such that there is no resonant surface in
the plasma so that q 6¼ m=n, for a given (m, n) mode under consider-
ation. Nonresonant modes are associated with infernal modes in

tokamaks3–5 as well as some models of the ‘crash’ phase of sawtooth
cycles that invoke ideal instabilities.6–8

While resonant instabilities are generally localized about a reso-
nant surface [a famous exception being the ðm ¼ 1; n ¼ 1Þ mode],
nonresonant instabilities are associated with spatially extended linear
displacements resulting in global mode structures. Consequently, equi-
libria that are unstable to nonresonant modes may be more prone to
global loss of confinement since spatial overlap of multiple linear radial
mode structures can be associated with the generation of magnetic
field line chaos due to nonlinear interactions.9

Due to their nonresonant nature, a key challenge is to predict
which modes will be unstable. Doing so may also enable quantitative
prediction of the spatial extent of chaotic field line regions generated
via nonlinear interactions. This is important, for example, for deter-
mining the modes most likely to lead to loss of confinement and pre-
dicting the width of post-crash profiles in some sawtooth models.6

In this work, we investigate nonresonant pressure-driven MHD
modes in the large-aspect-ratio limit of tokamak equilibria with zero
shear and no resonances [i.e., q0 � qðr ¼ 0Þ is irrational] in the
plasma core. In contrast to previous studies of nonresonant ideal
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interchange modes,10,11 we consider equilibrium pressure profiles that
are peaked near the plasma core, consistent with previous infernal
mode studies3 and pre-crash profiles observed in sawtoothing toka-
mak plasmas.12 We calculate the growth rate spectrum cðnÞ, where c
denotes the linear growth rate, for a range of q0 > 1. In doing so, we
demonstrate the existence of physically relevant parameter regimes
where linear stability is dominated by fast-growing nonresonant
modes with moderate to high n and infernal mode like cðnÞ spectra.

This paper is subsequently organized as follows. In Secs. II and
III, we describe the construction of the equilibrium profiles used in the
present study, and how properties of the real numbers can be used to
predict unstable nonresonant modes. In Sec. IV, we identify the condi-
tions in which nonresonant instabilities are expected to dominate by
performing a higher-order analysis of the Energy Principle using the
nonresonance parameter, dq � jq�m=nj, as an expansion parame-
ter. In Sec. V, we present results of linear parameter scans performed
using the initial-value extended-MHD code, M3D-C1,13 that validate
the predictions and compute cðnÞ spectra. Discussions and conclu-
sions are presented in Sec. VI.

II. EQUILIBRIUM PROFILES

As the primary focus of this work is on tokamak equilibria in
the large-aspect-ratio limit, we consider a periodic cylinder of
length, L ¼ 2pR0, where R0 is the major radius, a is the minor
radius, and e � a=R0 � 1 is the inverse aspect ratio. To construct
equilibria with zero shear and no resonances in the plasma core,
we use the method developed by Hudson and Kraus14 and Wright
et al.15 In this fixed boundary model, external modes are precluded
by construction, and we require B � n̂ ¼ 0 at r¼ a, where B is the
magnetic field.

As in Wright et al.,15 we refer to regions where rp 6¼ 0 and
rp ¼ 0 as the “ideal” and “relaxed” regions, respectively, noting that
this serves simply as a concise label for the presence or otherwise of
gradients in the pressure profile and should not be confused with sta-
bility properties of the equilibria. We introduce a normalized radial
coordinate, x ¼ r=a, such that 0 � x � 1 and partition the domain,
R ¼ fx : x 2 ½0; 1�g, into three sub-domains such that
R ¼ R1 [ R2 [R3, where

R1 ¼ fx : x 2 0; x1½ �g; (1)

R2 ¼ fx : x 2 x1; x2½ �g; (2)

R3 ¼ fx : x 2 x2; 1½ �g; (3)

for some constants x1 and x2 such that 0 < x1 < x2 < 1. For this
work, we chooseR1 and R3 to be ideal regions andR2 to be relaxed.
In the ideal regions, the pressure profile is given by a cubic polynomial
in x with pðx ¼ 0Þ � p0 and pðx ¼ 1Þ � p2, with the remaining
degrees of freedom chosen such that the internal matching conditions,
described later, are satisfied. In the relaxed region,R2, the pressure is a
prescribed constant, p1. Negative pressure gradients are well known to
be destabilizing so to ensure Suydam’s criterion is satisfied at every res-
onant surface, we choose the q-profile in the ideal regions (where
rp 6¼ 0) to be a constant and irrational. Specifically, we prescribe
qðx ¼ 0Þ � q0 and qðx ¼ 1Þ � qedge to be the value of q in R1 and
R3, respectively.

In the ideal regions (whererp 6¼ 0), the 1D equilibrium satisfies

d
dx

l0pðxÞ þ
1
2

e2x2

q2
þ 1

 !
B2
zðxÞ

" #
þ e2x

q2
B2
zðxÞ ¼ 0; (4)

where q ¼ exBz=Bh. In the relaxed regions (where rp ¼ 0), the equi-
librium satisfies

dBzðxÞ
dx

¼ �aBhðxÞ; (5)

BhðxÞ
x
þ dBhðxÞ

dx
¼ aBzðxÞ; (6)

which admits the general solutions

Bh ¼ cJ1 axð Þ þ dY1 axð Þ; (7)

Bz ¼ cJ0 axð Þ þ dY0 axð Þ; (8)

where JiðxÞ and YiðxÞ are Bessel functions of the first and second kind,
respectively, while c, d, and a are constants.

We solve Eqs. (4)–(6) independently in the respective regions. To
complete the construction of the global equilibrium profiles, we
require p,rp, Bz, and q to be continuous at the internal boundaries, x1
and x2. The first two conditions complete the specification of the pres-
sure profile and ensure p 2 C1, i.e., its first derivative exists and is con-
tinuous. The internal matching conditions ensure continuity of the
total pressure, pþ B2=2l0, which means that there are no current
sheets in the equilibria, despite discontinuities in Jz.

Typical equilibrium profiles used for the present study are
given in Fig. 1, with corresponding parameter values summarized
in Table I. To investigate the role of nonresonance and pressure
gradient localization in the plasma core, we vary q0 and x1 while
keeping remaining parameters fixed. By choosing to partition the
domain, R, into three sub-domains rather than two, we are able to
accommodate more realistic edge pressure profiles while simulta-
neously avoiding resonant pressure-driven modes near the plasma
edge. The effect of q-profile flattening near the plasma edge on sta-
bility has been examined in detail previously16 but is largely unim-
portant for the present work.

III. PREDICTING NONRESONANT MODES FROM
PROPERTIES OF THE REAL NUMBERS

We now describe the approach employed in this study for choos-
ing the values of q0. Together with the fact that some irrationals are
better approximated by rationals than others, we discuss how this can
be used to predict the nonresonant modes most likely to be unstable.

Since we are interested in the effect of strictly nonresonant
modes, we choose q0 to be irrational, meaning there are no pairs of
integers, m and n, such that q0 ¼ m=n in the zero-shear region.
However, from the density of the rationals, Q, in R, it follows that
between any pair of distinct irrational numbers, there exist infinitely
many rationals.17 Thus, although q0 is strictly irrational, it may be well
approximated by a nearby rational. Physically, this means that if m/n
is a good approximation of q0, the corresponding (m, n) mode may be
unstable even though q0 6¼ m=n. We now describe one way to con-
struct rational approximations of irrationals and how to quantify the
notion of a good approximation.

Every real number, v, can be represented as a continued frac-
tion, i.e.,
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v ¼ a0 þ
b1

a1 þ
b2

a2 þ
b3

a3 þ . .
.

;

where ai�1 and bi are some integers for i � 1. If a continued fraction
terminates after some finite i, then v is a rational. Otherwise, v is irra-
tional. Truncating the continued fraction representation of an irratio-
nal number at some finite i yields a rational number known as a

convergent, ci. The sequence of convergents, ðciÞi�1, is one systematic
approach to constructing rational approximations of irrational num-
bers. In this work, we investigate modes associated with convergents
of each q0 that satisfy a particularly stringent property, which we now
describe.

Consider some v 2 RnQ and all m; n 2 Z. Denote by Em,n the
absolute error associated with approximating v by the rational m/n,
i.e.,

Em;n �
����v�m

n

����: (9)

We callm and n co-prime if the greatest common divisor ofm and n is
1. By Hurwitz’s theorem,18 we know that for every irrational number,
v, there are infinitely many co-prime integers,m and n, such that

Em;n �
����v�m

n

���� < Mn �
1ffiffiffi
5
p

n2
: (10)

Figure 2 illustrates the distribution of all co-prime pairs (m,n) for
m; n � 30. In this work, we consider m/n to approximate v arbitrary
well (and therefore most likely to be unstable) if Em;n=Mn 	 0 and
conversely, m/n is a poor approximation of v (least likely to be unsta-
ble) if Em;n=Mn � 1.

Every m/n satisfying Eq. (10) is a convergent of v but not every
convergent of v satisfies Eq. (10).18 Hurwitz’s theorem, Eq. (10), gives
the most stringent upper bound on Em;n such that there are still

FIG. 1. Equilibrium profiles with tokamak-like parameter values given in Table I; (a) pressure profile, (b) q-profile, (c) axial magnetic field, and (d) axial current density. The
internal boundaries (x ¼ x1; x2) and plasma edge (x¼ 1) are denoted by vertical dashed lines. The ideal and relaxed regions are shaded blue and red, respectively. To vary
localization of the pressure gradient in the core region, we fix p0 and vary x1, the effect of which is illustrated in (a) with x1 ¼ 0:4 (black), 0.3 (blue), 0.2 (red), and 0.1 (green).
In (b), the minimum and maximum values of q0 considered are denoted by horizontal dashed lines.

TABLE I. A summary of the equilibrium parameter values used throughout the pre-
sent work. Here, u ¼ 1þ

ffiffiffi
5
p� �

=2 	 1:618 is the golden ratio.

Parameter Value

x1 ½0:1; 0:4�
x2 0.8
p0 1
 104 Pa
p1 0:7
 104 Pa
p2 0:3
 104 Pa
q0 Variable

qedge
4þ 3u
1þ u

	 3:38197
a=R0 1/3
B0 1 T
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infinitely many admissible co-prime pairs, (m,n). Using this fact as a
criterion for identifying potentially unstable nonresonant modes,
henceforth, we consider modes associated with convergents of each q0
satisfying Eq. (10).

As part of the numerical studies presented in Sec. V, we consider
properties of modes associated with specific convergents over a range
of q0. Hence, for each q0, the modes under consideration have different
poloidal and toroidal mode numbers. We use condition Eq. (10)—an
elementary and well-known result—as a tool to guide which conver-
gents and/or modes to consider within the scope of the present work.
That is, of course, not to say that only modes associated with conver-
gents satisfying Eq. (10) are unstable. For the reader’s benefit, we pre-
empt the findings of Sec. V and remark while modes associated with
convergents satisfying Eq. (10) are, indeed, unstable, so too are those
of convergents which are poorer approximations of q0 in the sense of
Eq. (10). This motivates the development of additional criteria which
exploit properties of continued fractions, as is being pursued in on-
going work.

For this work, we are interested in q0 close to but above
unity since this corresponds to the conditions considered in pre-
vious studies of infernal modes3,4 and ideal sawtooth crash
models.6,8 We choose irrational q0 parameterized by an integer
b and given by

q0ðbÞ ¼
1þ bu

1þ ðb� 1Þu ¼ 1þ 1

bþ 1
2

ffiffiffi
5
p
� 3

� � ; (11)

where u ¼ 1þ
ffiffiffi
5
p� �

=2 	 1:618 is the golden ratio and well known
to be the “most” irrational number.18 For each b, the irrational q0ðbÞ
admits a continued fraction representation from which the conver-
gents can be determined. Throughout this work, we consider
b 2 ½7; 20� � Z which corresponds to 1:051� q0 � 1:1511. For com-
parison, the nonlinear simulations by Kirby8 of zero central shear
q-profiles considered q0 ¼ 1:04 and q0 ¼ 1:005.

For each q0ðbÞ with b � 7, the sequence of convergents,
ðq0;iÞi� 1, satisfying Eq. (10) is given by

q0;1; q0;2; q0;3; q0;4;…ð Þ ¼
1
1
;
bþ 1
b

;
3bþ 2
3b� 1

;
8bþ 5
8b� 3

;…

� �
: (12)

For example,

b ¼ 7 : q0;1; q0;2; q0;3; q0;4;…ð Þ ¼
1
1
;
8
7
;
23
20
;
61
53
;…

� �
; (13)

b ¼ 8 : q0;1; q0;2; q0;3; q0;4;…ð Þ ¼
1
1
;
9
8
;
26
23
;
69
61
;…

� �
; (14)

b ¼ 9 : q0;1; q0;2; q0;3; q0;4;…ð Þ ¼
1
1
;
10
9
;
29
26
;
77
69
;…

� �
; (15)

b ¼ 10 : q0;1; q0;2; q0;3; q0;4;…ð Þ ¼
1
1
;
11
10
;
32
29
;
85
77
;…

� �
: (16)

Each q0;i is, thus, associated with a nonresonant (m,n) mode, which
we predict is likely to be unstable. Specifically, the numerator and
denominator of each q0;i correspond, respectively, to the poloidal and
toroidal mode number of the associated instability.

In Fig. 3, we compare Em;n=Mn for 1:051� q0 � 1:1511 corre-
sponding to b 2 ½7; 20� for the first three elements of the sequence
defined by Eq. (12). In Fig. 4, we compare Em;n=Mn for the first seven
elements of ðq0;iÞi� 1 for b¼ 7, 8, 9, and 10. We find that for
i � 3; Em;n=Mn 	 1 indicating that there are a few relatively low
order rationals which can reasonably approximate q0, as expected.
Moreover, we find that q0;1 is, relatively speaking, the best approxima-
tion since Em;n=Mn is smallest. The upper bound on the error of the
rational approximation, Mn, goes like n

�2. To maintain Em,n/Mn close
to zero as n increases requires Em,n to become very small.

IV. HIGHER-ORDER ANALYSIS OF THE STANDARD
ENERGY PRINCIPLE FOR NONRESONANT MODES

Since the ðm ¼ 1; n ¼ 1Þ mode leads to a gross displacement of
the magnetic axis and jq� 1j � 1, one might intuitively expect it to
be the most important ‘nearby’ mode, even if there is no q¼ 1 surface
in the plasma. Thus, previous analyses of the quasi-interchange insta-
bility focused on the nonresonant (1,1) mode in low shear
equilibria.7,8,19–21

On the other hand, infernal modes tend to have higher poloidal
and toroidal mode numbers.3 These modes are so named because
even though the Mercier criterion is satisfied and standard ballooning

FIG. 2. Shaded cells denote co-prime pairs (m,n) for m; n � 30 with m=n < 1
(gray), 1 � m=n < qedge (blue), and m=n > qedge (black).

FIG. 3. Relative error defined according to Eq. (10), with b 2 ½7; 20� for q0;1 ¼ 1=1
(black) and q0;2 ¼ ðbþ 1Þ=b (blue), and q0;3 ¼ ð3bþ 2Þ=ð3b� 1Þ (red).
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theory predicts stability, when shear is low the plasma turns out to be
unstable nonetheless. Since interchange and ballooning theory are
used to constrain the maximum plasma b, the existence of infernal
modes may necessitate more pessimistic stability boundaries.3,4

To provide a unified understanding of nonresonant pressure-
driven modes and determine when they are likely to be important, we
perform a higher-order analysis of the standard Energy Principle for
internal modes.1 We explicitly treat the nonresonance parameter,
dq � jq�m=nj, which allows us to tease out connections between
nonresonance, quasi-interchange modes and selected characteristics of
infernal modes. In doing so, we derive thresholds for the critical cen-
tral pressure gradient, which are validated by subsequent M3D-C1 cal-
culations. Note that if we replace q with the irrational, v, then dq is
exactly Em;n as given by Eq. (9).

In the large-aspect-ratio tokamak limit, the standard Energy
Principle is given by22

dW ¼ 2p2R0

l0

ð1
0

x~F
2

~k
2
0

dnðxÞ
dx

� �2

þ ~g ðxÞ
~k
2
0

n2ðxÞ

2
4

3
5dx; (17)

where

~g ¼ 2l0k
2 dp
dx
þ

~k
2
0x

2 � 1
x

~F
2 þ 2k2~F~F

†

x~k
2
0

; (18)

~F ¼ kBz þ
mBh

x
; (19)

~F
†

¼ kBz �
mBh

x
; (20)

~k
2
0 ¼ k2 þm2

x2
; (21)

with k � ka ¼ �en and nðxÞ ¼ n � r̂ is the radial displacement.
We consider an expansion in k such that

dW ¼ dW0 þ k2dW2 þ k4dW4 þ � � � ; (22)

and proceed to investigate the behavior of dW order by order. Note
that typically,22,23 dW is expanded in orders of e2. For n � Oð1Þ,

OðkÞ � OðeÞ and, thus, k� 1 is a suitable expansion parameter. As
n increases, however, e must decrease further in order to maintain
k� 1.

TheOðk2Þ term of dW can be written as

dW2 ¼W0

ð1
0

xB2
zdq

2

m2q2
x2

dn
dx

� �2

þ m2 � 1ð Þn2
" #

dx; (23)

where

W0 ¼
2p2R0

l0
: (24)

For i � 2, we have

k2idW2i¼ �1ð Þik2iW0

ð1
0

x2i�1B2
z

m2iq2

"
�x2dq2 dn

dx

� �2

þ m
n

� �2 2l0x
B2

h

dp
dx
þdq ð2i�1Þqþð2i�3Þm

n

� � !
n2
#
dx:

(25)

Note that the “straight tokamak” model employed in this study is gen-
erally valid for low-b equilibria.22 In the expansion considered pres-
ently, this is implicitly manifest by the fact that the pressure gradient
does not appear until at least Oðk4Þ. Importantly, the contribution of
the pressure drive at each order is independent of dq. We now discuss
how two effects, which impact pressure-driven modes, are related to
nonresonance.

A. Impact of nonresonance on pressure-driven
instabilities

In this system, the overall drive comes from the pressure gradient
which is such that rp < 0, and thus destabilizing in R1. Since we fix
p0 and p1, the value of p on the axis and at x¼ x1, respectively, the
maximum value of p0 in R1 must increase as x1 decreases. Here, 0

denotes differentiation with respect to x. InR1, it follows that

p0 ¼ 6Dp
x31

xðx � x1Þ; (26)

p00 ¼ 6Dp
x31

2x � x1ð Þ; (27)

where Dp ¼ p0 � p1. Hence, p0 is maximized at x ¼ x1=2 and

maxp0 ¼ � 3Dp
2x1

: (28)

We now discuss some impacts of nonresonance on pressure-
driven modes in the context of established results for such instabilities.
Suydam’s criterion,24 which determines stability with respect to
(pressure driven) interchange modes in cylindrical geometry, is exact
insomuch that it is constructed from Eq. (17) by retaining terms of all
orders. The criterion, however, is evaluated exactly at a resonant sur-
face, xs, which is such that qðxsÞ ¼ m0=n0 for some integersm0 and n0.
For a given resonant surface, xs, the Suydam approximation,
from which Suydam’s criterion is derived, applies in the neighborhood
jx � xsj � 1=m0 in the limit m0; n0 ! 1.10 A detailed discussion of

FIG. 4. Relative error defined according to Eq. (10) for the first seven elements of
the sequence defined by Eq. (12) for b¼ 7 (black), b¼ 8 (blue), b¼ 9 (red), and
b¼ 10 (green).
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the eigenvalue spectrum for interchange instabilities was given by
Dewar et al.10 As noted by Shafranov,23 about each resonance,
n0q ¼ m0, there is a band of values which may also be unstable for
m0 6¼ 1. This follows from noting that the coefficient ~g of Eq. (17) is
quadratic in n0q and can be solved to find the roots which, in turn,
determines the region about which the equation has ~g < 0. In the
standard case where q0 is not small, the stabilizing effect of ~F domi-
nates. Consequently, even when q0 is small but nonzero, Eq. (17) is still
positive throughout most of the plasma due to the stabilizing effect of
shear. Instability can generally only arise when ~F is small, which is typ-
ically localized to a small region about the resonant surface where
~F ¼ 0.

For a given resonance, qðxsÞ ¼ m0=n0, it is more likely for
higher-order rationals to be nearby enough tom0=n0 such that the cor-
responding mode is driven unstable by a non-local effect of the pres-
sure gradient. These correspond to instabilities with higher poloidal
and toroidal mode numbers. Simultaneously, however, high-n inter-
change modes are typically well stabilized by magnetic field shear. For
reduced shear scenarios, like those considered presently, we expect
these nonresonant high-n modes to be highly susceptible to being
destabilized by a non-local pressure drive.

Another effect was described by Waelbroeck and Hazeltine19 and
manifests due to a breakdown of the ordering assumed in Eq. (22)
when shear is small. In the standard case, from Eq. (23), it is clear that
dW2 > 0 and, thus, the equilibrium are ideally stable (to internal
modes) if q> 1, which can be guaranteed for a monotonic increasing
q profile if qð0Þ > 1. For m¼ 1, a trial function can be constructed
such that dW2 ! 0 and, thus, stability must be determined by an
examination of the Oðk4Þ term. Since both the current and pressure
gradient are destabilizing, dW4 < 0 and the equilibrium are unstable.

In the standard case, dq � Oð1Þ meaning dq
 e and, therefore,
dq
 k when n � Oð1Þ or e! 0 for large n away from the resonant
surface, where dq vanishes. Interchange instabilities are, therefore,
highly localized about the resonant surface since the pressure drive
becomes dominant only when higher-order contributions to Eq. (22)
are necessary.

In low shear scenarios, the breakdown in the ordering of Eq. (22)
becomes global since dq� 1 over an extended region of the plasma vol-
ume. Correspondingly, pressure-driven interchange instabilities cease to
be local and, instead, generate global displacements. In the nonlinear
regime, interactions between displacements associated with multiple non-
localized modes may tend to lead to the generation of magnetic field line
chaos across a significant region of the plasma, making these modes more
dangerous from the point of view of plasma performance. Infernal modes
have also been associated with a breakdown of the standard Energy
Principle parameter ordering19,25 and understood as a breakdown of stan-
dard ballooning theory3 due to a low central shear q-profile.

B. Predicting the critical pressure gradient for the
(m¼ 1, n¼ 1) nonresonant mode

We now consider Eq. (17) for strictly nonresonant modes so that
dq 6¼ 0 throughout the plasma volume of interest. We examine how
varying dq for arbitrary m and n affects the ordering of Eq. (22), ena-
bles the identification of unstable modes, and constrains the maximum
pressure gradient which can be sustained. In examining the balance of
terms comprising Eq. (17), from which we, in turn, infer stability or
otherwise of the plasma, for the ðm ¼ 1; n ¼ 1Þ mode we implicitly

assume n resembles the quasi-interchange mode eigenfunction,19

which is relatively flat in the central plasma region and smoothly
decreases to zero.

Substituting Eqs. (23) and (25) into Eq. (22), we can write

dW
W0
¼
X1
i¼1

�1ð Þiþ1k2i
ð1
0

x2iþ1B2
z

m2iq2

 !" #
dq2

dn
dx

� �2

dx

þ
X1
i¼2

�1ð Þik2i
ð1
0

x2i�1B2
z

m2iq2

 !" #
dq ð2i�1Þqþð2i�3Þm

n

� �
n2dx

þk2
ð1
0

xB2
zdq

2

m2q2
m2�1ð Þn2dx

þ
X1
i¼1

�1ð Þiþ1k2i
ð1
0

x
m

� �2i

2l0
dp
dx

� �
n2dx

" #
: (29)

From Eq. (29), the well-known limits are readily recovered. When
dq � Oð1Þ, the perturbation expansion given by Eq. (22) is uniformly
valid if 2l0p

0 � OðkÞ or smaller, so that the i¼ 1 contribution in
the final term of Eq. (29) is at least Oðk3Þ. For Bz 	 constant
and Bz � Oð1Þ, this corresponds to requiring b0t � OðkÞ, where
bt ¼ 2l0p=B

2
z is like the toroidal plasma b. When dq ¼ 0, Eq. (29)

reduces to

dW
W0
¼
X1
i¼1

�1ð Þiþ1k2i
ð1
0

x
m

� �2i

2l0
dp
dx

� �
n2dx

" #
; (30)

which is just Eq. (17) with ~F ¼ 0.
Setting �� ¼ k=m, and we can write Eq. (29) as

dW
W0
¼
X1
i¼1

�1ð Þiþ1��2i
ð1
0

x2iþ1B2
z

q2

 !" #
dq2

dn
dx

� �2

dx

þ
X1
i¼2

�1ð Þi��2i
ð1
0

x2i�1B2
z

q2

 !" #
dq ð2i�1Þqþð2i�3Þm

n

� �
n2dx

þ��2
ð1
0

xB2
zdq

2

q2
m2�1ð Þn2dx

þ
X1
i¼1

�1ð Þiþ1��2i
ð1
0
x2i 2l0

dp
dx

� �
n2dx

" #
: (31)

Using Eq. (26), the final term of Eq. (31) becomes

X1
i¼1

�1ð Þiþ1��2i
ð1
0

12l0Dp
x31

� �
x2iþ1 x � x1ð Þn2dx

" #

	
X1
i¼1

�1ð Þiþ1 0:045��2i

x31

 !ð1
0
x2iþ1 x � x1ð Þn2dx

" #
; (32)

with values from Table I.
In Fig. 5, we plot the error, Em,n, defined by Eq. (10) for

q0;1 � q0;4. For the values of q0 considered, q0;1 and q0;2 mostly satisfy
Oð��6Þ� dq < Oð��Þ. From Figs. 3 and 4, it is clear that apart from
q0;1 ¼ 1=1 where E1;1 	 eM1, we have Em;nðq0;iÞ 	 Mn ¼ 1=

ffiffiffi
5
p

n2
� �

for i > 1.
For q0;1 which corresponds to ðm ¼ 1; n ¼ 1Þ, we have

E1;1 	 0:15 which implies Oð��2Þ < dq < Oð��Þ, which is somewhat
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smaller than the cylindrical case considered by Waelbroeck and
Hazeltine,19 where dq � OðeÞ. Setting ai ¼ 0:045��2i=x31 and using Eq.
(26), we can write

dW
W0
	 a1

ð1
0
x3 x � x1ð Þn2dx � a2

ð1
0
x5 x � x1ð Þn2dx; (33)

where the next non-vanishing order isOð��2dq2Þ. Exploiting the break-
down of the standard parameter ordering that has been described in
both the literature and present work is what affords the ability to esti-
mate the critical value of the pressure gradient since the contributions
that may be the next lowest in order, i.e.,Oð��2dq2Þ, may be stabilizing.
We now use Eq. (33) to estimate the critical value of x1 (which
describes localization of the pressure gradient) such that dW < 0.
There are three conditions where the ordering in Eq. (33) is consistent.
Namely, when a1 	 ��;��2, and��3. Respectively, we find

a1 	 �� ! x1 	 0:25;) a2 	 0:038 � O ��3ð Þ; (34)

a1 	 ��2 ! x1 	 0:35;) a2 	 0:012 � O ��4ð Þ; (35)

a1 	 ��3 ! x1 	 0:51;) a2 	 0:004 � O ��5ð Þ; (36)

and note the small stabilizing contribution from a2. For the pressure
profile and range of q0 under consideration, we expect a pressure-
driven ðm ¼ 1; n ¼ 1Þ mode to be destabilized when
0:25� x1 � 0:35. These qualitative predictions are subsequently vali-
dated in Sec. V.

For q0;i with i> 1, the modes of interest are such that m=n
� Oð1Þ and so �� � OðeÞ, which remains approximately fixed. On the
other hand, Em;nðq0;iÞ 	 Mn ¼ 1=

ffiffiffi
5
p

n2
� �

implies dq 	 1=
ffiffiffi
5
p

n2
� �

and, therefore, decreases as n becomes large. In the proceeding discus-
sion, we consider the modes associated with q0;2 and q0;3 for
b 2 ½7; 20�. From Eq. (12), we find that this corresponds to
7 � n � 20 and 20 � n � 59, respectively. For q0;2, this implies
0:001 � Mn � 0:009 and Oð��6Þ� dq�Oð��4Þ, while for q0;3, it fol-
lows 0:0001 � Mn � 0:001 and, therefore,Oð��8Þ� dq�Oð��6Þ.

For dq�Oð��3Þ, we find that the first non-zero term of Eq. (29)
includes the i¼ 2 term of the current-drive contribution, which is neg-
ative and, therefore, destabilizing. Note that the i¼ 1 term, which is
stabilizing, is of order Oð��2dq2Þ and, therefore, smaller than Oð��4dqÞ
when dq�Oð��3Þ. For the first two orders for q0;2 and q0;3, we can,
therefore, write

dW
W0
¼ ��4

ð1
0
dq

Bz

q

� �2

3qþm
n

� �
x3n2dx

þ a1

ð1
0
x3 x � x1ð Þn2dx � ��2a1

ð1
0
x5 x � x1ð Þn2dx; (37)

noting that the next non-vanishing terms are of order Oð��2dq2Þ. The
first and second terms on the RHS of Eq. (37) correspond to stabilizing
and destabilizing contributions from the parallel current and pressure
gradient, respectively, while the third term is a stabilizing correction to
the pressure drive. We can rewrite ai 	 1:5
 10�5ð��2iÞDp=x31, where
Dp is the equilibrium parameter that describes the pressure difference
across the zero-shear region (cf. Table I). For q0;2ðb ¼ 7Þ, we see that
when a1 > Oð��8Þ, the pressure gradient is the dominant contribution
to Eq. (37) and destabilizing. This is achieved when Dp 	 90x31, and
since x1 < 1, even a small Dp is destabilizing, which is consistent with
well-known results. For q0;2ðb ¼ 20Þ, the corresponding results
require Dp 	 10x31. Thus, for all x1 and q0 considered, the pressure-
driven modes associated with q0;2 and q0;3 are unstable. Finally, we
note that as dq decreases, the current term becomes unimportant since
a1 is independent of dq, and Eq. (37) reduces to Eq. (33).

V. NUMERICAL PARAMETER SCANS AND VALIDATION
OF PREDICTIONS

To test the predictions made in Secs. III and IV, we use the
initial-value extended-MHD code, M3D-C1,13 to solve for the non-
ideal, linear plasma evolution for x1 2 ½0:1; 0:4� and q0 corresponding
to b 2 ½7; 20�. Specifically, we solve the single fluid dissipative MHD
equations with isotropic transport parameters in cylindrical geometry
given by13

@~n
@t
þr � ~nuð Þ ¼ 0; (38)

~nmi
@u
@t
þ u � ru

� �
¼ J
 B�rp�r �Pþ F; (39)

@p
@t
þu �rpþCpr�u¼ C� 1ð Þ Q�r�qþ gJ2�u �F�P :ru

� 	
;

(40)

E ¼ �u
 Bþ gJ; (41)

J ¼ 1
l0
r
 B; (42)

@B
@t
¼ �r
 E; (43)

where ~n is the number density, u is the fluid velocity, E is the electric
field, mi is the ion mass, P is the viscous stress tensor, C is the ratio of
specific heats, and F and Q denote external forces and heat sources,
respectively. For the thermal conductivity, q, we choose

q ¼ �jtrT; (44)

where T ¼ Te þ Ti, and Te and Ti are the electron and ion tempera-
tures, respectively. In addition to the parameters given in Table I,
we choose isotropic values of resistivity and viscosity such that Pm
� �=g ¼ 10�2 and jt ¼ 1W=mK . For 0:2 < x1 � 0:4, we use a uni-
form unstructured mesh with 21k elements. To ensure adequate reso-
lution of mode structures when x1 � 0:2, we use mesh packing in the
region x� 0:25.

FIG. 5. Error defined according to Eq. (10) for q0;1 (black), q0;2 (blue), q0;3 (red),
and q0;4 (green).
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In Fig. 6, we plot linear growth rates, c, of the ðm ¼ 1; n ¼ 1Þ
nonresonant, pressure-driven modes associated with q0;1 for
b 2 ½7; 20� and x1 2 ½0:1; 0:35�, as a function of the maximum pres-
sure gradient, max p0, given by Eq. (28), where maxp0 / 1=x1. Stability
is denoted by the unshaded region and, as expected, coincides with
larger q0 and lower values of maxp0, corresponding to comparatively
weak localization of the central pressure gradient. In a large subset of
the parameter space considered, the ðm ¼ 1; n ¼ 1Þ mode is margin-
ally stable and its linear evolution is characterized by stable oscillations,
due to ReðcÞ ¼ 0 and ImðcÞ 6¼ 0. For maxp0� � 2
 104 and
q0 � 1:068, the ðm ¼ 1; n ¼ 1Þ mode is destabilized, and we find that
c grows with decreasing q0 and increasing maxp0, corresponding to
greater localization ofrp, as expected.

In Fig. 7, we plot c of the ðm ¼ 1; n ¼ 1Þ mode as a function of
q0 for x1 ¼ 0:1 (which corresponds to maxp0 ¼ �4:5
 104) and
observe that the mode is unstable for q0 � 1:07. Meanwhile, Fig. 8
shows c of the ðm ¼ 1; n ¼ 1Þ mode as a function of maxp0 for
q0 ¼ 1:051. In the unstable regime, c appears to scale approximately
linearly in q0. From Fig. 6, the behavior appears to be consistent for
other values of q0, for which the ðm ¼ 1; n ¼ 1Þmode is unstable. For
the most pessimistic case, the ðm ¼ 1; n ¼ 1Þ mode is destabilized

for max p0 	 �1:8
 104 which corresponds to x1 ¼ 0:25, in good
agreement with Eqs. (34) and (35). As a function of q0, destabilization
of the mode occurs when q0 	 1:068, which is consistent with the
results of Kirby.8

In Fig. 9, we plot growth rates, c, of nonresonant, pressure-driven
ðm ¼ bþ 1; n ¼ bÞ modes for b 2 ½7; 20� and x1 2 ½0:1; 0:4�, which
correspond to q0;2. As predicted from Eq. (37), the modes are all
unstable in the parameter regime considered. Comparing Figs. 6
and 9, we find that the growth rates of the ðm ¼ 1; n ¼ 1Þ modes are
maximized where c values of the ðm ¼ bþ 1; n ¼ bÞ modes are
minimized, namely, when maxp0 is large and q0 is smallest. In particular,
for the parameter range considered maxðcÞ corresponds to an
ðm ¼ 21; n ¼ 20Þ mode. Even so, the growth rates of the ðm ¼ bþ 1;
n ¼ bÞmodes, which correspond to q0;2, are larger by at least a factor of
two and, thus, dominate the linear evolution on an ideal timescale.

In Eq. (37), we identified a destabilizing contribution from the
pressure gradient a stabilizing pressure gradient term due to a higher-
order correction. Evidently, as the negative pressure gradient term is
destabilizing and the dominant contribution to dW for the parameter
ordering considered, the modes are unstable. Both the remaining

FIG. 7. Growth rates, c, of the ðm ¼ 1; n ¼ 1Þ nonresonant, pressure-driven
mode corresponding to q0;1 for x1 ¼ 0:1, which corresponds to maxp0 ¼ �4:5

104. Stability is denoted by filled circles.

FIG. 8. Growth rates, c, of the ðm ¼ 1; n ¼ 1Þ nonresonant, pressure-driven
mode corresponding to q0;1 for q0 ¼ 1:051. Stability is denoted by filled circles.

FIG. 9. Growth rates, c, of the nonresonant, pressure-driven ðm ¼ bþ 1; n ¼ bÞ
modes for b 2 ½7; 20� and x1 2 ½0:1; 0:4�, which correspond to q0;2. The modes
are unstable for all values of b and q0 considered.

FIG. 6. Growth rates, c, of the ðm ¼ 1; n ¼ 1Þ nonresonant, pressure-driven
mode corresponding to q0;1 for b 2 ½7; 20� and x1 2 ½0:1; 0:35�. Here, maxp0 is
given by Eq. (28) and corresponds to the value of the maximum pressure gradient.
In the unshaded region, the mode is stable.
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terms are subdominant but can, nonetheless, either enhance or
reduce c by modifying dW, since the linear growth rate can be esti-
mated approximately as the ratio of the potential to kinetic ener-
gies.23 Recall that the current term is included in Eq. (37) when
dq�Oð��3Þ. Thus, while it is unimportant for the ðm ¼ 1; n ¼ 1Þ
modes considered in Figs. 6–8, the growth rates of the modes con-
sidered in Fig. 9 are modified by a contribution from the current.
Whereas the current drive is linear in dq and vanishes as n!1,
the stabilizing pressure gradient contribution is independent of dq.
The two subdominant terms are, thus, most comparable when
maxp0 is small and q0 is not too large. As the two parameters
increase and decrease, respectively, the change to c due to current
becomes small while the pressure gradient remains an Oð��2Þ cor-
rection to the dominant, destabilizing pressure drive.

To further illustrate this effect, in Fig. 10, we compare c of the
ðm ¼ bþ 1; n ¼ bÞ modes as a function of q0 for four representative
values of maxp0, namely, (a) �1:125
 104, (b) �1:5
 104, (c)
�2:25
 104, and (d) �4:5
 104. For the modes considered, c is
clearly maximized for q0;2ðb ¼ 20Þ when maxp0 is smallest, and, as
expected, the growth rate is minimized in Fig. 10(d) where maxp0

is maximized and dq is smallest. Simultaneously, as dq increases,
dq approaches Oð��3Þ at which point the ordering applied in Eq.
(37) breaks down. For large values of dq, the subdominant correc-
tion terms are of order Oð��2dq2Þ and stabilizing, which likely
explains the overall decrease in c observed in Fig. 10 as q0
increases.

As an illustrative example, in Fig. 11, we compare the growth
rates of the ðm ¼ 8; n ¼ 7Þ and ðm ¼ 23; n ¼ 20Þ modes which cor-
respond to q0;2 and q0;3 for q0ðb ¼ 7Þ 	 1:151, respectively, as a func-
tion of maxp0. For the ðm ¼ 3bþ 2; n ¼ 3b� 1Þ mode that
corresponds to q0;3, c behaves consistently with the preceding observa-
tions, namely, c is maximized for small maxp0 and decreases with
increasing maxp0. The stronger decrease with increasing maxp0, when
compared to the ðm ¼ 8; n ¼ 7Þ mode, can be understood by the fact
that dq scales approximately with n�2 for both q0;2 and q0;3. The

FIG. 10. Growth rates, c, of nonresonant, pressure-driven ðm ¼ bþ 1; n ¼ bÞ modes corresponding to q0;2 for (a) �1:125
 104, (b) �1:5
 104, (c) �2:25
 104, and (d)
�4:5
 104 with b 2 ½7; 20�.

FIG. 11. Growth rates, c, of the nonresonant, pressure-driven ðm ¼ 8; n ¼ 7Þ
(red) and ðm ¼ 23; n ¼ 20Þ (green) modes, which correspond to q0;2 and q0;3,
respectively, for q0ðb ¼ 7Þ 	 1:151, with x1 2 ½0:1; 0:4�.
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growth rate modification due to the current term in Eq. (37) decreases
with dq and, thus, approaches zero faster for q0;3 than q0;2. We remark
that the competing effects of the subdominant pressure gradient and
current contributions evident in Figs. 9–11 suggest an identifiable
parameter range where such modes are most unstable and, thus, may
be avoided.

Thus far, we have focused on the behavior of the modes associ-
ated with convergents (q0;i) of different q0 and, therefore, different
toroidal mode numbers. To demonstrate that these modes are, indeed,
“special,” in Fig. 12, we plot growth rates of the fastest growing linear
instability for each n 2 ½1; 30� for q0ðb ¼ 7Þ ¼ 1:151; q0ðb ¼ 8Þ
¼ 1:131; q0ðb ¼ 9Þ ¼ 1:116 and q0ðb ¼ 10Þ ¼ 1:104, where
maxp0 ¼ �2:25
 104.

In addition to the pressure-driven nonresonant modes associated
with Eq. (12), the discontinuities in Jk at the internal boundaries of the
equilibria (x1 and x2) may be an additional source of instabilities. As
noted by Wright et al.,15 these arise due to limited smoothness of the
equilibrium profiles and are distinct from the pressure-driven modes
of primary interest.

Characteristic radial mode structures of the current-discontinu-
ity-driven and nonresonant pressure-driven instabilities are given in
Fig. 13. It can be seen that the former is highly localized about the dis-
continuity in Jk, which occurs at the internal boundary x1 and

FIG. 12. Growth rates, c, of the fastest growing linear instability with n 2 ½1; 30� and maxp0 ¼ �2:25
 104 for (a) q0ðb ¼ 7Þ ¼ 1:151, (b) q0ðb ¼ 8Þ ¼ 1:131, (c)
q0ðb ¼ 9Þ ¼ 1:116, and (d) q0ðb ¼ 10Þ ¼ 1:104. Growth rates computed using the full equilibrium (hollow circles, dashed lines) are plotted with growth rates computed with
the ideal wall placed at x1¼ 0.2 (filled circles, solid line), where q¼ q0 everywhere and there are no resonances in the plasma volume. The ðm ¼ bþ 1; n ¼ bÞ and ðm ¼
3bþ 2; n ¼ 3b� 1Þ modes corresponding to q0;2 and q0;3, respectively, are labeled. Green circles denote harmonics of the ðm ¼ bþ 1; n ¼ bÞ modes. In (a)–(d), the peak
growth rates in the second (from left) band of unstable modes correspond to the (15, 13), (17, 15), (19, 17), and (21, 19) modes, respectively, which are associated with con-
vergents of q0 that do not satisfy Eq. (10).

FIG. 13. Characteristic radial mode structures of the current-density-discontinuity-
driven (red) and nonresonant pressure-driven (blue) instabilities considered. The
internal boundaries are located at x¼ x1 and x2 and denoted by vertical dashed
lines. For nonresonant modes, the displacement extends over a large fraction of
the zero-shear region. By contrast, the current-density-discontinuity driven instability
is strongly peaked about the discontinuity in Jk at x¼ x1 (denoted by the leftmost
vertical dashed line).
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corresponds to the edge of the shear-free core region. By contrast, the
nonresonant pressure-driven mode exhibits a globally extended mode
structure in the low shear region. A characteristic profile of the per-
turbed pressure for the nonresonant modes of interest is shown in
Fig. 14. In addition to the radially extended structure, as was evident in
Fig. 13, the profile exhibits structure that is characteristic of an inter-
change mode.

To isolate the modes associated purely with nonresonant effects,
we performed an additional scan for n 2 ½1; 30� with the ideal wall
placed at x ¼ x1 ¼ 0:2 so that q¼ q0 throughout the plasma volume,
meaning that there are no resonant surfaces in the plasma. The growth
rates from both scans are overlaid in Fig. 12.

That the growth rates associated with the nonresonant instabil-
ities in both scans overlap almost identically in Fig. 12 confirm that
the effects described in the preceding analysis are the dominant cause
of these instabilities. For each q0 considered, we observe that the
ðm ¼ bþ 1; n ¼ bÞ and ðm ¼ 3bþ 2; n ¼ 3b� 1Þ modes corre-
sponding to q0;2 and q0;3 are the dominant instability. We find that
harmonics of ðm ¼ bþ 1; n ¼ bÞ (associated with q0;2) are also
unstable, with c decreasing with increasing n as expected. In the purely
nonresonant case, the remaining unstable modes correspond to side
bands, i.e., mþ 1 and/or m – 1 (and harmonics thereof), of the earlier
identified nonresonant modes. We note that the fundamental har-
monics of the additional unstable modes have poloidal and toroidal
mode numbers such that m/n are convergents of q0 but which do not
satisfy Eq. (10). This suggests that bound on Em;n given by Hurwitz’s
theoremmay be overly stringent and motivates further work, presently
under way, to identify additional criteria for predicting unstable non-
resonant modes.

VI. DISCUSSION AND CONCLUSIONS

Nonresonant MHD instabilities, i.e., modes with a poloidal and
toroidal mode number such that q 6¼ m=n, are associated with spa-
tially extended linear displacements. Equilibria that are unstable to

multiple nonresonant modes may be particularly susceptible to global
loss of confinement resulting from nonlinear interactions and mag-
netic field line chaos. It is, therefore, important to be able to predict
which nonresonant modes are likely to be unstable. In this work, we
studied nonresonant pressure-driven MHDmodes in the large-aspect-
ratio tokamak limit. We considered equilibria with zero shear in the
plasma core, q0 irrational and a central pressure gradient, consistent
with pre-crash profiles in sawtoothing tokamak plasmas.

Representing q0 as a continued fraction and constructing conver-
gents, we developed a predictive criterion for identifying the unstable
nonresonant modes. The convergents are rational approximations of
q0 obtained by truncating the continued fraction at a finite depth and
correspond to nonresonant modes likely to be unstable. We consid-
ered specifically convergents satisfying Hurwitz’s theorem, which gives
a stringent upper bound on the error of the rational approximation for
q0.

By performing a higher-order analysis of the standard Energy
Principle, which explicitly treated the nonresonant parameter dq, we
were able to unify understanding of nonresonant pressure-driven
modes, particularly the ðm ¼ 1; n ¼ 1Þ quasi-interchange mode and
infernal modes, which tend to be higher m and n. This allowed us to
determine the conditions under which nonresonant modes can be
expected to dominate and predict the critical central pressure gradient
for destabilization of the ðm ¼ 1; n ¼ 1Þmode.

For a range of q0 > 1, we computed linear growth rate spectra as
a function of toroidal mode number, cðnÞ, using the initial-value
extended-MHD code, M3D-C1.13 We find a preponderance of fast-
growing non-ideal, nonresonant modes with moderate to high n.
Importantly, the cðnÞ spectra shown in Fig. 12 recover the characteris-
tic structure first observed by Manickam et al.3 for ideal infernal
modes, and radially extended mode structures are observed in both
cases. This strongly suggests that the qualitative cðnÞ spectrum of
infernal modes is associated with nonresonance in low shear equilibria.
When q0 is irrational and the shear sufficiently low in the plasma core,
we predict that the unstable modes correspond to convergents of q0.

In the work of Manickam et al.,3 the peaks of the cðnÞ spectrum
did not coincide with integer n, which was treated as a continuous
parameter. On qualitatively accounting for the fact that actual modes
have integer mode numbers, the peaks in cðnÞ observed by Manickam
et al.3 are consistent with our results. Although infernal modes have
been considered from the perspective of ballooning theory,3,20,25–27 the
absence of ballooning physics in the present work suggests an underly-
ing effect associated with nonresonance and properties of the equilib-
rium q-profile in the low shear region. We contend that these effects
persist in toroidal geometry and, therefore, can be used to predict the
unstable nonresonant modes, in analogy with the criterion developed
in this work. Specifically, the nonresonant modes most likely to be
unstable can be associated with the convergents of the continued frac-
tion representation of q0 for monotonically increasing q-profiles and—
potentially—qmin for sufficiently weak reversed shear profiles.

We now briefly sketch how cylindrical picture is expected to be
modified by toroidicity for a low shear equilibrium where q0 is irratio-
nal. As before, we construct convergents, q0;i, of q0, which form a
sequence with monotonic increasing denominators that correspond to
the toroidal mode number of the associated nonresonant modes. We
assume the plasma is stable to high-n ballooning modes, which is valid
in the infernal mode regime.3 Since the denominators of the

FIG. 14. The perturbed pressure profile for a nonresonant pressure-driven ðm ¼ 26;
n ¼ 23Þ mode, which corresponds to q0;3ðb ¼ 8Þ. The profile exhibits a radially
extended structure and is consistent with the expected perturbation due to an inter-
change mode.
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convergents correspond to the toroidal mode number and rapidly
become large, we anticipate that the first few convergents are the most
important. These correspond to modes with moderate to high poloidal
and toroidal mode numbers. This is consistent with the cðnÞ spectra
obtained by Manickam et al.,3 which decayed rapidly for larger n.

The ability to identify unstable nonresonant pressure-driven
modes, which have been invoked in some models for sawtooth
crashes,6,8 enables prediction of the radial extent of temperature and
pressure flattening in post-sawtooth-crash profiles for these models.
As the central q-profile is flattened, for example, due to generation of a
dynamo28 while sufficient heating is applied to maintain central
peaking of the pressure profile,6 nonresonant, high-n pressure-driven
modes, which would otherwise be suppressed by shear, approach mar-
ginal stability. The crash itself may be precipitated by destabilization of
n> 1 harmonics of the (n,n) interchange mode.6,8 As nonlinear inter-
actions reduce the localization of the central pressure gradient, nonres-
onant modes, identified in this work to be more unstable as max p0

decreases, may be destabilized, leading to a cascade that may ulti-
mately determine the width of the chaotic field, i.e., the temperature-
and pressure-flattened region, following a crash.
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