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ABSTRACT

Equilibria with extended regions of weak magnetic shear, including some tokamak scenarios and stellarators, can be susceptible to pressure-
driven internal MHD instabilities even though there is no mode rational surface in the plasma. Nonresonant modes, in particular, can have
properties that are unattractive for confinement, including displacing substantial volumes of the plasma and leading to more efficient pres-
sure gradient flattening in the nonlinear regime. The onset and linear properties of the low shear stability regime are examined using the
initial-value, extended-MHD code M3D-C1. For monotonic q-profiles, we demonstrate a clear correlation between the convergents
associated with the continued fraction representation of q0 and the spectrum of unstable modes. Nonresonant modes are observed to be
destabilized preferentially to any other resonant instability with the same toroidal mode number when n> 1. Using the observed connection
between the spectrum associated with q0 and the overall equilibrium stability properties, we suggest a technique for reducing the uncertainty
on both q0 and magnetic shear in the core region, obtained either via measurement or through the analysis and reconstruction of experimen-
tal results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0053870

I. INTRODUCTION

When magnetic shear is reduced over a significant volume in
magnetically confined fusion plasmas, pressure-driven internal mag-
netohydrodynamic (MHD) modes that would otherwise be stabilized
by magnetic shear can become unstable. An important subset of these
is what we refer to as “nonresonant” modes, that is, internal modes for
which there is no resonant surface in the plasma (i.e., q 6¼ m=n, where
m and n are the poloidal and toroidal mode numbers, respectively).
Nonresonant pressure-driven modes have global mode structures,1,2

generating substantial plasma displacements, which may lead to effi-
cient flattening of pressure gradients in the nonlinear regime. Under
such circumstances, nonresonant modes can become an important
determinant of stability boundaries and, consequently, affect the oper-
ational limits of fusion devices.

Equilibria with very flat central q-profiles and q0 above one are
characteristic of the “hybrid” class of advanced scenarios being
explored en route to steady state operation in ITER.3–8 Low shear pro-
files also play an important role in some proposed models of the saw-
tooth phenomenon,9–11 particularly where an ideal ðm ¼ 1; n ¼ 1Þ
quasi-interchange mode is invoked as the crash progenitor. In some
models, q0 is close to but above unity.

10,11 For example, a recent model
developed by Jardin et al.11 proposes that, under certain conditions,

the crash is due to destabilization of and nonlinear interactions
between nonresonant (n,n) interchange modes where n> 1. Of course,
sawtooth models have been and continue to be the subject of much
debate and on-going study (see, for example, Refs. 11 and 12 and refer-
ences therein).

Modern day stellarators often have relatively flat rotational trans-
form profiles, resulting in equilibria with low global magnetic shear.13

Indeed, the island divertor concept of Wendelstein 7-X relies critically
on low magnetic shear to achieve adequate separation between the
confinement region and wall.14 Since the plasma current in optimized
stellarators is significantly reduced compared to tokamaks, pressure-
driven instabilities take on renewed importance with respect to device
performance.

Select properties of nonresonant pressure-driven modes have
been studied previously in both tokamak and stellarator con-
texts,1,15–17 including as ideal interchange and quasi-interchange
modes. Infernal modes, a class of toroidal, pressure-driven instability
that can appear in equilibria which satisfy the Mercier criterion and
are ballooning-stable, were shown to reduce to interchange-like modes
in the cylindrical limit.18

A perturbation analysis of the standard Energy Principle for the
ðm ¼ 1; n ¼ 1Þ mode in the cylindrical limit illustrated how
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nonresonant modes can arise due to a global breakdown of the stan-
dard parameter ordering (which goes as e2, where e is the inverse
aspect ratio)19 in low-shear equilibria.16 This analysis was subsequently
extended to higher order and for arbitrary poloidal and toroidal mode
numbers.20 In effect, the so-called nonresonance parameter,20

dq � jq�m=nj 6¼ 0, becomes another small parameter that can qual-
itatively modify the ordering which determines linear stability in the
low-shear region.

A challenge common to both nonresonant and infernal modes21

is to predict the toroidal and poloidal mode numbers most likely to be
unstable. Even though q 6¼ m=n in the former, it is intuitive to expect
that an (m,n) mode might nonetheless be unstable if m/n is close
enough to an extremal value of q in tokamaks or, equivalently, n/m to
i in stellarators. Excepting high-n ballooning modes, for internal
modes it is expected that modes associated with low-order rational
surfaces are likely to be key determinants of plasma stability.21

However, in low shear equilibria there can exist conditions where
moderate- to higher-nmodes are similarly important.18,20,21 Thus, it is
essential to understand when nonresonant modes associated with low-
order rationals, such as the ðm ¼ 1; n ¼ 1Þ or ðm ¼ 4; n ¼ 3Þ modes
considered in previous studies,10,11,16,18 are dominant over all other
nonresonant modes with higher poloidal and toroidal mode numbers.

In this work, we examine the onset of the low shear stability
regime and characteristics of the unstable mode spectrum using a
recently introduced continued fraction approach20 for low shear
tokamak-like equilibria. The equilibrium profiles used throughout this
study are described in Sec. II. In Sec. III, we discuss resonances and
MHD stability from the perspective of the continued fraction repre-
sentation of real numbers. We focus on convergents, which provide
the best rational approximation of a given real number compared to
all other fractions with smaller denominators. We describe how the
mode spectrum associated with a partial sequence of convergents can
be constructed from the continued fraction representation of q0. This
turns out to dominate the equilibrium stability characteristics in the
low shear regime. In Sec. IV, we use the initial-value, extended-MHD
code M3D-C1 (described in Ref. 22) to study the linear properties and
onset of nonresonant modes as a function of decreasing shear. In Sec.
V, we demonstrate the preferential destabilization of nonresonant
modes (and higher-order harmonics thereof) over any other resonant
instability with the same toroidal mode number for n> 1 when mag-
netic shear is weak. In Sec. VI, we examine the effect of other nonreso-
nant modes on the low-shear MHD stability regime. We posit that
knowledge of the characteristic mode spectrum (derived from the con-
tinued fraction representation) can be potentially applied to systemati-
cally reduce the uncertainty on q0 obtained, for example, via
measurement or equilibrium reconstruction and address additional
developments that are required to enable this approach. Finally, con-
clusions and implications are presented in Sec. VII.

II. EQUILIBRIUM PROFILES

In addition to generating substantial plasma displacements which
may lead to greater pressure gradient flattening due to magnetic field
line chaos generated via nonlinear interactions, nonresonant modes
can also destabilize resonant modes through poloidal and toroidal
mode coupling. Indeed, mode coupling that leads to the formation of
additional magnetic islands and the subsequent generation of

magnetic field line chaos via island overlap has been proposed as a
pathway to disruptions23 and as part of a sawtooth crash
mechanism.11

Being able to disentangle the “progenitor” modes from those
which are secondarily destabilized by coupling effects can provide new
insights on global MHD stability properties and enable efficient design
of equilibria with desirable MHD stability properties. For this work we
are, therefore, interested in the properties intrinsically associated with
the resonant or nonresonant nature of the modes. As such, we seek to
eliminate all poloidal and toroidal mode coupling as a potential source
of instability drive.2 Consequently, we consider a periodic cylinder,
which models tokamak equilibria in the large aspect ratio limit. Since
toroidal effects are reduced in the low-shear equilibria of interest, this
is a reasonable model for the present purpose.10

Throughout this work, the q-profiles are given by

q ¼ q0 1þ x2k
qa
q0

� �k

� 1

 !" #1=k
; (1)

where x � r=a is a normalized radial coordinate, a is the minor radius,
q0 and qa denote the value of the safety factor at the magnetic axis and
plasma edge, respectively, and k is some constant. We fix qa
¼ 3:38197; a ¼ 1m, and set R0 ¼ 3m as the major radius, which
corresponds to an aspect ratio of 3. The pressure profiles are given by

p ¼ p0
�
1� x

�k
��k
; (2)

where p0 is the pressure on the magnetic axis and �k ¼ 2:5. We pre-
scribe q0, qa, and k, and solve for p0 such that the equilibrium satisfies
a specified value of the average plasma b, which is given by

b ¼ 2l0hpi
hB2i ; (3)

where h�i denotes a volume average and l0 is the vacuum permeabil-
ity. This is the same approach taken by Manickam et al.,21 for example,
and chosen to readily enable comparison to existing results.

The parameter k relates directly to the magnetic shear, allowing it
to be continuously varied with a single parameter. In this study, we
choose a sequence of values for k such that the edge of the low shear
region is approximately equally spaced in radius. The equilibrium q-
profiles and toroidal current density profiles, Jz, are given in Fig. 1. We
consider 1 � k � 8 with b ¼ 3%. Note that k ¼ 1 corresponds to a
quadratic q-profile and serves as a convenient reference case.

III. IDENTIFYING THE MODE SPECTRUM ASSOCIATED
WITH q0

Building on ideas recently introduced byWright et al.,20 we dem-
onstrate how the continued fraction representation of real numbers
can be used to construct a mode spectrum associated with any q (or i)
that is unique, with two exceptions. Depending on whether q is inte-
rior to or coincides with the end point of the subset of R spanned by
all qs in the plasma, the spectrum can include both resonant and non-
resonant modes. For min q or max q, half the spectrum will consist of
nonresonant modes. We will see in Secs. IV and V that the mode spec-
trum associated with q0 is well correlated with the observed unstable
modes when magnetic shear is weak. With these considerations in
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mind, we now describe and motivate the particular choice of q0 used
for the numerical studies presented in this work.

A. General motivation for considering MHD stability
through the lens of continued fractions

Resonances play an essential role in the MHD stability analysis
while the difference between a magnetic field line with rational and
irrational rotational transform has significant implications in non-
axisymmetric equilibria due to the issue of singular currents at rational
surfaces.13,24 The continued fraction representation provides a
unified framework for treating both rational and irrational values of q
and/or i. Establishing a connection between key metrics that charac-
terize MHD equilibrium and stability and the structure of real num-
bers affords access to the mature body of literature knowledge that
exists for the generic properties of the real numbers, including conver-
gents and continued fractions, which can then be applied to derive
new insights on macroscopic physics properties for magnetically con-
fined plasmas.

Every real number, v, can be represented as a (simple) continued
fraction,25 where

v ¼ a0 þ
1

a1 þ
1

a2 þ
1

a3 þ . .
.

; (4)

or, more compactly, as v ¼ ½a0; a1; a2; a3;…� where ai�0 are some
integers. A simple continued fraction can be constructed for any
v 2 R by the following algorithm:26

v ¼ a0 þ n0; 0 � n0 < 1;
1
n0
¼ a01 ¼ a1 þ n1; 0 � n1 < 1;

1
n1
¼ a02 ¼ a2 þ n2; 0 � n2 < 1;

..

.
;

(5)

where ai�0 > 0 are integers and ai ¼ ½a0i� is the integer component of
a0i with a0 ¼ ½v�. Note that here we have used the notation ni�0 to
denote the non-integer component of a0i, following the literature con-
vention.26 This should not be confused with the radial component of
the displacement vector, n, associated with the MHD stability theory.

If nN ¼ 0 for some finite N then (5) terminates and we can write
v ¼ ½a0; a1;…; aN �. Otherwise, v ¼ ½a0; a1;…�. If a continued frac-
tion terminates at some finite depth, then v is rational. Otherwise, v is
irrational.

Truncating a continued fraction at some finite depth produces
fractions, known as convergents, which are rational approximations of
v that alternate between under- and over-estimating v. Importantly,
each ith convergent, vi ¼ mi=ni ¼ ½a0; a1;…; ai�, is the best rational
approximation of v with denominator less than or equal to ni.

26 The
ith convergent, vi, can be calculated from26

vi ¼ a0; ; a1;…; ai½ � ¼
mi

ni
¼ aimi�1 þmi�2

aini�1 þ ni�2
; (6)

where ðm0;n0Þ¼ða0;1Þ;ðm1;n1Þ¼ða1a0þ1;a1Þ, and ðmi;niÞ¼ðaimi�1
þmi�2; aini�1 þ ni�2Þ for 2 � i � N , where v ¼ ½a0; a1;…; aN �.

Formally, when v is rational such that v ¼ mk=nk
¼ ½a0; a1;…; ak� for some finite k there are two possible continued
fraction representations (Theorem 15826) since

a0; a1;…; ak½ � ¼ a0; a1;…; ak � 1; 1½ � for ak � 2; (7)

a0; a1;…; ak�1; 1½ � ¼ a0; a1;…; ak�1 þ 1½ � for ak ¼ 1: (8)

By contrast, when v is irrational, the (infinite) simple continued frac-
tion representation is unique (Theorem 17026). If two continued frac-
tions, ½a0; a1…; aN � and ½b0; b1…; bM �, have the same sequence of
convergents, then the continued fractions are said to be identical.26 If
½a0; a1…; aN � and ½b0; b1…; bM� have the same value when N and M
are finite with aN > 1 and bN > 1, then N¼M and the fractions are
identical (Theorem 16026). Thus, excepting the two cases given by (7)
and (8), the sequence of convergents is unique when v 2 Q. For the
exceptional cases, by inspection of (7) and (8) one sees that the penul-
timate convergent in the sequence will differ depending on the repre-
sentation (the final one must be identical, by definition). For the
irrational case, the sequence is unique. In this work, we focus primarily
on the case where v is irrational since this guarantees uniqueness of
the sequence of convergents, in principle. However, in Sec. III C, we
will see how practical considerations, such as the fact that q0 cannot be
known or represented exactly, lead to some non-uniqueness irrespec-
tive of whether v is rational or irrational.

The characterization of mode rational surfaces as “low-order” or
“high-order” can be an important point of differentiation in the MHD
stability literature (see N€uhrenberg and Zille,27 for example). The

FIG. 1. (a) Equilibrium q-profiles and (b) toroidal current density profiles for b ¼ 3% and 1 � k � 8 where k controls the magnetic shear. The reference case, k ¼ 1 (dashed
line), corresponds to a quadratic q-profile.
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continued fraction approach provides another quantitative compari-
son of the characteristics of surfaces in a plasma by examining the
number of convergents associated with the continued fraction presen-
tation. For example, consider two mode rational surfaces with
q ¼ m=n and �q ¼ �m=�n, which can be written as q ¼ ½a0; a1;…; aj�
and �q ¼ ½�a0; �a1;…; �ak�, respectively [cf. Eq. (4)]. Both q and �q admit
a sequence of convergents, of length j and k, respectively. Since q and
�q are rational surfaces, j and k must both be finite. If j< k, then the
continued fraction representation of q has fewer convergents than �q.
This provides a measure of which, if any, other rational surfaces in the
vicinity of a resonance are such that the corresponding modes are also
likely to be unstable. The language of continued fractions, therefore,
presents another way of characterizing individual surfaces and com-
paring stability properties.

The concept similarly extends to irrational surfaces, where j and
k are infinite. In general, as i!1, the associated convergent (vi)
becomes a better absolute approximation of v, meaning that jv� vij
becomes small.25 Of course, when v is rational, i is finite, and jv� vij
¼ 0 for some i sufficiently large.

For q 2 R, we can define

Dqðm; nÞ �
����q�m

n

����; (9)

where ðm; nÞ 2 Z2. An analogous definition can also be constructed
for i. The general study of upper bounds on (9), including for specific
choices of n, forms the basis of the theory of Diophantine approxima-
tions, and as such, many generic properties are well understood.26,28

One example is the set of (m, n) corresponding to convergents of q.
Thus, for specific choices of (m, n), (9) provides a metric to compare
properties such as the “irrationality” of individual surfaces in the
plasma (which can be labeled by q or i). An example application20 of
this general idea is to identify nonresonant modes which are most
likely to be unstable. Consider the fact that (9) can be bounded above
by 1=

ffiffiffi
5
p

n2. This implies thatm/n is a convergent of q (when q is irra-
tional). However, not every convergent satisfies this bound.26 It has
been empirically demonstrated that this property can be used as a nec-
essary condition for identifying the unstable nonresonant pressure-
driven MHDmodes in some low-shear equilibria.20

B. Identifying the mode spectrum

In this work, we are interested in the onset of a linear stability
regime dominated by modes associated with convergents of q0. Hence,
we use the properties of convergents to guide the choice of q0 for the
numerical studies presented in Secs. IV and VI. Since the sequence of
convergents for q0 alternates between under- and over-estimating q0,
the associated spectrum contains both resonant and nonresonant
modes. Unlike previous work,20 we consider both the resonant and
nonresonant subsets of the mode spectrum.

We seek a choice of q0 such that the spectrum of modes associ-
ated with the low-shear stability regime can be uniquely characterized.
Since we consider equilibria relevant to hybrid tokamak scenarios, we
consider q0 close to but above unity. Note that, as q0 ! 1, the numera-
tors and denominators of the associated convergents, qi, become very
large, even for small i. These qi correspond to modes with large poloi-
dal and toroidal mode numbers, which we expect to be readily stabi-
lized by other effects in practice and, thus, are unimportant in the

stability regime of interest. If q0 is sufficiently close to one such that
only the qi¼1 convergent is expected to be relevant so far as stability
is concerned, then we recover the quasi-interchange regime16 as
qi¼1 ¼ 1=1 in these cases.

As was previously observed,20 when q0 � 1:1 nonresonant
modes with intermediate poloidal and toroidal mode numbers can
dominate the linear MHD stability properties of the equilibrium if
there is no shear in the central plasma volume. Thus, in this work we
choose q0 � 1:3 and irrational to maximize the number of conver-
gents associated with modes of physically relevant m and n. Next, let
us consider the uniqueness of the mode spectrum associated with the
convergents of q0.

C. Non-uniqueness of the q0 mode spectrum
in practice

In practice, one cannot distinguish between whether q0 is rational
or irrational; numerical representations of q0 are necessarily of finite
precision and experimental measurements are limited by finite resolu-
tion meaning that measured and derived quantities can only be known
with limited precision. Moreover, in an actual experiment, q0 may also
be changing in time. Here, we show that relatively small changes in q0
can affect the presence of convergents with small denominators and,
hence, the predicted mode spectrum. This is true even when the
change does not introduce additional low-order rational surfaces into
the plasma. In Sec. VI, we will discuss how comparing mode spectra
for different values of q can potentially be used to reduce uncertainty
when q0 is obtained experimentally.

For any q0 2 R, we can construct a sequence of convergents,

ðqiÞki¼1, where k is finite if q0 is rational and infinite otherwise. While a

sequence, ðqiÞki¼1, may be unique for each q0, a partial sequence,

ðqiÞNi¼1 where N< k, may not be, especially if N is small. For example,
consider q0 ¼ 1:28 and q0 ¼ 1:33. The latter lies within 65% of 1.28,
which is typical of the accuracy with which q0 can be determined

from experiment.11 For q0 ¼ 1:28 and q0 ¼ 1:33, we have ðqiÞk¼4i¼1
¼ ð1=1; 4=3; 5=4; 9=7Þ and ðqiÞk¼2i¼1 ¼ ð1=1; 4=3Þ, respectively. Note
that qi;odd and qi;even are, respectively, associated with nonresonant

and resonant modes. The partial sequences, ðqiÞNi¼1, for q0 ¼ 1:28 and
q0 ¼ 1:33, are identical for N � 2. Consequently, the associated mode
spectra will be indistinguishable up to n¼ 3. However, in a low-shear
regime where nonresonant modes become unstable, we would expect
to see an ðm ¼ 5; n ¼ 4Þ mode if q0 ¼ 1:28 but not if q0 ¼ 1:33, giv-
ing rise to a characteristic mode spectrum that differentiates q0 ¼ 1:28
from q0 ¼ 1:33. Moreover, if nonresonant modes dominate the
plasma stability properties when shear is reduced, we would expect to
observe a clear transition to mode spectra determined by the sequence

ðqiÞki¼1, for sufficiently low shear. Applied to the example considered
above, the transition to a low shear MHD stability regime for
q0 ¼ 1:28 would be characterized by the preferential destabilization of
the (nonresonant) ðm ¼ 5; n ¼ 4Þ mode over the (resonant) ðm ¼ 6;
n ¼ 4Þ mode or any other mode with m> 6 and n¼ 4. Therefore,
tracking the poloidal mode number of the dominant instability for
each n in the expected mode spectrum associated with q0 provides a
straightforward way to identify the onset of the low-shear MHD stabil-
ity regime. As will be seen in Sec. IV, there is a clear correlation
between shear and stability of these modes.
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D. Choice of q0

In view of the additional stabilization effects previously alluded
to, in practice mode spectra corresponding to different q0 are differen-
tiable only if the partial sequences, ðqiÞNi¼1, become distinguishable for
some N not too large. Specifically, the poloidal and toroidal mode
numbers of the mode associated with qN must be less than the maxi-
mum resolvable resolution, whether experimental or numerical.
Otherwise, the q0s are effectively same.

For this work, we choose q0ðx1 ¼ 4; x2 ¼ 9; x3 ¼ 3; x4 ¼ 7Þ
� 1:295 69 where

q0ðx1; x2; x3; x4Þ ¼
x1 þ x2/
x3 þ x4/

; (10)

with / ¼
ffiffiffi
5
p
þ 1

� �
=2 and such that q0ðx1; x2; x3; x4Þ 2 RnQ. The

mode spectrum associated with ðqiÞN¼6i¼1 (up to n � 27) for q0 is

ðqiÞN¼6i¼1 : ð1; 1Þ; ð4; 3Þ; ð9; 7Þ; ð13; 10Þ; ð22; 17Þ; ð35; 27Þ: (11)

This particular value of q0 was chosen for the present study because of
the comparatively large number of low- and moderate-n modes in the
spectrum associated with the sequence of convergents, ðqiÞki¼1. We
emphasize that the approach is applicable to both rational and irratio-
nal q0.

Starting from (1,1), modes in the q0 mode spectrum in Eq. (11)
alternate between being nonresonant and resonant. As the shear is
reduced, we define the onset of the low-shear nonresonant MHD sta-
bility regime to be characterized by preferential destabilization of these
modes, over any other resonant instabilities with the same toroidal
mode number for n> 1. The modes shown in (11) correspond to the
fundamental harmonics associated with each convergent of q0.
However, that is not to say that higher-order harmonics, e.g., the
ðm ¼ 8; n ¼ 6Þ and ðm ¼ 12; n ¼ 9Þ modes etc., are expected to be

FIG. 2. (Top) The spectrum of non-ideal linear growth rates, cðnÞ, for 1 � n � 27, computed using M3D-C1 for each equilibrium profile given by (1) and (2) with 1 � k � 8.
Here, increasing k corresponds to decreasing shear. Blue (dashed box) and red (solid box) labels, respectively, denote modes in the resonant and nonresonant subsets of the
spectrum associated with q0, see (11). Modes associated with the fundamental harmonics are shown in bold on the horizontal axis. (Bottom) For each ðn; kÞ, the poloidal
mode number of the fastest-growing mode is indicated. All other modes correspond to resonant instabilities not in the spectrum of q0.
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stable. Indeed, in Sec. V we show that, in the low-shear stability
regime, modes corresponding to higher-order harmonics of the spec-
trum are also preferentially destabilized.

IV. ONSET OF NONRESONANT MODES WITH
REDUCED SHEAR

For q0 � 1:295 69, we compute the spectrum of the non-ideal
linear growth rate, c, as a function of toroidal mode number with
1 � n � 27, for each equilibrium profile given by (1) and (2) with
1 � k � 8. The non-ideal growth rate spectrum is presented in Fig. 2
and accompanied by an annotated breakdown of the fastest-growing
linearly unstable mode for each n. The non-ideal growth rates are cal-
culated by using the initial-value extended-MHD code, M3D-C1, to
solve linearized non-ideal single-fluid dissipative MHD equations with
isotropic transport parameters.22 For each prescribed toroidal mode
number, the linear growth rate corresponds to that of the fastest grow-
ing (m, n) mode. The thermal conductivity model is given by

q ¼ �jtrT; (12)

where T ¼ Te þ Ti, and Te and Ti are the electron and ion tempera-
tures, respectively. We choose isotropic values of resistivity and viscos-
ity, such that Pm � �=g ¼ 10�1; S ¼ 4:6	 105, and jt ¼ 1 W=mK,
where Pm and S are, respectively, the magnetic Prandtl number and
Lundquist number. The decision to use M3D-C1 for this work was
motivated by the study of nonlinear stability, which is the subject of
the on-going work. For a standalone analysis of linear stability, a dedi-
cated eigenvalue solver such as DCON29 would be similarly well-
suited.

Recalling that increasing k corresponds to decreasing shear, in
Fig. 2 we observe a clear transition to a linear MHD stability regime,
which is dominated by the mode spectrum associated with conver-
gents of q0. In particular, for k � 3 (which corresponds to the low-
shear region extending to x � 0:4), the mode spectrum develops a dis-
tinctive vertical striation pattern. The vertical striping is reminiscent of
the observed behavior for infernal modes21 and consistent with a case
considered previously20 where the plasma is shear free in the core and
all resonances excluded.

For each ðn; kÞ pair, the poloidal mode number of the fastest-
growing non-ideal linear instability, as calculated by M3D-C1, is also
labeled in Fig. 2. Resonant and nonresonant modes corresponding to
the spectrum associated with q0 are colored blue and red, respectively.
Modes associated with the fundamental harmonics are shown in bold.
All other modes correspond to resonant instabilities not in the spec-
trum associated with q0.

As expected, we find that the nonresonant ðm ¼ 1; n ¼ 1Þ mode
is subdominant to the resonant ðm ¼ 2; n ¼ 1Þ mode, which is only
weakly unstable for all values of k considered. As observed previ-
ously,10,20 the nonresonant ðm ¼ 1; n ¼ 1Þ mode is not expected to
be destabilized until q0 � 1:05, whereas q0 � 1:3 in the present case.

The ðm ¼ 4; n ¼ 3Þ mode forms part of the resonant subset of
the mode spectrum associated with q0, and we find that it is unstable,
albeit comparatively weakly, for all values of k considered. Moreover,
a large number of modes corresponding to higher order harmonics of
4/3 are destabilized at moderate values of shear where k � 1:5. For
k � 1:5, up to 7 harmonics of 4/3 are destabilized, in addition to the
ðm ¼ 4; n ¼ 3Þmode. As can be seen in Fig. 3, the growth rates of the
higher order harmonics are comparable to that of the ðm ¼ 4; n ¼ 3Þ
mode, especially for 1:5 � k � 4. Similar behavior is observed for the
ðm ¼ 13; n ¼ 10Þ mode, which is also in the resonant subset of the
mode spectrum associated with q0.

In Fig. 4, we plot profiles of the linearly perturbed pressure, p,
and toroidal current density, Ju, for k ¼ 8, which are illustrative of
what is observed in Fig. 3. In Fig. 5, we plot the accompanying radial
magnetic field for these three modes. Since we are solving the linear-
ized extended-MHD evolution equations, the magnitudes associated
with the profiles in Fig. 4 are unimportant; eventually, the system will
be dominated by the evolution of the fastest-growing linear instability,
which grows exponentially in time. We remark that our purpose here
is not to provide a comprehensive classification of the different ideal
and resistive modes that comprise the spectra in Fig. 2. Instead, the
motivation and focus of this work is to consider the overarching char-
acteristics of the spectrum and its connection to rational approxima-
tions of q0. We now discuss some qualitative features of the profiles.

Profiles for the ðm ¼ 3; n ¼ 2Þ mode are as expected of a stan-
dard resonant, internal mode. Namely, the variation in pressure van-
ishes sharply at the resonant surface (indicated in Fig. 4 by the solid red
line), as does the radial component of B. The current density profile is
strongly localized about the mode rational surface (q¼ 3/2 in this case)
and displays current-sheet-like characteristics. From Fig. 5, the notable
feature of the nonresonant ðm ¼ 9; n ¼ 7Þ mode is that the radial
mode structure does not vanish. Moreover, the spatial variation of both
Ju and p coincide, albeit with opposite polarity. Unlike the resonant
(m¼ 13, n¼ 10) mode, which exhibits a similarly extended pressure
profile or the ðm ¼ 3; n ¼ 2Þ mode, the current density cannot be
localized to a resonant surface (as there is none), yielding a different
structure. For the resonant ðm ¼ 13; n ¼ 10Þ mode, we observe some
localization of Ju about the q¼ 13/10 resonant surface that is reminis-
cent of the current-sheet-like structures seen for the ðm ¼ 3; n ¼ 2Þ
mode. However, unlike the resonant ðm ¼ 3; n ¼ 2Þmode, localization
of the pressure perturbation is not strongly correlated with the mode
rational surface. Like the ðm ¼ 3; n ¼ 2Þ mode, we also find that jBr j
sharply decreases toward zero in the vicinity of the q¼ 13/10 surface, as
expected of a resonant instability. We observe similar behavior for other
(resonant) higher-nmodes that are not part of the q0 spectrum.

FIG. 3. Non-ideal linear growth rates of the ðm ¼ 4; n ¼ 3Þ mode and its higher-
order harmonics up to n¼ 24. The ðm ¼ 4; n ¼ 3Þ mode is part of the resonant
subset of the mode spectrum associated with q0.
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V. PREFERENTIAL DESTABILISATION
OF NONRESONANT MODES

In Sec. III, we defined the onset of the low-shear nonresonant
MHD stability regime as being characterized by preferential desta-
bilization of modes in the spectrum associated with the sequence
of convergents, ðqiÞki¼1, for q0 over any other resonant instabilities
with the same toroidal mode number when n> 1. As was clearly
seen in Fig. 2 and discussed in Sec. IV, for k � 3 (which

corresponds to the low-shear region extending to x � 0:4 and
beyond), both resonant and nonresonant modes in the spectrum
associated with q0 are destabilized, grow robustly and come to
dominate the overall linear stability MHD properties of the equi-
librium for k � 4. This behavior is quantitatively illustrated in Fig.
6, where we plot non-ideal growth rates of the fastest-growing for
each n corresponding to a denominator in the partial sequence of
convergents, ðqiÞN¼5i¼1 , for q0. Growth rates of modes with poloidal

FIG. 4. Profiles of the linearly perturbed pressure, p, (left) and toroidal current density, Ju, (right) for the ðm ¼ 3; n ¼ 2Þ (top), ðm ¼ 9; n ¼ 7Þ (middle), and ðm ¼ 13;
n ¼ 10Þ modes (bottom) with k ¼ 8. These are representative of the three types of profiles observed in Fig. 2.
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mode number, m, which correspond to the numerator of each
term in ðqiÞN¼5i¼1 , are denoted by filled circles. Hollow circles indi-
cate modes with poloidal mode number such that m 6¼ nqi.

For the reference case, k ¼ 1, the q-profile is quadratic in the
radial coordinate. In this case, of the modes in the spectrum associated
with q0, only the (resonant) ðm ¼ 4; n ¼ 3Þ mode is unstable and
very weakly so. As the shear is decreased, we observe a steady increase
in c, in addition to destabilization of all modes in the spectrum associ-
ated with q0.

In Fig. 6, we considered growth rates of the fundamental har-
monics of the mode spectrum for q0, whereas in Fig. 7, we compare
c of both the fundamental and higher order harmonics of the
fastest-growing modes with n¼ 7, 14, and 21 as well as n¼ 10 and
20. These are, respectively, associated with the harmonics of the
nonresonant ðm ¼ 9; n ¼ 7Þ and resonant ðm ¼ 13; n ¼ 10Þ
modes that partially comprise the spectrum associated with q0.
Like Fig. 6, we observe an overall increase in c with the decreasing
shear (i.e., increasing k).

For k ¼ 8, the low-shear region extends to x � 0:55, which
is the maximum value considered in this study. Interestingly, in
Fig. 2, we observe that for ðn ¼ 21; k ¼ 8Þ, the fastest growing lin-
ear instability does not correspond to a higher-order harmonic of
the ðm ¼ 4; n ¼ 3Þ mode, as is the case for k � 6. Instead, the
fastest-growing instability is the ðm ¼ 27; n ¼ 21Þ mode, which is
a higher-order harmonic of the ðm ¼ 9; n ¼ 7Þ mode and part of
the subset of nonresonant modes associated with q0. This suggests
that, at sufficiently low shear (k ¼ 8 in this case), there is preferen-
tial destabilization of higher-order harmonics in the nonresonant
subset of the q0 spectrum.

Taken together, Figs. 3, 6, and 7 indicate that both fundamental
and higher order harmonics of modes in the nonresonant subset of
the mode spectrum associated with q0 are preferentially destabilized as
magnetic shear is reduced. Even up to relatively high n, the higher-
order harmonics can have non-ideal linear growth rates that are com-
parable to those of the fundamental harmonic. Combined these modes
have a potentially defining impact on the MHD stability characteristics
in the low-shear regime.

VI. EFFECT OF OTHER NONRESONANT MODES
ON THE LOW-SHEAR MHD STABILITY REGIME

In this final section, we consider an apparently anomalous obser-
vation in Fig. 2, which is that the ðm ¼ 31; n ¼ 24Þmode is the domi-
nant linear instability with n¼ 24 when k ¼ 8. We then propose an
approach that can be potentially applied to reduce the uncertainty on
q0 obtained via measurement or through equilibrium reconstruction,
based on the fact that each q can be associated with a mode spectrum
that is (almost) unique (cf. Sec. IIIC).

For k � 6, the dominant linear instability with n¼ 24 is the
ðm ¼ 28; n ¼ 24Þ mode, which is a higher-order harmonic of the
ðm ¼ 4; n ¼ 3Þ mode and a member of the resonant subset of the q0
spectrum. When k ¼ 8, it is the ðm ¼ 31; n ¼ 24Þ mode which domi-
nates instead. However, 31/24 is not a convergent of q0. Since
31=24 ¼ 1:291 67 < q0, the ðm ¼ 31; n ¼ 24Þ mode is nonresonant.
Clearly, at sufficiently weak shear additional nonresonant modes are
destabilized. To differentiate between nonresonant modes which are
associated and are not associated with convergents of q0, we refer to
the latter as “other nonresonant” modes.

FIG. 5. Profiles of the radial magnetic field for the ðm ¼ 3; n ¼ 2Þ (purple),
ðm ¼ 9; n ¼ 7Þ (pink), and ðm ¼ 13; n ¼ 10Þ (teal) modes for k ¼ 8. The
ðm ¼ 9; n ¼ 7Þ mode structure is globally extended and characteristic of nonresonant
modes. By contrast, since both the ðm ¼ 3; n ¼ 2Þ and ðm ¼ 13; n ¼ 10Þ modes
are resonant, Br changes sign near the mode rational surface. The corresponding reso-
nant surfaces (dashed lines) are located at x¼ 0.494 and x¼ 0.651, respectively.

FIG. 6. Non-ideal linear growth rates of both resonant and nonresonant modes in
the spectrum associated with q0. Cases where the fastest-growing instability with
the given n does not correspond to modes in the spectrum associated with q0 are
denoted by open circles.

FIG. 7. Non-ideal linear growth rates of the ðm ¼ 9; n ¼ 7Þ and ðm ¼ 13; n
¼ 10Þ modes and higher-order harmonics up to n¼ 27, which are, respectively,
members of the nonresonant and resonant subsets of the spectrum associated with
q0. Cases where the fastest-growing instability with the given n does not correspond
to modes in the spectrum associated with q0 are denoted by open circles.
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Figure 2 suggests that the effect of other resonant modes on the
overall MHD stability characteristics is subdominant to modes in the
spectrum associated with q0. Nonetheless, it can be useful to determine
which other resonant modes are likely to destabilized when the shear
is sufficiently weak. To do so requires being able to determine the real
numbers with which the other nonresonant modes are associated. A
preliminary step is to identify an interval, Dv 
 R, where the mode/s
of interest correspond to convergents of v 2 Dv. The development of
a formal procedure for doing so is the subject of on-going work so we
briefly sketch one practical approach.

For the particular case at hand, we empirically determine that 31/
24 is a convergent of some v in Dv ¼ ð1:289 96; 1:292 35�.
Specifically, for 106 pseudorandom numbers between 0:6 < v < 2, we
compute the first eight convergents of each v to determine the approx-
imate Dv such that 31/24 is a convergent of v. The range of test values
is centered about q0 and extends up to 2 which, as can be seen from
Fig. 1, includes q-values that are resonant well into the strongly
sheared region. Importantly, we remark that the choice of Dv is not
unique. Indeed, one may observe that Dv ¼ ½1:290 33; 1:292 68� is
also a valid choice (as it contains 31/24 as a convergent) and use the
corresponding Dv as a starting point for further analysis instead.
(Since the actual value of q0 is known, the example is somewhat con-
trived. Nonetheless, it illustrates how the general principle can be
applied.)

Proceeding as described in Sec. IIID, for a range of different trial
values, v 2 Dv, we can then construct mode spectra based on the
sequence of convergents for each v. Modes in the spectrum associated
with q0 alternate between being nonresonant and resonant. By contrast,
depending on whether v < q0 or v > q0, the spectrum associated with
v may consist of all, none, or some nonresonant modes that do not
necessarily alternate between being nonresonant and resonant.
Moreover, if jq0 � vj is sufficiently small, then the sequences of conver-
gents, ðviÞMi¼1 and ðq0;iÞNi¼1, may have many common elements on
account of the non-uniqueness discussed in Sec. IIIC. Even so, by com-
paring the characteristics of each spectrum and the expected properties
of the associated unstable modes, it can be possible to determine which
mode spectrum is dominant. As will be discussed, a similar procedure

can potentially be applied to reduce uncertainty on q0 by analyzing the
mode spectra associated with a range of trial values and comparing
against observation to determine the best fit.

As an example, consider the trial value v ¼ p3=24 � 1:291 93,
which is in the interval Dv and associated with the partial sequence of
convergents given by

ðviÞN¼6i¼1 ¼
1
1
;
4
3
;
9
7
;
22
17
;
31
24
;
177
137

� �
: (13)

We note that v < q0. Comparing to (11), we can see that the partial
sequence of convergents for q0 and v is nearly identical for N � 5.
Namely, ðviÞN¼5i¼1 includes 31/24 but not 13/10 and vice versa for
ðq0;iÞN¼5i¼1 . From Fig. 2 and as noted in Sec. IV, the ðm ¼ 13; n ¼ 10Þ
mode is dominant at moderate shear (k ¼ 2), as are the other modes
in the spectrum associated with q0. We can, therefore, conclude that
modes in spectrum associated with v are subdominant compared to q0
because modes in the spectrum associated with v do not become the
fastest-growing linear instability (for a given n) until the shear is very
weak.

A. Reducing uncertainty on q0

At first glance, the preceding example may appear trivial since q0
is known in this case. However, we now illustrate how the same logic
may be applied when q0 is not known exactly. We propose that this
idea could, in principle, be used to reduce uncertainty on q0 obtained
via measurement or through equilibrium reconstruction. First, we give
a worked example using the results in hand as a proof-of-principle for
how this might be applied in practice. We then address the generaliza-
tion of this approach, which is presently under development and aims
to set these ideas on firmer footing.

Suppose we know that q0 lies in some interval, Dv, but the exact
value is unknown. We pick some trial values in Dv, for example,
v0 ¼ ð4þ 9/Þ=ð3þ 7/Þ � 1:295 69 and v ¼ ð9þ 4/Þ=ð7þ 3/Þ
� 1:305 21 so that fv; v0g 2 Dv. For each v0 and v, we construct the
associated mode spectrum from the sequence of convergents given by

ðv0iÞ
N0
i¼1 ¼

1
1
;
4
3
;
9
7
;
13
10
;
22
17
;
35
27
; (14)

ðviÞNi¼1 ¼
1
1
;
4
3
;
13
10
;
17
13
;
30
23
;
47
36
; (15)

where, as in (11), starting from 1/1 modes in the spectra alternate
between being nonresonant and resonant.

Next, suppose we have some knowledge of the unstable mode
spectrum of the equilibrium. As an example, we consider Fig. 8, which
is the k¼ 8 case of Fig. 2. We begin by analyzing Fig. 8 and identifying
the fundamental harmonics of all the unstable modes. The subsets of
modes in the spectra associated with v0 and v are highlighted in blue
and purple, respectively. We see that the ðm ¼ 9; n ¼ 7Þ; ðm ¼
22; n ¼ 17Þ and ðm ¼ 35; n ¼ 27Þ modes are unique to the spectrum
associated with v0, whereas the ðm ¼ 17; n ¼ 13Þ and
ðm ¼ 30; n ¼ 23Þmodes are unique to v.

We now wish to reduce the uncertainty on q0 by reducing the
size of Dv. Note that all modes (up to n¼ 27) associated with the spec-
tra of v and v0 are unstable for k ¼ 8. In fact, from Fig. 2 we see that
the modes associated with both v and v0 are all destabilized at moder-
ately low shear, k � 4. We, therefore, cannot use one mode spectrum

FIG. 8. The non-ideal linear growth rate spectrum (up to n¼ 27) for k ¼ 8 calcu-
lated used M3D-C1. The growth rates corresponding to the fundamental and
higher-order harmonics of the unstable modes are shaded black and gray, respec-
tively. The fundamental harmonics of modes in the spectrum associated with
v0 � 1:295 69 and v � 1:305 21 are highlighted in blue and purple, respectively.
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being subdominant to another as a means to constrain q0, as was the
case for (13). Instead, we can examine the structure of individual
modes. Specifically, we consider the ðm ¼ 9; n ¼ 7Þ mode. As dis-
cussed in Sec. IV, the profiles associated with the ðm ¼ 9; n ¼ 7Þ
mode are clearly indicative of a nonresonant instability. Having
deduced that the ðm ¼ 9; n ¼ 7Þ mode is nonresonant, the implica-
tion is that 9=7 < v0 and 9=7 < minðDvÞ. This constrains q0 by
reducing the interval, Dv.

The generalization of this approach to one that is systematic
relies on using what is known about the sequence of convergents asso-
ciated with a given real number, to judiciously guide the choice of the
trial values, v. One approach, currently under development, is to select
vs from a particular equivalence class of irrational numbers, based on
the quantity of elements in the corresponding sequence of convergents
which have a denominator that is not too large (and can be feasibly
measured in experiment). Consider two numbers, v1; v2 2 R. Here,
v2 is said to be equivalent to v1 if

v2 ¼
a0v1 þ b0

c0v1 þ d0
; (16)

where a0; b0; c0, and d0 are integers such that a0d0 � b0c0 ¼ 61.26 For
example, one could pick vs that are equivalent [in the sense of (16)] to
/, the Golden Mean, which has the property of having many conver-
gents with relatively small denominators. This was seen in the previous
work20 where the q0 values considered were all equivalent to /. Hence,
the nonresonant mode spectrum for each case contained multiple
low-/moderate-n modes. The natural limitation of this approach is its
dependence on the distribution of equivalent numbers in R, which
consequently means that the trial values do not uniformly sample the
subset R spanned by q.

The degree to which this approach can potentially reduce the
uncertainty on q0 depends on details of the problem under consider-
ation. Moreover, since this approach relies on being in the low shear
regime, a method to explicitly connect the mode spectrum with the
shear parameter is needed. However, the potential utility in applica-
tions, such as equilibrium reconstruction, justifies continued develop-
ment, as is the subject of the on-going work. In many circumstances,
the calculated MHD stability properties sensitively depend on the
choice of q0, i0, or other extremal values of q and i (the sawtooth phe-
nomenon being an obvious example). Accurate reconstruction of these
values is, therefore, of great importance.

VII. CONCLUSIONS

Equilibria with extended regions of weak magnetic shear, as
encountered in hybrid tokamak scenarios and stellarators, can be sus-
ceptible to pressure-driven internal MHDmodes that would otherwise
be stabilized magnetic shear. In particular, nonresonant modes—that
is, modes with poloidal and toroidal mode number m and n such that
there is no mode rational surface (q ¼ m=n) in the plasma—can
become key determinants of the overall equilibrium MHD stability
properties. Since nonresonant modes can have properties that are
unattractive for confinement, including displacing substantial volumes
of the plasma and leading to more efficient pressure gradient flattening
in the nonlinear regime, the ability to understand and predict the spec-
trum of unstable nonresonant and “nearly resonant” modes is
important.

In Sec. III, we discussed how the continued fraction representa-
tion provides a unified framework for treating rational and irrational
values of q and i and, by extension, a pathway to connecting what is
well-established about the structure of numbers to plasma properties
in MHD. Specifically, we described how the partial sequence of con-
vergents ðqiÞNi¼1 associated with a q-value (or, analogously, i-value) of
interest can be used to predict a spectrum of resonant and nonreso-
nant modes that turn out to be well correlated with the spectrum of
unstable MHD modes in configurations with extended regions of
weak magnetic shear. In low-shear regimes, each q0 can be associated
with a characteristic mode spectrum that is unique (with two excep-
tions), in principle. Comparing the unstable modes observed in experi-
ment to the predicted mode spectrum provides a potentially
straightforward way to reduce the uncertainty on q0 obtained via mea-
surement or through equilibrium reconstruction.

In Sec. IV, we explored the onset of nonresonant modes with
decreasing shear, for a sequence of equilibria with a fixed value of q0.
The particular q0 was chosen for the number of low- and moderate-n
modes in the spectrum associated with the corresponding sequence of
convergents, ðqiÞN¼6i¼1 . We defined onset of the low-shear nonresonant
MHD stability regime as being characterized by the preferential desta-
bilization of nonresonant modes associated with the spectrum of q0,
over any other resonant instabilities with the same toroidal mode
number when n> 1. Using the initial-value extended-MHD code,
M3D-C1, we computed the spectrum of non-ideal linear growth rates
as a function of toroidal mode number for 1 � n � 27.

As the shear is reduced, we observed a clear transition to a linear
MHD stability regime dominated by resonant and nonresonant modes
in the spectrum associated with convergents of q0. Moreover, we
showed that both resonant and nonresonant modes in the spectrum
associated with q0 can be destabilized and grow robustly. This indi-
cates that tracking the poloidal mode number of the dominant insta-
bility for each n in the spectrum associated with q0 provides a
straightforward way to identify the onset of the low-shear MHD stabil-
ity regime. Since there is a clear correlation between shear and the sta-
bility of these modes, it is possible that this approach can be used to
reduce the uncertainty on shear in the core region, in the analysis and
reconstruction of experimental results.

In Sec. V, we observed that, as the region of weak magnetic shear
is extended, both the fundamental and higher-order harmonics of
modes in the nonresonant subset of the q0 spectrum are destabilized
preferentially to any other resonant instability with the same toroidal
mode number with n> 1. Even up to relatively high-n, we found that
the higher-order harmonics can have non-ideal linear growth rates
which are comparable to those of the fundamental harmonic.

In Sec. VI, we considered “other nonresonant modes,” which are
nonresonant modes not contained in the mode spectrum associated
with q0. These modes were shown to be destabilized with sufficiently
weak shear and have a subdominant effect on the overall stability
properties of the equilibrium. Since each real number can be associated
with a characteristic mode spectrum, we then proposed a procedure
that may potentially be applied to reduce the uncertainty on q0.
Additional developments required to realize this for experimental
applications were also considered. Since calculated MHD stability
properties depend sensitively on the choice of q0, i0, or other extremal
values of q and i, accurate reconstruction of these values is important
in many fusion applications.
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Even with complete suppression of poloidal and toroidal cou-
pling as a potential source of instability drive, we have seen that equi-
libria with extended regions of weak magnetic shear can exhibit a
broad range of linear MHD instabilities. Importantly, nonresonant
modes, as considered in this work, can play a marked role in determin-
ing the overall MHD stability properties of equilibria with weak mag-
netic shear. While the introduction of mode coupling necessarily
complicates the analysis, we posit that the effects discussed in this
work persist since they relate to the intrinsic structure of numbers and
the nature of resonances, which remain unchanged in toroidal geome-
try. Ultimately, it is the magnetic shear stabilization which enables
nonresonant and “nearly resonant” modes to be important from the
physics point-of-view. Thus, the pertinent question is to what degree
the reduction in magnetic shear stabilization is a dominant contributor
to the overall equilibrium stability characteristics in more realistic
geometries. In a scenario where such an effect is indeed important,
one would expect additional modes to be destabilized through cou-
pling to the resonant and nonresonant modes described in this work.
Since the coupling effects are well-understood, e.g.,m6 1 in tokamaks
and toroidal “mode families” in stellarators, it should be possible to
predict, to a large extent, the spectrum of excited modes by an analysis
of the q- or i-profile, using continued fractions and the approach
described in this work. An exploration of these ideas is the basis of on-
going work.
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