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Small-amplitude, symmetry-breaking magnetic field perturbations, including resonant
magnetic perturbations (RMPs) and error fields, can profoundly impact plasma properties
in both tokamaks and stellarators. In this work, we perform the first comparison
between the Stepped Pressure Equilibrium Code (SPEC) (a comparatively fast and
efficient equilibrium code based on energy-minimisation principles) and M3D-C1

(a high-fidelity albeit computationally expensive initial-value extended-magnetohydro-
dynamic (MHD) code) to assess the conditions under which SPEC can be used to
model the nonlinear, non-ideal plasma response to an externally applied (m = 2, n =
1) RMP field in an experimentally relevant geometry. We find that SPEC is able to
capture the plasma response in the weakly nonlinear regime – meaning perturbation
amplitudes below the threshold for break up of the separatrix and onset of secondary
magnetic island formation – when around half of the total toroidal flux is enclosed
in the volume containing the q = 2 resonant surface. The observed dependence of
SPEC solutions on input parameters, including toroidal flux and the number of volumes
into which the plasma is partitioned, indicates that additional exploration of the
underlying Multi-Region Relaxed MHD physics model is needed to constrain the choice
of parameters. Nonetheless, this work suggests promising applications of SPEC to
optimisation and fusion plasma design.
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1. Introduction

Small-amplitude, symmetry-breaking magnetic field perturbations can profoundly
impact plasma properties in both tokamaks and stellarators (Callen 2011). Externally
applied resonant magnetic perturbations (RMPs) form the basis of mitigation strategies for
edge-localised modes in tokamaks and will play an important role in ITER (Evans et al.
2004, 2006, 2008; Turnbull et al. 2013). Unintended three-dimensional (3-D) magnetic
field perturbations, known as error fields, can be introduced in a variety of ways, including
through coil construction, alignment and positioning, 3-D structures in the vessel wall and
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blanket materials (Piron et al. 2020). Quasisymmetry in stellarators, for example, can be
particularly sensitive to error fields which arise due to finite-build coils (Singh et al. 2020),
misalignment and other coil imperfections (Zhu et al. 2019, 2018; Imbert-Gerard, Paul &
Wright 2020).

A variety of equilibrium and time-dependent approaches for modelling plasmas in the
presence of externally applied, symmetry-breaking magnetic fields have been explored.
These include linear (Liu et al. 2000; Ferraro et al. 2013; Wingen et al. 2015) or
perturbative methods (Nührenberg & Boozer 2003; Boozer & Nührenberg 2006; Park,
Boozer & Glasser 2007; Park & Logan 2017), as well as nonlinear approaches (Izzo &
Joseph 2008; Hudson et al. 2012; Orain et al. 2014; Suzuki 2017). For detailed discussions
see Turnbull (2012); Turnbull et al. (2013) and Reiman et al. (2015) and references therein.

It has been argued (Turnbull 2012) that linear and perturbative methods are
insufficient to completely model the effect of symmetry-breaking magnetic field
perturbations, which induces both an ideal and a non-ideal response in the plasma.
Even in a linear ideal magnetohydrodynamic (MHD) model, these perturbations
can change the shape of the plasma and, consequently, can qualitatively modify
MHD stability boundaries (Hegna 2014). Perturbative methods, particularly those
which seek to identify nearby ‘perturbed equilibria’, do not explicitly account
for dynamical accessibility so there is no guarantee that these states will (or
even can) be reached by a dynamically evolving plasma (Turnbull 2012).

Presently, there exist few numerical tools capable of modelling – at least, in principle
– both nonlinear and non-ideal effects due to externally applied, symmetry-breaking
magnetic field perturbations in realistic toroidal geometries. Among these are
extended-MHD codes such as M3D-C1 (Jardin et al. 2012), NIMROD (Sovinec et al.
2003) and JOREK (Hoelzl et al. 2021), and MHD equilibrium codes such as the Stepped
Pressure Equilibrium Code (SPEC) (Hudson et al. 2012), HINT2 (Suzuki et al. 2006),
PIES (Reiman & Greenside 1986) and SIESTA (Hirshman, Sanchez & Cook 2011),
which do not assume continuously nested flux surfaces. Unlike extended-MHD codes,
most MHD equilibrium codes do not explicitly calculate the time-dependent dynamics
associated with the evolution of the plasma (a notable exception being HINT2 which
obtains equilibria as the long-time solution of a reduced time-evolution model Park et al.
1986). Instead, a time-independent state, consistent with the physics assumptions of each
code’s underlying reduced model, is returned. In contrast to extended-MHD codes, this
means that most equilibrium codes are not guaranteed to produce a solution that closely
approximates the actual plasma evolution, i.e. a dynamically accessible state. However,
when they do, non-ideal equilibrium codes can be particularly useful since they are much
faster and less computationally expensive than extended-MHD codes.

In this work we are interested in examining the conditions under which SPEC
(Hudson et al. 2012) recovers the same nonlinear, non-ideal plasma response to externally
applied symmetry-breaking magnetic field perturbations as an extended-MHD model.
This is determined by comparing SPEC solutions with nonlinear simulations with the
extended-MHD code, M3D-C1. SPEC is based on the Multi-Region Relaxed MHD
(MRxMHD) physics model (Hole, Hudson & Dewar 2007) and involves partitioning the
plasma into a finite number of volumes (denoted by Nvol) across which the pressure is
constant so that the magnetic field is force free in each volume. Importantly, while SPEC
has several modes of operation, only one of these is based on the MRxMHD model;
namely, where the magnetic helicity in each volume is held fixed during the solution
procedure. In Cartesian slab geometry it has been shown that, when Nvol is very large,
SPEC produces magnetic islands that are consistent with saturated tearing mode islands
obtained from solving a time-dependent resistive MHD model (Loizu et al. 2020). Also,
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in Cartesian slab geometry, it was recently shown (Huang et al. 2021) that SPEC can
recover the expected response of the Hahm–Kulsrud forced reconnection problem (Hahm
& Kulsrud 1985) in the limit Nvol � 1.

For actual and experimentally relevant use cases, however, SPEC calculations are
performed with only a small number of volumes. For example, a recent application of
SPEC to model current crashes in the Wendelstein 7-X stellarator used five volumes
(Aleynikova et al. 2021). In part, this is due to present limitations in code performance
(with respect to both speed and convergence) in realistic geometries. More generally,
however, since the ideal MHD model is well established and there exist robust and efficient
ideal MHD equilibrium solvers, e.g. VMEC (Hirshman & Whitson 1983), the utility of
MRxMHD is not in the Nvol � 1 limit, but rather when Nvol is relatively small. The
veracity of the underlying physics model in this regime remains largely untested and,
therefore, motivates this work.

An important consideration when applying the MRxMHD model is deciding how to
choose Nvol. In the MRxMHD model, KAM theory (Kolmogorov 1954; Möser 1962;
Arnold 1963) is invoked to justify the existence of the interfaces that separate adjacent
plasma volumes, in the absence of axisymmetry. This, in turn, constrains but does not
necessarily specify Nvol, leaving some freedom to choose Nvol, particularly in the small
volume and/or weakly non-axisymmetric limit. As far as we are aware, there is currently
no standardised approach to selecting Nvol in these cases. In § 3 we discuss in greater detail
some considerations that affect the choice of Nvol for this work. We find that the normalised
toroidal flux in the volume containing the resonant surface of interest determines the key
physics properties of interest in the SPEC solution (e.g. magnetic island width). Thus, for
the purposes of the present study we focus on the dependence of solutions on toroidal flux
which, together with Nvol, is one of several input parameters that need to be specified. As
a consequence, for tractability we consider a single choice of Nvol = 5 since it is the same
as that which was recently used by Aleynikova et al. (2021).

Our paper is subsequently organised as follows. In § 2 we present the equilibrium
profiles used for this study and characterise the linear stability properties. In § 3 we discuss
discretisation of the equilibrium profiles and the SPEC workflow for experimentally
relevant use cases. In § 4 we describe how externally applied symmetry-breaking magnetic
field perturbations are represented in SPEC and M3D-C1. In § 5 we present parameter
scans and compare SPEC solutions with M3D-C1 simulations of the nonlinear, non-ideal
plasma response to (m = 2, n = 1) RMP fields. Finally, discussion and conclusions are
presented in § 6.

2. Characterisation of equilibrium properties

In this work we consider a circular cross-section tokamak that is modelled by a periodic
cylinder with radius a = 1 m and axial period 2πR0 where R0 = 10 m is the analogue of
the major radius in toroidal geometry. This approximation is valid in the large aspect ratio
limit and has the advantage of eliminating poloidal mode coupling. As will be seen in § 4,
the latter allows us to prescribe an RMP field with a single poloidal and toroidal mode
number (m and n, respectively) in the M3D-C1 model. The equilibrium safety factor and
pressure profiles are given by

q = q0

[
1 + x2

(
qa

q0
− 1

)]
, (2.1)

p = p0
(
1 − x2)2

, (2.2)
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FIGURE 1. Equilibrium safety factor (q, solid) and pressure (p, dashed) profiles. Here,
q0 = 1.3, qa = 4 and β = 0.82 %. Mode rational surfaces, located at xs =
{0.11, 0.19, 0.27, 0.51} and corresponding to q(xs) = {4/3, 7/5, 3/2, 2}, respectively, are
indicated by vertical dotted lines.

respectively, where x = r/a is a normalised radial coordinate, q0 = 1.3 and p0 = 104 Pa
are the values of q and p at the magnetic axis and qa = 4 is the value of q at the plasma
edge. This corresponds to a volume-averaged plasma β of 0.82 %. The equilibrium q and
p profiles are shown in figure 1.

2.1. Tearing and interchange stability
To determine stability with respect to ideal interchange modes, we evaluate Suydam’s
criterion (Hosking & Dewar 2016) at several resonant surfaces of interest. Recall that

xB2
z (x)

[
q′(x)
q(x)

]2

+ 8μ0p′(x) > 0, (2.3)

is required for stability, where ′ denotes differentiation with respect to x, Bz is
the axial component of the equilibrium magnetic field and μ0 is the vacuum
permeability. Specifically, we consider the (m = 2, n = 1), (m = 3, n = 2), (m =
4, n = 3), (m = 6, n = 4) and (m = 7, n = 5) modes which are associated with the
following set of low-order mode rational surfaces; q(xs) = {2, 1.5, 1.33, 1.4} where xs =
{0.51, 0.27, 0.11, 0.19}, respectively. The mode rational surfaces are shown in figure 1. Of
these, only the (m = 4, n = 3) mode is interchange unstable.

Next, linear stability with respect to tearing modes is determined by evaluating the usual
Δ′ parameter at the resonant surfaces of interest, xs, which are such that q(xs) = m/n for a
particular (m, n) mode. Recall that (Furth, Rutherford & Selberg 1973),

Δ′ ≡
lim

x→x+
s

ψ ′(x)− lim
x→x−

s

ψ ′(x)

aψ(xs)
< 0, (2.4)

is required for stability, where ψ(x) is a solution of the Euler–Lagrange equation that
follows from the Energy Principle (e.g. see (1) from Furth et al. 1973). The requisite
boundary conditions are ψ(0) = 0 if m �= ±1, ψ ′(0) = 0 if m = ±1 and ψ(1) = 0 with
ψ (xs) = ψ0 for some ψ0 = const. > 0. Applied to the modes of interest, we find that the
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FIGURE 2. Non-ideal linear growth rates, γ(m,n), computed using M3D-C1 for toroidal mode
numbers 1 ≤ n ≤ 5. In each case, the poloidal mode number, m, corresponds to that of the
fastest growing linear instability. The dependence of γ(m,n) on resistivity, η, indicates these are
resistive modes. In particular, γ(2,1) ∼ η0.684, γ(3,2) ∼ η0.603, γ(4,3) ∼ η0.344, γ(6,4) ∼ η0.653 and
γ(7,5) ∼ η0.538.

(m = 2, n = 1), (m = 3, n = 2), (m = 6, n = 4) and (m = 7, n = 5) modes are tearing
unstable since Δ′ > 0 in all cases.

2.2. Non-ideal linear growth rates
To compute linear growth rates and verify the characterisation given in § 2.1, we use the
linear version of M3D-C1. Specifically, we calculate the non-ideal (linear) growth rates,
γ(m,n), for 1 ≤ n ≤ 5. For each n, the corresponding m is that associated with the fastest
growing linear instability. We perform a series of parameter scans with varying resistivity,
η, to determine the scaling of γ(m,n) with respect to resistivity, which allows us to classify
the dominant linear instabilities.

The growth rates for modes with 1 ≤ n ≤ 5 are shown in figure 2 and calculated for
η ∈ [10−8, 10−6] and ν = 10−7, where ν is the viscosity. The parameter range considered
is equivalent to η ∈ [0.0274, 2.741] �m in SI units, S ∈ [7.96 × 105, 7.96 × 107] and
Pm ∈ [0.1, 10], where the Lundquist number, S, is the ratio of the resistive and Alfvénic
time scales and Pm ≡ ν/η is the magnetic Prandtl number. For each n considered, the
poloidal mode number of the most unstable mode coincides with those considered in § 2.1.
This is as expected since the (m = 2, n = 1), (m = 3, n = 2), (m = 4, n = 3), (m = 6,
n = 4) and (m = 7, n = 5) modes are associated with mode rational surfaces of relatively
low order. We observe that the growth rate for each of these modes scales linearly on
a log–log plot, indicating that they are all of resistive character. In particular, we find
γ(2,1) ∼ η0.684, γ(3,2) ∼ η0.603, γ(4,3) ∼ η0.344, γ(6,4) ∼ η0.653 and γ(7,5) ∼ η0.538. Of these,
γ(2,1), γ(3,2) and γ(6,4) agree well with the theoretical scaling for tearing modes (Wesson
& Campbell 2011), which goes like γ ∝ η3/5. Similarly, γ(7,5) agrees qualitatively. This is
consistent with the classification of these instabilities as tearing modes. By contrast, the
dependency of γ(4,3) on η is much weaker.

In § 5, we will consider and compare the nonlinear plasma responses to externally
applied (m = 2, n = 1) RMP fields as calculated by M3D-C1 and SPEC, for the
equilibrium specified by (2.1) and (2.2). Whereas the preceding analysis shows that this
equilibrium is linearly unstable, figure 3 also indicates that γ(m,n) depends strongly on
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FIGURE 3. Non-ideal linear growth rates, γ(m,n), computed using M3D-C1 for ν = 10−7

(circles) and ν = 10−6 (stars) and three different values of resistivity, η.

the viscosity, ν. This is as expected and, based on figure 3, we find that increasing the
viscosity by an order of magnitude reduces the growth rate by approximately half an
order of magnitude. For the nonlinear studies, we use Pm = 1. We will find that growth
of the (m = 4, n = 3) interchange mode is largely damped out in the nonlinear M3D-C1

simulations. In addition, the resistive instabilities are sufficiently slow growing that there is
adequate separation between growth of these modes and saturation of the (m = 2, n = 1)
magnetic island associated with the applied RMP.

3. Profile discretisation and SPEC workflow

With the (smooth) equilibrium profiles characterised, we now consider the discretisation
of these profiles and preparation of input profiles for SPEC. In MRxMHD (Hudson et al.
2012), the plasma is partitioned into Nvol concentrically nested volumes. Each volume is
separated by an interface across which a discontinuity in the pressure can be supported.
Within each ith volume, the pressure (pi) is constant. Thus, the magnetic field in each
volume (Bi) is assumed to be force free, satisfying

∇ × Bi = μiBi. (3.1)

Here, μi is a constant and can be related to the parallel current density by taking the dot
product of (3.1) with Bi. In general, pi and μi will differ between volumes. Each interface
is required to satisfy a jump condition (Hole et al. 2007),

[[
B2

i

2μ0
+ pi

]]
= 0, (3.2)

which ensures that the total pressure (magnetic plus thermal) is continuous. Depending on
the mode of operation, specific combinations of input parameters are held fixed while the
geometry of the interfaces is varied at each iteration to satisfy (3.2).

As alluded to in § 1, SPEC currently has at least three modes of operation. In all cases,
the pressure is approximated by a piecewise constant profile and held fixed. In each
volume, the toroidal flux (Ψt,i), poloidal flux (Ψp,i), volume-averaged magnetic helicity
(Ki) and μi also need to be specified. Depending on the mode of operation, particular
combinations of these parameters are held fixed. Details of the calculation of these
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(a) (b)

FIGURE 4. The original (green, dashed) and discretised (a) q-profiles and (b) pressure profiles
for Ψt,i=3 = 0.3 (blue), 0.4 (purple) and 0.5 (pink), where Ψt,i=3 is the normalised toroidal flux
in the volume containing the q = 2 resonance (a, horizontal dashed line). The original profiles
are given by (2.1) and (2.2), respectively. The discretised profiles are obtained from SPEC by
running in ‘fixed iota’ mode and enforcing axisymmetry. See figure 5 for a summary of the
procedure.

quantities in cylindrical geometry may be found in Hole, Hudson & Dewar (2006). In
addition, the value of the rotational transform, ι ≡ 1/q, on either side of each interface
may be required.

In the so-called ‘fixed helicity’ mode, the toroidal flux and helicity in each volume are
held fixed. This mode is the one that corresponds to the assumptions of the MRxMHD
model and, therefore, in this work we consider only solutions that are calculated using the
fixed helicity method (Hudson et al. 2012).

Although an essential feature of the MRxMHD model, the number of volumes Nvol is
usually a free parameter in practice. In the MRxMHD model, the interfaces are associated
with invariant KAM surfaces (Hole et al. 2006). Therefore, in the absence of axisymmetry,
the rotational transform on each interface is required to satisfy specific properties
(McGann et al. 2010), that effectively depend on the strength of the non-axisymmetry. This
constrains the values of the rotational transform for which interfaces may be supported
and effectively fixes the discretisation of the pressure profile. If, however, the interface
geometry is independent of the toroidal-like angle, φ, then there exists a continuous
symmetry. As a consequence, the preceding restrictions do not apply and we are also free
to prescribe the initial positions of the interfaces.

Despite – or, perhaps as a consequence of – the flexibility of SPEC to compute
solutions to (3.1) and (3.2) subject to different constraints, there does not currently exist
a standardised or self-consistent approach for transforming smooth profiles (e.g. obtained
from experimental reconstruction) into the piecewise constant representation required by
SPEC. Thus, in this work we propose and describe one approach that is based on the
experimentally motivated use cases of SPEC.

We consider a piecewise constant pressure profile obtained by discretising (2.2) using
5 volumes. Specifically, we take the value of the pressure in each volume to be the
volume-averaged pressure calculated from (2.2). In this case, we have chosen Nvol = 5 to
ensure that the original q-profile is well approximated, while still keeping the total number
of volumes relatively small. The original and discretised pressure profiles and q-profiles
are given in figure 4.

The workflow used to compute SPEC solutions with fixed helicity is summarised in
figure 5. Our aim is to consider experimentally relevant use cases, so our procedure starts
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FIGURE 5. Summary of the workflow used to calculate a nonlinear, non-ideal response
to externally applied, symmetry-breaking magnetic field perturbations using SPEC. The
equilibrium profiles are used to calculate the toroidal and poloidal fluxes in each volume, Ψt,i
and Ψp,i. The parallel current density is discretised to obtain μi. SPEC’s ‘fixed iota’ mode is
then used to obtain the volume-averaged helicity, Ki, in each volume. In this first calculation,
axisymmetry is enforced by setting the toroidal Fourier resolution parameter equal to zero.
The SPEC boundary is then deformed to model the effect of an externally applied magnetic
field perturbation. Finally, with Ki, μi, Ψt,i and Ψp,i as inputs in each volume, SPEC’s fixed
helicity mode is used to calculate a nonlinear, non-ideal response to the applied magnetic field
perturbation.

with smooth initial profiles for q and p. In this work, q and p are given by (2.1) and
(2.2). However, these could readily be substituted for profiles obtained from experimental
reconstruction, e.g. EFIT (Lao et al. 1985). From the smooth profiles, we compute the
toroidal and poloidal fluxes in each volume, Ψt,i and Ψp,i. The parallel current density, J‖,
is discretised using the same approach as is taken for p, to determine μi in each volume.

The final radial position of each interface is determined by the toroidal flux enclosed
in each volume. As an initial guess, we choose Ψt,i so that half of the toroidal flux in
the volume containing the q = 2 rational surface (which is the mode rational surface of
interest in this work) is enclosed by that surface. We then distribute Ψt,i equally in the
remaining volumes.

Next, we run SPEC in ‘fixed iota’ mode, where ι on either side of each interface
is held fixed while μi and Ψp,i are varied. As an output, we obtain values for Ki, the
volume-averaged helicity in each volume. To preserve a continuous rotational transform
profile, ι on either side of each interface is equal and taken from the corresponding value
of q(xi) where xi is the radial position of each jump in the discretised pressure profile. In
this first calculation, axisymmetry is enforced by setting the toroidal Fourier resolution
parameter, ntor, equal to zero.

With values for Ki, μi, Ψt,i and Ψp,i in hand, an externally applied, symmetry-breaking
magnetic field perturbation is modelled in SPEC by deforming the plasma boundary. As
SPEC uses a doubly periodic Fourier representation for the poloidal and toroidal angles,
this is achieved by modifying the amplitude of the Fourier component of the boundary
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representation corresponding to the particular (m, n) mode of the external perturbation.
SPEC is then run in fixed helicity mode. Non-axisymmetric solutions are admitted by
choosing the poloidal and toroidal Fourier resolution parameters so that mpol > 0 and
ntor > 0, respectively. The resultant solution corresponds to the nonlinear, non-ideal
response associated with the prescribed externally applied, symmetry-breaking magnetic
field perturbation.

4. The RMP models and coordinate systems

Before proceeding to a comparison of results, in this section we describe the
methods and coordinate systems that are used to model externally applied magnetic field
perturbations in SPEC and M3D-C1.

4.1. Coordinate systems
For the periodic, cylindrical geometry considered in this work, quantities in SPEC and
M3D-C1 can be described using the same Cartesian coordinate system, with orthonormal
basis vectors {î, ĵ, k̂}. A position vector, r, can be decomposed as

rSPEC = r cos θ î + r sin θ ĵ + ζk, (4.1)

rM3D-C1 = r cos θ î + r sin θ ĵ + z/R0k, (4.2)

in SPEC and M3D-C1, respectively. From (4.1) and (4.2), we can define cylindrical
coordinates, {r, θ, ζ } and {r, θ, z}, for SPEC and M3D-C1, respectively. Since ζ and z
are analogues of the toroidal angle, φ, both ζ and z/R0 must be 2π-periodic and such that
ζ = z/R0. To distinguish the latter from the cylindrical coordinates used by M3D-C1 in
a toroidal geometry and which are usually denoted {R, φ,Z}, we refer to {r, θ, z} as the
‘local’ cylindrical coordinates.

4.2. Boundary representation in SPEC
For this work, we use the fixed-boundary version of SPEC. In this case, an externally
applied magnetic field perturbation is modelled by modifying the shape of the plasma
boundary, which is a required input parameter. For a periodic cylinder, the boundary shape
is specified by rb(θ, ζ ) cos θ î + rb(θ, ζ ) sin θ ĵ + ζ k̂. The scalar function rb(θ, ζ ) is given
by the following stellarator symmetric Fourier representation (Hudson et al. 2012):

rb(θ, ζ ) =
∑

i

ri cos (miθ − niζ ) , (4.3)

where {ri} are the Fourier coefficients and i indexes every unique ordered pair {mi, ni} for
mi ∈ [0,mpol] and ni ∈ [0,ntor]. Therefore, for an externally applied (m, n) magnetic
field perturbation, the perturbed boundary in SPEC is given by

rb,RMP(θ, ζ ) = a +�ra cos (mθ − nζ ) , (4.4)

where �ra denotes the magnitude of the non-axisymmetric perturbation. Clearly, when
�ra → 0, (4.4) reduces to the circular cross-section configuration with minor radius
a = 1 m of the axisymmetric equilibrium given in § 2. In this work, we consider only
the case where a single (m, n) perturbation field is applied for 0.01 mm ≤ �ra < 2 mm.
However, it is straightforward to generalise to an externally applied field with multiple
harmonics.
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4.3. Representation of RMP fields in M3D-C1

In M3D-C1, several different approaches for modelling RMP and error fields have been
implemented and are regularly used to study the plasma response (Ferraro 2012; Ferraro
et al. 2013; Reiman et al. 2015; Wingen et al. 2015; Canal et al. 2017; Lyons et al. 2017).
Moreover, the recent extension of M3D-C1 to stellarator geometry (Zhou et al. 2021)
affords additional capability to self-consistently model plasma evolution in the presence
of strong non-axisymmetric external fields.

For this work, the externally applied magnetic field perturbation is modelled in M3D-C1

by a vacuum field, BRMP, so that the total magnetic field, B, is given by B = Bplasma +
BRMP. From this definition, BRMP satisfies,

∇ × BRMP = 0, (4.5)

∇ · BRMP = 0. (4.6)

Importantly, in cylindrical geometry, the absence of poloidal mode coupling makes it
possible to impose an RMP field associated with a single poloidal and toroidal mode
number.

Using the local cylindrical coordinates {r, θ, z} we can expand the differential operators
in (4.5) and (4.6) according to their usual definitions. From (4.5) and (4.6) it follows that
BRMP = ∇M(r, θ, z), where M(r, θ, z) is a scalar function satisfying

∇2M(r, θ, z) = 0. (4.7)

Assuming boundedness at r = 0 and 2π-periodic boundary conditions in θ and z, the
general solution of (4.7) is given by

M(r, θ, z) = δBrα
−1Im (nr/R0) e−imθ einz/R0, (4.8)

where Im (x) is a modified Bessel function of the first kind and α and δBr are some
constants. The exponential terms in (4.8) correspond to a ‘phase factor’ which we denote
by Φ(θ, z) for convenience. Thus, in cylindrical {r, θ, z}-coordinates, the components of
BRMP are given by

Br,RMP(r, θ, z) = δBrn
2R0

[
Im−1

(
nr
R0

)
+ Im+1

(
nr
R0

)]
Φ(θ, z)
α

, (4.9)

Bθ,RMP(r, θ, z) = − iδBrm
r

Im

(
nr
R0

)
Φ(θ, z)
α

, (4.10)

Bz,RMP(r, θ, z) = iδBrnIm

(
nr
R0

)
Φ(θ, z)
α

, (4.11)

where α is chosen so that Br,RMP(r = 1, θ, z) = δBrΦ(θ, z) yielding

α = n
2R0

[
Im−1

(
n
R0

)
+ Im+1

(
n
R0

)]
. (4.12)

4.4. Relating the M3D-C1 and SPEC representations of RMP fields
Whereas an externally applied magnetic field perturbation in SPEC is modelled by
specifying the amplitude of a deformation of the plasma boundary, �ra, in M3D-C1 the
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amplitude of the field at the plasma boundary, δBr, is prescribed. In order to compare the
M3D-C1 and SPEC parameters, we now derive a relationship between �ra and δBr.

Recall that the total magnetic field in M3D-C1 is given by B = Bplasma + BRMP, i.e. the
sum of the (nonlinear) plasma response and the vacuum RMP field. In this work, we
consider small-amplitude external magnetic field perturbations, corresponding to a ∼ 1 %
perturbation of the magnetic field at the plasma edge. Since δBr  1, it suffices to use
linear theory to relate δBr to �ra.

Let r(r, θ, ζ ) = r0(r, θ, ζ )+ ξ(r, θ, ζ ) denote a position vector in SPEC, where
ξ(r, θ, ζ ) is a displacement vector that vanishes when �ra = 0. In the {r̂, θ̂ , ζ̂ } basis and
using (4.4), we can write

r0(r, θ, ζ ) = ar̂ + θ θ̂ + ζ ζ̂ , (4.13)

ξ(r, θ, ζ ) = �ra cos (mθ − nζ ) r̂. (4.14)

Under a linear approximation, the plasma response in M3D-C1 is given by B = B0 +
BRMP, where B0 is the equilibrium magnetic field described in § 2. Consequently, we can
relate BRMP to ξ using,

BRMP = ∇ × (ξ × B0) , (4.15)

which follows from the linearised ideal MHD equations.
Using the fact that B0(r) = Bθ,0(r)θ̂ + Bz,0(r)ẑ, we expand (4.15) in the {r̂, θ̂ , ζ̂ } basis

assuming that ξ(r, θ, z) is given by (4.14) with ζ = z/R0. The radial component, r̂, yields

Bθ,0(r)
r

∂ξr(r, θ, z)
∂θ

+ Bz,0(r)
∂ξr(r, θ, z)

∂z
= Br,RMP(r, θ, z). (4.16)

Using (4.14) and (4.9) we find,

�ra

[
mBθ,0(r)

r
− nBz,0(r)

R0

]
sin (mθ − nz/R0) = Im[Br,RMP(r, θ, z)]. (4.17)

Evaluating at the boundary, r = a, yields

�ra

[
mBθ,0(r = a)

a
− nBz,0(r = a)

R0

]
= − δBrn

2R0α

[
Im−1

(
na
R0

)
+ Im+1

(
na
R0

)]
. (4.18)

Using the fact that q = rBz,0/R0Bθ,0, it follows that

δBr = 2�ra
αR0Bθ,0(r = a)

a

(
qa − m

n

) [
Im−1

(
na
R0

)
+ Im+1

(
na
R0

)]−1

, (4.19)

where qa is the edge safety factor. By assumption, we require that m/n < qa so the
right-hand side of (4.19) is always positive.

When a = 1, as is the case considered throughout this work, (4.19) reduces to

δBr = �ranBθ,0(r = 1)
(

qa − m
n

)
, (4.20)

or equivalently

δBr = �ra
mBz,0(r = 1)

R0

(
n
m

− 1
qa

)
. (4.21)
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5. Comparing nonlinear responses to (2, 1) RMP fields

For this study, we focus on the plasma response to an externally applied perturbation
with a single helicity, namely (m = 2, n = 1). In the nonlinear calculations that follow,
all modes are included in the plasma response (up to the limit of numerical resolution).
In SPEC, we consider poloidal and toroidal Fourier resolution up to mpol = 12 and
ntor = 6, respectively, which we find sufficient to resolve islands that may arise due to
resonances other than q = 2. And, as M3D-C1 does not use a spectral representation in the
nonlinear calculations, all modes are included in the calculation of the plasma response.
In this study, we used 24 toroidal planes for the nonlinear M3D-C1 simulations.

Since we use the fixed helicity option of SPEC (see figure 5), in this study, the physics of
the nonlinear plasma response calculated by SPEC is governed by the (static) MRxMHD
model. Therefore, solutions correspond to plasma states that minimise the energy, subject
to conservation of the volume-averaged helicity in each volume, i.e. volume-localised
Taylor relaxation (Hole et al. 2006; Dewar et al. 2015).

The second key assumption of the MRxMHD model is the existence and persistence of
the ideal current sheet interfaces, that partition the plasma into volumes. One consequence
of MRxMHD interfaces is that plasma in different volumes are prevented from mixing
since B · n̂ = 0 is enforced on each interface, where n̂ is the unit normal vector.
Consequently, the MRxMHD interfaces frustrate radial transport of plasma. Thus, good
agreement between the SPEC and M3D-C1 solutions implies that the RMP does not lead
to large-scale transport of plasma, e.g. from the core to the plasma edge. Finally, another
consequence of the MRxMHD model is that SPEC solutions do not include flows, in
either the initial profiles or nonlinear solution. Therefore, good agreement between SPEC
and M3D-C1 implies that flows do not have a significant impact on the nonlinear plasma
RMP response.

In subsequent sections (§§ 5.1–5.3) we will find that the nonlinear plasma response is
primarily dominated by formation of an (m = 2, n = 1) island that is associated with the
helicity of the applied RMP. As we will see, for low values of the RMP amplitude (δBr ≤
0.5 mT) there are conditions under which SPEC and M3D-C1 show close agreement for
the nonlinear plasma response. When this is the case, MRxMHD theory implies that it is
the 3-D state associated with saturation of the (m = 2, n = 1) mode that is energetically
favourable, i.e. which minimises the energy, even though there may be other modes present
(e.g. as suggested by the linear stability analysis of the smooth equilibrium cf. § 2).

Note that if an RMP field with a different helicity were applied, e.g. (m = 3,
n = 2) which is resonant at xs = 0.27, one would expect a different 3-D state to be
the energy-minimising state. Finally, in tokamak or stellarator geometry where there is
poloidal and toroidal Fourier mode coupling, it is plausible that modes associated with
other resonant surfaces may contribute more significantly to the minimum energy 3-D
solution because of mode coupling effects.

5.1. Nonlinear RMP response in M3D-C1

Starting from the initial axisymmetric equilibrium given by (2.1) and (2.2), we use
M3D-C1 to simulate the full, nonlinear plasma evolution in response to an (m = 2, n = 1)
RMP field, which is applied from t = 0 and specified by (4.9)–(4.11). Note that, while
we consider static equilibria as an initial condition, M3D-C1 allows for flows to develop
self-consistently in the course of the plasma evolution. In all cases, we choose isotropic
values of resistivity and viscosity with η = 2.741�m such that Pm ≡ ν/η = 1 and S =
7.96 × 106, where Pm and S are the magnetic Prandtl number and Lundquist number,
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respectively. We use a model for the heat flux density, q, that is given by

q = −κt∇T − κ‖
BB · ∇T

B2
, (5.1)

where κ‖/κt = 106 is the ratio of the parallel to perpendicular heat conductivity
coefficients, T is the temperature and no heat source is applied.

In §§ 2.1 and 2.2 we saw that the equilibrium is linearly unstable, including to an
(m = 2, n = 1) tearing mode and (m = 4, n = 3) interchange mode. To determine the
potential impact of the unstable modes on the nonlinear plasma response, we first
performed a preliminary nonlinear study using M3D-C1 without an RMP field applied. We
find that the unstable resistive modes are slow growing, which ensures sufficient separation
between growth and saturation of the (m = 2, n = 1) magnetic island that is driven by
the RMP, and other instabilities of the equilibrium. In particular, the (m = 2, n = 1)
tearing mode is very slow growing, which is consistent with the linear studies described
in § 2.2. As indicated in § 2.2, the linear growth rates depend strongly on ν and, for
the dissipation and transport parameters used in the nonlinear studies (which represent
realistic experimental values), we find that the (m = 4, n = 3) interchange mode is largely
damped out. Therefore, for the parameters considered in this study, the plasma evolution in
the presence of the RMP is primarily due to the nonlinear plasma response to the externally
applied field.

We consider RMP amplitudes in the range 0.1 mT ≤ δBr ≤ 2 mT and examine the
plasma properties at t = 5000τA, which we found was sufficient for the plasma response
to reach a quasi-steady state. This was determined by examining the growth rate of the
kinetic energy. Poincaré sections taken at t = 5000τA for each δBr considered are shown
in figure 6 as a function of poloidal angle and normalised poloidal flux. As expected,
when the amplitude of the applied RMP is small (0.1 mT ≤ δBr ≤ 0.5 mT), we observe
saturation of an (m = 2, n = 1) magnetic island at the q = 2 surface, that is driven by the
externally applied magnetic field.

For intermediate values, where 0.6 mT ≤ δBr ≤ 0.9 mT, we see the formation of
secondary island chains about the O-points of the primary (m = 2, n = 1) magnetic
island chain. For example, for δBr = 0.7 mT, we see a secondary m = 9 island chain.
As the perturbation amplitude increases and the secondary islands grow larger, nonlinear
interactions begin to drive significant chaos, leading to break up of the separatrix
associated with the primary (m = 2, n = 1) island. For sufficiently large perturbation
amplitudes (δBr ≥ 1 mT), the primary (m = 2, n = 1) island becomes embedded in,
and eventually consumed by, a sea of chaos. In figure 7, we show a selection of
Poincaré sections in r − z coordinates which illustrate the different qualitative features
associated with the nonlinear plasma response for varying δBr. Namely, (i) a saturated
(m = 2, n = 1)magnetic island (δBr = 0.1 mT), (ii) formation of secondary island chains
(δBr = 0.7 mT), (iii) break up of the separatrix associated with the primary (m = 2,
n = 1) island (δBr = 1 mT) and, finally, (iv) near-complete stochasticisation of the plasma
core (δBr = 1.5 mT).

The corresponding pressure profiles taken at a cut along z = 0 when t = 5000τA are
shown in figure 8. Overlaid for comparison are the discretised pressure profiles used in
the SPEC calculations, with Ψt,i=3 = 0.3, 0.4 and 0.5. As expected, for 0.1mT ≤ δBr ≤
1.5 mT we find significant flattening of the pressure profile in regions coinciding with the
(m = 2, n = 1) magnetic island. Nonetheless, in all these cases we observe the presence
of pressure gradients in regions coinciding with the (m = 2, n = 1) island and magnetic
field line chaos. This is attributable to the fact that the M3D-C1 model accommodates finite
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FIGURE 6. Poincaré sections of the plasma response as computed by M3D-C1 and evaluated at
t = 5000τA for 0.1 mT ≤ δBr ≤ 2 mT. Shown here as a function of normalised poloidal flux,
ψp, and poloidal angle, θ .

perpendicular heat conductivity, where κ‖/κt � 1. On the other hand, in the MRxMHD
model there is assumed to be no perpendicular heat diffusion. As a consequence, pressure
gradients cannot be supported across magnetic islands or in regions of magnetic field line
chaos. It is to be expected that the SPEC and M3D-C1 results will diverge when the effect
of finite perpendicular heat conductivity becomes significant, although the differences
may diminish for κ‖/κt significantly larger than the value considered in this work (Hudson
2009).

5.2. Properties of the RMP response calculated with SPEC
As in § 5.1, we start from the initial axisymmetric equilibrium given by (2.1) and (2.2)
and, this time, use the procedure described in § 3 to calculate MRxMHD solutions to an
(m = 2, n = 1) perturbation of the plasma boundary, with amplitude �ra. Specifically,
we consider 0.01 mm ≤ �ra < 20 mm which, using (4.20), corresponds to 0.0053 mT ≤
δBr < 1 mT. As discussed in § 3, we considered a fixed number of volumes, Nvol = 5,
which is representative of practical use cases for the code, including in the context of
modelling experimental measurements.

A key parameter for SPEC calculations is the amount of normalised toroidal flux, Ψt,i,
in each ith volume. This parameter has two important consequences. Firstly, the flux in
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FIGURE 7. Poincaré sections of the plasma response as computed by M3D-C1 and evaluated at
t = 5000τA for δBr = 0.1, 0.7, 1, 1.5 mT. The pressure profiles shown in figure 8 correspond
to cuts taken along z = 0.

FIGURE 8. Pressure profiles at t = 5000τA as computed by M3D-C1 shown as a cut taken along
z = 0 for δBr = 0.1, 0.7, 1, 1.5 mT (solid lines). Also shown is the equilibrium pressure profile
(black line), given by (2.2). For comparison, the discretised pressure profiles used in the SPEC
calculations are represented by filled curves for Ψt,i=3 = 0.3 (red), 0.4 (green) and 0.5 (blue).
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each volume (which is held fixed during every SPEC solve) impacts the position of the
interfaces in real space. This controls the spatial locations at which the original equilibrium
profiles are discretised and, in turn, affects the fidelity of the discrete representation that
is used by SPEC. This is particularly true for cases where Nvol is relatively small, as is
considered presently.

As will be seen, the value of Ψt,i in the volume containing the resonant surface of
interest also has a strong effect on the properties of the magnetic islands that are computed
by SPEC. In particular, the island width depends strongly on Ψt,i in the volume of
interest, which is consistent with what has been observed previously in SPEC calculations
performed in a slab geometry (Loizu et al. 2015).

We also find that the relative position, with respect to Ψt,i, of the resonant surface of
interest within the volume affects the shape of the resultant islands. Specifically, where the
resonant surface is closer to one of the two bounding interfaces than the other (in terms
of enclosed toroidal flux), the islands become distorted and deviate from the physically
expected result. Therefore, for this study we took particular care to ensure that the
q = 2 resonant surface (which lies in the third volume) was centred with respect to Ψt,i=3.
This was achieved by carefully prescribing the value of ι = 1/q for each interface in the
‘fixed iota’ step of the calculation procedure (see figure 5) and amounts to a particular
discretisation of the q-profile. While possible in this work, the procedure adopted here may
not be universally applicable because, in the general 3-D setting, the MRxMHD model
requires interfaces to be associated only with surfaces that have sufficiently irrational ι,
in the sense of KAM theory. Since the existence of these KAM invariant tori is closely
related to the shape of the surfaces (McGann et al. 2010), the discretisation of the q-profile
in the most general case is effectively fixed by the geometry of the problem.

5.3. Comparing the nonlinear RMP response in SPEC
In figure 9 we compare the island widths obtained from M3D-C1 and SPEC for
Ψt,i=3 = 0.3, 0.4 and 0.5. The shaded regions correspond to the error bars associated
with measurement of the island widths, which are obtained from field line tracing and
examination of the Poincaré sections. As seen in figure 6, for δBr ≥ 0.6 mT we begin
to observe significant stochasticisation of the separatrix associated with the primary
(m = 2, n = 1) island chain in M3D-C1. In these cases, the island ‘widths’ shown in
figure 9 are calculated by considering the distance between the two nearest flux surfaces
bounding the islands and/or chaotic volume. Clearly, for δBr = 2 mT where we observe
complete stochasticisation of the plasma core (figure 6, bottom right), no such quantity
can be calculated.

As already alluded to, in figure 9 we find a strong dependence of the SPEC island
widths on Ψt,i=3, the normalised toroidal flux in the volume containing the q = 2 rational
surface. Increasing Ψt,i=3 in SPEC allows for larger islands as the strength of the RMP
increases. This is to be expected since the maximum possible width of the island is only
what can be allowed based on the toroidal flux initially enclosed in the volume. As can
be seen for Ψt,i=3 = 0.3 and 0.4, if Ψt,i is too small the size of the resultant islands is
artificially limited. For δBr ≤ 0.5 mT, we observe the best overall agreement across this
range of δBr when Ψt,i=3 = 0.5. In figure 10 we present an example of one such case (with
δBr ≈ 0.2mT) showing good agreement between the SPEC and M3D-C1 calculations of
the plasma response, which consists of a saturated (m = 2, n = 1) magnetic island at the
q = 2 resonant surface. For the SPEC calculation, Nvol = 5 and Ψt,i=3 = 0.5, while the
M3D-C1 solution is evaluated at t = 5000τA.

At very small RMP amplitudes, particularly below δBr ∼ 0.05 mT, there is insufficient
information in this study to conclusively determine which value of Ψt,i=3 gives the best
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FIGURE 9. Saturated widths of (m = 2, n = 1)magnetic islands due to externally applied (2, 1)
RMP fields, as calculated by M3D-C1 (pink), and SPEC for Ψt,i=3 = 0.3 (blue), Ψt,i=3 = 0.4
(orange) and Ψt,i=3 = 0.5 (purple), where Ψt,i=3 is the normalised toroidal flux enclosed in the
volume containing the q = 2 surface.

FIGURE 10. Poincaré sections of the plasma response as computed by SPEC (left,
δBr = 0.21 mT and Ψt,i=3 = 0.5) and M3D-C1 (right, δBr = 0.2 mT). The SPEC interfaces
are represented by black curves with Nvol = 5 and the M3D-C1 solution is evaluated at
t = 5000τA.

agreement between SPEC and M3D-C1. This underscores an overarching observation,
which is the sensitivity of the island properties as calculated by SPEC to the value of
Ψt,i=3. Because of the freedom that (to varying degrees) exists to prescribe Ψt,i, this effect
is especially important when SPEC is used to calculate quantitative island properties, such
as in recent applications of the code to stellarator optimisation (Landreman et al. 2021).

Particularly for Ψt,i=3 = 0.5, we observe that the SPEC island widths, w, scale
approximately as δB1/2

r for the values of δBr considered. According to theory (Wesson
& Campbell 2011), this implies that the resonant component of the total magnetic field at
the q = 2 surface, δB, remains linearly proportional to δBr, the driving field at the plasma
edge.

There are two conditions under which we expect island width to scale differently to
δB1/2

r . The first is when the island size is no longer small compared with equilibrium scale
lengths such as the minor radius. From figure 7, we see that significant islands can open
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up in the M3D-C1 solution, even for δBr = 0.1 mT. It is expected that the inclusion of
equilibrium flows would lead to a significant reduction of the island size. While M3D-C1

can accommodate states with equilibrium flows, work to extend the MRxMHD model to
incorporate flows is ongoing. Consequently, we were limited to the static version of the
MRxMHD model for this study and, therefore, do not consider the effect of equilibrium
flows.

The island width scaling can also be modified when the resonant component of the field
at the q = 2 surface is no longer linearly proportional to the driving field, i.e. no longer
satisfying δB ∝ δBr. This is indicative of significant nonlinearity in the plasma response,
such as shielding or amplification of the applied RMP field. At larger δBr, figure 9 suggests
that for Ψt,i=3 = 0.5 the response computed by SPEC remains largely linear insomuch that
δB ∝ δBr since w ∝ δB1/2

r . In contrast, solutions calculated by the M3D-C1 model, which
has been extensively validated and used to model the plasma response (both linear and
nonlinear) to externally applied 3-D fields in a range of applications (Ferraro et al. 2013;
Reiman et al. 2015; Wingen et al. 2015; Canal et al. 2017; Lyons et al. 2017), shows a
clear deviation from the square-root scaling at larger δBr. This suggests that nonlinear
mechanisms, leading to shielding and/or amplification of the applied RMP field, contribute
significantly to the plasma response. While beyond the scope of the present work, further
elucidating the physics properties of the plasma response predicted by the MRxMHD
model would be valuable as part of future work. In particular, examining the resonant
component of the magnetic field at the corresponding rational surface to identify linear
and nonlinear contributions to the plasma response.

5.4. Robustness and sensitivity of SPEC solutions
SPEC uses Newton methods to solve for both the Beltrami fields (3.1) and the interface
geometry (3.2) and, as a consequence, can become sensitive to small changes in parameters
such as �ra. We observed this to be the case for larger perturbation amplitudes, where
δBr > 0.5 mT. An example of this is illustrated in figure 11. As in figure 10, Nvol = 5
and Ψt,i=3 = 0.5 in the SPEC calculation, while the M3D-C1 solution is evaluated at
t = 5000τA. For δBr = 0.7 mT, the plasma response obtained from M3D-C1 is charact-
erised by a saturated (m = 2, n = 1) island at the q = 2 resonant surface and about which
there is a higher m secondary island chain. In contrast, for δBr = 0.683mT and δBr =
0.736 mT, which differ only slightly, we observe two qualitatively different solutions
for the plasma response as calculated by SPEC, both of which differ from the M3D-C1

response. In particular, for δBr = 0.736 mT we observe the appearance of a high m island
chain in an inner volume which does not contain the q = 2 resonant surface.

As a measure of robustness, we consider the residual force error which represents the net
force on each interface and, therefore, the difference between the numerical solution and
the equilibrium condition, (3.2). For δBr ≤ 0.5 mT, at fixed Fourier resolution, the force
error is O(10−12) or less and, for Ψt,i=3 = 0.5, we find good agreement between SPEC and
M3D-C1 (see figure 9). However, at the same Fourier resolution, for δBr ≥ 0.6 mT we
find that the force error becomes very sensitive to small changes in �ra. In this regime,
we observed that even when the force error was at most O(10−13), a change of �ra =
0.1 mm could be sufficient to yield solutions with qualitatively different characteristics,
e.g. a single (m = 2, n = 1) island chain vs. islands embedded in a chaotic sea.

One strategy for reducing sensitivity is to choose an initial guess that is close to the
desired solution. This may be achieved, for example, by starting from an axisymmetric
solution and constructing a sequence of solutions while incrementally increasing a
parameter of interest (such as �ra) until the desired value is reached. Such an approach
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FIGURE 11. Poincaré sections of the plasma response as computed by SPEC (left, δBr =
0.683 mT and Ψt,i=3 = 0.5) and (centre, δBr = 0.736 mT and Ψt,i=3 = 0.5) and M3D-C1 (right,
δBr = 0.7 mT). The SPEC interfaces are represented by black curves with Nvol = 5 and the
M3D-C1 solution is evaluated at t = 5000τA.

requires the calculation of a large number of solutions, which is time consuming and, thus,
not a universally viable strategy.

The observed decrease in robustness in the strongly driven RMP regime (δBr > 0.5 mT)
has important implications for applications including stellarator optimisation, where SPEC
may be used to calculate quantitative properties of the equilibrium magnetic field structure.
The ability to efficiently and reliably compute physics properties is essential for plasma
optimisation procedures. In practice, parameters such as Fourier resolution are commonly
specified in advance and held fixed during an optimisation run. On the other hand, �ra,
which is related to the boundary shape, can change significantly in a free-boundary
optimisation. We have seen, however, that the robustness of SPEC solutions can depend
sensitively on both parameters.

6. Discussion and conclusions

In this work, we examined the conditions under which SPEC, an equilibrium code based
on the MRxMHD model, can be used to model the nonlinear, non-ideal plasma response
to externally applied symmetry-breaking magnetic field perturbations. In particular,
we considered externally applied (m = 2, n = 1) RMP fields and compared solutions
obtained from SPEC to a series of nonlinear simulations performed using the initial-value,
extended-MHD code, M3D-C1. Specifically, we consider perturbation amplitudes in the
range 0.0053 mT ≤ δBr ≤ 1 mT.

First, we first developed a workflow for SPEC to compute the plasma response to a
prescribed RMP, under conditions that represent experimentally relevant use cases. We
described the discretisation of (smooth) equilibrium profiles, such as those which might
be obtained from reconstruction of experimental measurements, and preparation of the
input profiles required for SPEC.

We found that the normalised toroidal flux, Ψt,i, in the volume containing the resonant
surface of interest is a key input parameter and has a significant effect on the properties
of the magnetic islands that are computed by SPEC. For the work considered presently,
the q = 2 surface is located in the i = 3 volume. We observed a strong dependence of
the SPEC island width on Ψt,i=3. Importantly, when Ψt,i=3 was not large enough, we
found that the maximum width of the islands, as calculated by SPEC, were artificially
limited. Because there exists some freedom to choose Ψt,i and since it must be prescribed
a priori and remains fixed, this is particularly important when SPEC is used to calculate
quantitative island properties, such as in some recent stellarator optimisation applications.
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Starting from an axisymmetric initial equilibrium, we used M3D-C1 to simulate the
nonlinear plasma evolution in response to (m = 2, n = 1) RMP fields which were applied
from t = 0. We considered RMP amplitudes in the range 0.1 mT ≤ δBr ≤ 2 mT which,
for an 0.1 T radial magnetic field at the plasma edge, corresponds to an RMP field
strength of up to 2 %. For increasing RMP amplitudes, we observed four qualitatively
distinct plasma responses in M3D-C1; (i) a saturated (m = 2, n = 1) magnetic island,
(ii) formation of secondary island chains about the primary (m = 2, n = 1) island, (iii)
break up of the separatrix associated with the (m = 2, n = 1) island and, eventually, (iv)
complete stochasticisation of the plasma core.

Of the toroidal flux parameters considered in this study, we found that Ψt,i=3 = 0.5
yielded the best overall agreement across the range of relatively small RMP amplitudes,
where δBr ≤ 0.5 mT. Above δBr > 0.5 mT, we observed a clear divergence between SPEC
solutions and the nonlinear plasma response as determined by M3D-C1. The critical RMP
amplitude at which this occurred corresponds to the onset of secondary island chains
and break up of the separatrix associated with the primary (m = 2, n = 1) island. For
this parameter range, in M3D-C1 we observed significant pressure gradients in regions of
chaotic magnetic fields. This is due to finite parallel heat conductivity that is not captured
by SPEC. For δBr > 0.5 mT we also encountered a marked decrease in the robustness of
SPEC solutions, including finding that the qualitative features of SPEC solutions became
highly sensitive to small changes in the amplitude of the applied RMP.

Given the strong dependence of the SPEC solution properties on the flux in the volume
containing the resonant surface of interest, an obvious question that remains outstanding
is how to determine this quantity a priori. To do so requires additional theoretical
development and exploration of the underlying MRxMHD physics model, which is beyond
the scope of the present work. However, this is a critical question to address if SPEC is
to be used as predictive tool for modelling the plasma response to externally applied 3-D
fields.

In this work, we focussed on the role of the toroidal flux in determining the physics
properties of the SPEC solutions. The MRxMHD model justifies the existence of
interfaces by requiring the corresponding q value to be ‘sufficiently irrational’, in the sense
of KAM theory. Therefore, a related question is to understand the effect of the q-profile
discretisation on the solutions as computed by SPEC. Preliminary studies suggest that this
may introduce an additional source of sensitivity in SPEC, which motivates continued
theoretical development of the MRxMHD model to better understand the connection
between the underlying physics assumptions of MRxMHD and explicitly time-dependent
extended-MHD models.

The ability to compute both the nonlinear and non-ideal plasma response to externally
applied, symmetry-breaking magnetic field perturbations in realistic toroidal geometries is
critical to a range of tokamak and stellarator applications. The ability to do so efficiently
(in terms of both time and computational resources) opens up new opportunities in
applications such as plasma optimisation and design. Our work indicates that SPEC is
currently a viable tool for modelling the non-ideal plasma response to externally applied
3-D fields (including resonant magnetic perturbations and error fields) in the weakly
nonlinear regime. Specifically, this means for perturbation amplitudes below the threshold
for break up of the separatrix and onset of secondary magnetic island formation, and makes
reliably identifying this critical value an important task for future work. Finally, future
numerical improvements to SPEC, together with continued theoretical development of the
MRxMHD model, may extend the parameter regime in which SPEC is a viable tool for
modelling the plasma response to externally applied 3-D fields, by addressing outstanding
questions, including how to prescribe Ψt,i and Nvol.
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