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1. Introduction

In every tokamak, there is a maximum operational plasma 
density, above which the confinement is unstable and usually 
is ended with a major disruption [3–6]. Greenwald [7, 8] pro-
posed the most succesful empirical scaling law of the density 
limit by fitting the density limit dataset of multiple tokamaks,

n̄G(1020 m−3) =
Ip(MA)

πa2(m2)
, (1)

where n̄G  is the line-averaged plasma density, Ip is the plasma 
current and πa2 is the plasma cross section area. Understanding 
the physical mechanism of the density limit is a crucial task. 
The disruptions in density limit discharges can cause major 
damages to the plasma facing components of tokamaks. 
It is important to understand and exceed the density limit 
as the fusion power is proportional to the square of plasma 
density. Much efforts has been devoted to explaining this 
robust phenom enon. Many theories try to explain the density 

limit based on the accompanying phenomenology, such as 
MARFEs, diverter detachment, poloidal detachment, the H-L 
transition, current channel shrinkage and MHD instabilities  
[4, 9–13]. But none of them can explain the density limit quanti-
tatively and with the correct phenomenology. Experiments 
show that the density limit is associated with cooling of 
the edge plasma and radiation and the density limit can be 
exceeded by increasing the core plasma density [14–18]. In 
the previous semi-analytical work [1], we proposed a thermo-
resistive model that predicts the density limit quantitatively 
correct and with the right phenomenology. When the plasma 
density is increased toward the density limit, the current profile 
becomes more peaked, reducing local Ohmic heating inside 
the island, and the impurity radiation is increased. The island 
changes from being heated and suppressed to being cooled and 
stimulated. When the plasma density reaches the density limit, 
the island grows so large that it can lead to loss of confinement. 
In this work, we calculate the thermo-resistive tearing mode 
growth approaching the density limit with a 3D MHD code.

The rest of the paper is structure as follows. Section  2 
presents the numerical methods. Section  3 describes the 
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equilibrium used in simulations. Sections 4 and 5 present the 
numerical results of the thermo-resistive tearing modes and 
the density limit. Section  6 compares the numerical results 
withe semi-analytical calculations. Section 7 gives a summary 
of the conclusions. The convergence test of the simulations is 
presented in the appendix.

2. Numerical methods

The M3D-C1 code is a scalable fully implicit time advance 
finite element code that solves a set of visco-resistive two-
fluid equations  [19]. This work aims to explain the den-
sity limit with a thermo-resistive tearing mode model, thus 
requiring accurate calculation of the tearing mode growth and 
heat transport. The viscous terms, two-fluid terms and gyro-
viscosity terms are not considered here. A resistive MHD 
model is used,

∂ρ

∂t
+∇ · (ρ�V) = 0,

 
(2)

ρ
d�V
dt

=�j × �B −∇p,
 

(3)

3
2
∂p
∂t

+∇ ·
(

3
2

p�V
)

=− p∇ · �V + ηj2 − Prad

+∇ ·
[
χ⊥∇⊥p + χ‖∇‖p

]
−Π : ∇�V ,

 
(4)

∂�B
∂t

= −∇× �E,
 

(5)

η�j = �E + �V × �B, 
(6)

µ0�j = ∇× �B, 
(7)

∇ · �B = 0, 
(8)

where χ⊥ and χ‖ are the perpendicular and parallel heat 
diffusivity respectively, Π is the viscosity tensor. Plasma is 
cooled through Bremsstrahlung continuum radiation as well 
as impurity line radiation. The radiation power is calculated 
by Prad =

∑
Z nenZLZ(Te), where LZ(Te) is the cooling rate 

calculated from the model presented in [20]. The tearing mode 
evolution spans the resistive time τR = µ0L2/η and the Alfven 
time τA =

√
µ0ρL/B. In the typical fusion plasma regime, the 

Lundquist number S = τR/τA ∼ 107 at the plasma edge. The 
large time scale separation is one of the biggest challenges to 
resistive MHD simulations. The extremely high aniso tropy is 
another challenge, and the heat conduction along the magn-
etic field lines, dominated by free-streaming electrons, is 
much faster than the cross-field transport, mainly driven by 
the turbulence. The parallel heat transport coefficient is esti-
mated to be around 108 times the perpendicular heat trans-
port coefficient. It is essential to calculate the heat diffusion 
equation accurately to model the thermal effects on the island 
growth. An inaccurate diffusion model could drastically 
underestimate or overestimate the thermal effects.

In order to solve these challenges, M3D-C1 uses a scal-
able fully implicit time advance method to avoid the Courant 
condition set by MHD wave velocities or plasma flow. But 
the implicit matrix equation is still highly ill conditioned due 
to the large time scale separation and the high anisotropy. 
Multiple techniques have been implemented to improve the 
effective condition number of the matrix, including the split 
implicit method, annihilation operators and the block-Jacobi 
preconditioner. The split implicit method represents new time 
pressure and magnetic field variables with new time velocity 
variables. Solving one time step is changed from solving a 
large anti-symmetric matrix equation with large off-diagonal 
elements to solving a smaller diagonally dominant symmetric 
matrix equation. The new time pressure and magnetic field 
variables are then calculated with new time velocity solutions 
explicitly. The annihilation operators transform the ill condi-
tioned matrix equation into a matrix with three approximately 
diagonal blocks each multiplied with a separate component 
of the velocity field. The condition numbers of the three 
sub-matrices are much smaller than the original single large 
matrix. The block-Jacobi preconditioner is applied due to the 
strong coupling within a plane and the highly anisotropic heat 
diffusivity. By inverting the components within the poloidal 
planes simultaneously, the condition number is greatly 
reduced. These techniques enable M3D-C1 to solve the resis-
tive MHD equations efficiently and calculate the anisotropic 
heat diffusion process accurately.

3. The self-consistent Furth–Rutherford–Selberg 
equilibrium

A right-handed (r, θ,φ) cylindrical coordinate is used in the 
simulations and the equilibrium is assumed to be symmetric 
in the θ and φ direction. The equilibrium fluid velocity �V  is 0. 
The plasma density and toroidal electricity field strength are 
constant and uniform. The equilibrium profiles are solutions 
of the steady state resistive MHD equations together with the 
Spitzer resistivity model,

�j × �B −∇p = 0, (9)

1
r

d
dr

(
rχ⊥

dp
dr

)
+ ηj2 = 0, (10)

η�j = �E, (11)

η =
πZe2√melnΛ
(4πε)2(kBT)3/2 . (12)

The impurity radiation term is very small and ignored when 
calculating the initial equilibrium. The self-consistent FRS 
equilibrium resembles the equilibrium observed in tokamaks. 
The toroidal current density profile is,

j(r) = j0

[
1 +

(
r
r0

)2ν
]−(1+1/ν)

, (13)
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where j0 is current density on the axis, r0 is the width of cur-
rent channel, ν is the peaking factor of the current density pro-
file. Figure 1 plots typical equilibrium current density profiles. 
The safety factor profile is,

q(r) = q0

[
1 +

(
r
r0

)2ν
]1/ν

, (14)

where q0 is the safety factor on the axis. Figure 2 plots typical 
equilibrium safety factor profiles. As a result, the pressure 
profile is,

p(r) = p0

[
1 +

(
r
r0

)2ν
]− 2

3 (1+1/ν)

. (15)

Figure 3 plots typical equilibrium pressure profiles. The 
perpend icular heat diffusivity profile is,

χ⊥(r) =
3Ej0r2

0

8(1 + ν) p0

(
r
r0

)2−2ν
[

1 +

(
r
r0

)2ν
] 5

3 −1/3ν

.

 (16)
Figure 4 plots typical equilibrium perpendicular heat diffu-
sivity profiles. The perpendicular heat diffusivity profile is 
singular on axis because the pressure profile is completely flat 
on the axis. Although this is not consistent with the experi-
ments, the thermo-resistive tearing mode model is insensitive 
to the shape of equilibrium profiles in the center. The toroidal 
magnetic field is determined by,

dBφ

dr

=

µ0p0
8
3 (1 + ν)

[
1 +

(
r
r0

)2ν
]− 5

3 −
2

3ν (
r
r0

)2ν−2
r
r2

0
− 4B2

φ

R2q2 r
[

1+
(

r
r0

)2ν
]−1

2Bφ

(
1 + r2

R2q2

) .

 (17)
As a low beta equilibrium is used, the toroidal magnetic field 
Bφ varies by only a few percent from the axis to the edge 
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Figure 1. Equilibrium current density profiles with different plasma 
densities.
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Figure 2. Equilibrium safety factor profiles with different plasma 
densities.
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Figure 3. Equilibrium pressure profiles with different plasma 
densities.
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Figure 4. Equilibrium perpendicular heat diffusivity profiles with 
different plasma densities.
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in simulations and can be considered uniform. The self-
consistent FRS equilibrium enables direct comparison to the 
semi-analytic model though there are some minor differences 
between the equilibrium used in the two models. In the simu-
lation, the initial equilibrium is provided by the self-consistent 
FRS equilibrium. A perfectly conducting wall at the plasma 
boundary is used at the boundary condition.

4. Impacts of thermal perturbations on the tearing 
mode growth

Although the resistive MHD equations are solved in the sim-
ulations, it is a useful and intuitive to analyze the modified 
Rutherford Equation  to understand the different terms that 
contribute to the island evolution [21, 22].

dw
dt

= 1.66
η

µ0

[
∆′

ql(w) + ∆′
A(w) + ∆′

δj(w)
]

.
 

(18)

As shown by the equation, thermal perturbations affect the 
island growth in two ways. Firstly, thermal perturbations 
change the global current density profile, thus modifying the 
∆′

ql term. Secondly, thermal perturbations change the temper-
ature and current density profile inside the island, thus modi-
fying the ∆′

δj  term. It will be shown numerically later in 
figure 6 that for the same amount of thermal perturbation, the 
second effect is much more effective in changing the island 
growth.

A Gaussian heat source is introduced to explore the 
thermal effects on the island growth. The heat source is cen-
tered at a spot on the poloidal plane with a Gaussian distribu-
tion. As the heat source is symmetric in the φ direction and 
the heat is equilibrated quickly along the magnetic field lines, 
it effectively heats a band area that extends poloidally from 
the spot. Gaussian heat sources with the same absolute value 
centered at the q  =  2 surface and outside the island are used in 
the simulations. Figure 5 plots the power densities of heating 
and cooling sources centered at different radii and the Ohmic 
heating power for comparison. The island width evolution 

is plotted in figure 6. In this simulation, the island saturates 
at 0.034 m when there is no external thermal perturbation. 
The Gaussian heat sources are introduced after the island has 
reached saturation. The island grows to 0.086 m when there 
is net cooling inside the island. The island shrinks to 0.012 m 
when there is net heating inside the island. The island grows 
to 0.051 m when there is net cooling outside the island. Net 
cooling/heating inside the island greatly increases/reduces the 
maximum island width. The island growth is less sensitive to 
thermal perturbations outside the island. This is consistent 
with experiment observations that electron cyclotron reso-
nance heating reduces the island width significantly [23–25].

5. Significant growth of the tearing mode  
at the density limit

The equilibrium changes as the plasma density is increased in 
experiments. This work does not aim to study how the equi-
librium evolves but uses a systematic method to set the initial 
FRS equilibrium in each simulation as a function of the plasma 
density as an approximation to the experiments. In density 
limit discharge experiments, q0 and qedge are roughly constant 
as the plasma density is increased and thus are assumed to be 
fixed in the simulation. The normalized internal inductance li 
is observed to increase and reach a maximum value when the 
plasma density is increased towards the density limit [26]. An 
ad hoc model is used to describe the li dependence on ne,

li(ne) =

{
(li,max − li,min)

n̄e/n̄G−0.7
0.3 + li,min if n̄e/n̄G > 0.7

li,min if n̄e/n̄G � 0.7
 

(19)
where,

li,max = (0.12qedge · h + 0.6) · h, (20)

li,min = (−0.08qedge · h + 1.05) · h, (21)
where h = (1 + κ2)/(2κ) approximates the modifications of li 
and qedge  due to elongation κ. For a chosen plasma density, li is 
calculated from the ad hoc model. The other FRS equilibrium 
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Figure 5. Heat sources located at different radii.

0 2000 4000
0

0.02

0.04

0.06

0.08

0.1

Figure 6. Island growth under different perturbations.
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parameters are calculated from the chosen q0, qedge and the li. 
Simulation parameters are chosen to be representative for dis-
charges at the density limit in typical tokamaks. In table 1, R 
is the major radius, a is the minor radius, and U is the loop 
voltage. Only Iron is included to represent the impurities 
because the impurity radiation is usually dominated by high 
Z impurities. The iron density is 1.5 × 10−4ne between rs − δ 
and rs + δ and 0 elsewhere, where rs is the q  =  2 surface and 
δ = 0.1 m. This impurity density profile minimizes its impact 
on the equilibrium profiles. As the tearing mode growth spans 
the Alfven time and the resistive time, the number of time steps 
it takes for the island to saturate is roughly proportional to the 
Lundquist number S. S ≈ 107 for these parameters and it takes 
too long for the tearing mode to grow and saturate. We propose 
a method to keep the thermo-resistive island growth almost the 
same while reducing S and required number of time steps sig-
nificantly. η, U, χ‖, χ⊥, and nFe are scaled by the same factor,

η, U, χ‖, χ⊥, nFe → cη, cU, cχ‖, cχ⊥, cnFe. (22)

The other parameters are kept the same. The steady state resis-
tive MHD equations are transformed to,

�j × �B −∇p = 0, (23)

1
r

d
dr

(
rcχ⊥

dp
dr

)
+ cηj2 = 0, (24)

cη�j = c�E. (25)

The scaling factor c is cancelled on both sides and the equi-
librium remains the same. The thermal perturbation is solved 
from the diffusion equation,

0 = ∇ · (cχ⊥∇⊥p + cχ‖∇‖p) + cηj2 − cPrad. (26)

The scaling factor c is cancelled on both sides and the temper-
ature perturbation δT  and current perturbation δj remain the 

same. As ∆′
δj ∝ 〈δj〉, the impact of impurity radiation on the 

island growth remains the same under this transformation. 
The Lundquist number is transformed to,

S =
τR

τA
=

√
µ0LB

cη
√
ρ

. (27)

S is scaled by 1/c and the required simulation time steps and 
the CPU hours are reduced by 1/c. Figure 7 plots the island 
growth with the scaling factor c  =  50 and c  =  100. The island 
growth deviates by only a few percent when the scaling factor 
is different by a factor of 2, showing that the scaling method 
does not change thermal effects on the island growth.

A series of simulations are performed to calculate the island 
growth at different plasma densities, see figure 8. Using scaling 

Table 1. Experimentally relevant parameters.

R a q0 qedge Bφ U nFe(rs)/ne(rs) χ⊥ χ‖/χ⊥

3 m 1 m 1.01 3.7 1 T 1 V 1.5 × 10−4 ∼2.4 m2 s−1 108

0 0.02 0.04
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0.06

0.08

Figure 7. Island growth with different scaling parameter.
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0.1
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Figure 9. Change of tearing mode evolution as the plasma density 
approaches the density limit in the semi-analytical model.
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Figure 8. Change of tearing mode evolution as the plasma density 
approaches the density limit in the numerical model.
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factor c  =  100, each simulation takes around 6000 CPU hours. 
In each simulation, the island grows and saturates at a certain 
size then shrinks to a smaller size. Comparing different simula-
tions, the island grows to a much larger size when the plasma 
density is increased toward the density limit. The maximum 
island width increases by about 170% from 0.033 m to 0.088 m  
as ne is increased from 0.8nG to 1.05nG. When the plasma den-
sity is increased, the impurity radiation power increases propor-
tionally, and the Ohmic heating power decreases due to the more 
peaked current density profile. The thermal perturbation of the 
island changes from net heating to net cooling and the island 
grows to a larger size. As a comparison, the island growth is 
also calculated with the semi-analytical model using the same 
parameters, see figure 9. The island grows and saturates at cer-
tain size because unlike the numerical calculations the equilib-
rium is assumed to be fixed in the semi-analytical model. The 
maximum island width increases by about 200% from 0.078 m 
to 0.237 m as ne is increased from 0.8nG to 1.05nG.

Though the numerical simulations show that the magnetic 
island grows to a larger size when approaching the density 
limit, the numerical model still underestimates the thermo-
resistive effects on the magnetic island growth in two ways. 
Firstly, the anisotropy of heat diffusivity χ‖/χ⊥ = 108 in the 
simulations but this value might be even larger in experiments. 

The critical island width wf is proportional to (χ‖/χ⊥)
−1/4, 

thus the wf used in simulations is about larger typical values 
in experiments. ∆δj, which is proportional to w2/(w2 + w2

f ), 
is underestimated. Secondly, the perpendicular heat diffusivity 
inside the island χ⊥ is about 10% of the value outside the island 
in experiments [27, 28]. But the numerical model assumes χ⊥ 
outside and inside the island to be the same. Properly including 
this effect will increase the thermo-resistive impact further.

6. Comparison of the numerical model  
and the semi-analytical model

The numerical model and the semi-analytical model are sim-
ilar in many ways. Both model use similar equilibrium pro-
files and the same equilibrium evolution model as the plasma 

density is increased. Both model use same parameters in the 
calculation, except that the numerical model scales the param-
eters by 100. But there are also some important differences 
between the two models that lead to the differences in their 
results. The numerical model solves the three-dimensional 
resistive MHD equations and allow the equilibrium to change 
as the tearing mode grows. The semi-analytical model solves 
the modified Rutherford equation, which is a simplification of 
the resistive MHD model, and assumes the equilibrium to be 
fixed as the tearing mode grows.

The tearing mode growth in the numerical model and the 
semi-analytical model are compared directly by calculating 
the ∆′ terms defined by the modified Rutherford equa-
tion (18). The ∆′ terms are defined as,

∆′
ql = ψ′

1|
rr

rl
/ψ1(rs), (28)

∆′
A = −2πRµ0

ψ1(rs)
fF

m
π

∫ π/m

−π/m
dθ

∫ r̃r(θ)

r̃l(θ)

dr( j0(rx)− j0(r)) cos(mθ),

 (29)

∆′
δj = −2πRµ0

ψ1(rs)
fF

m
π

∫ π/m

−π/m
dθ

∫ r̃r(θ)

r̃l(θ)

dr( j(r)− j0(rx)) cos(mθ)

 (30)

where R is the major radius, ψ1 is the first harmonic of the 
perturbed helical flux, fF is the flattening factor of order 
unity, rl is the left edge of the island, rr is the right edge 
of the island, r̃l is the left half of the separatrix, r̃r  is the 
right half of the separatrix. ∆′

ql is the discontinuity of the 
perturbed helical flux across the island. ∆′

A  is the integrated 
current perturbation caused by the flattening of the current 
density profile by the asymmetric island. ∆′

δj  is the inte-
grated current perturbation caused by excessive heating or 
cooling of the island. Although M3D-C1 does not solve the 
modified Rutherford equation, the ∆′ terms defined above 
can still by calculated numerically and compared against 
the semi-analytical model. Figure 10 shows an example of 
the ∆′ terms by the numerical model and semi-analytical 
model of a tearing mode under net cooling using the same 

0.04 0.05 0.06

0

0.5
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1.5

(a) (b)
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Figure 10. ∆′ terms in the numerical model and the semi-analytical model. (a) ∆′ terms in numerical model. (b) ∆′ terms in semi-
analytical model.
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param eters. The ∆′ terms in both models have similar trends 
and values. ∆′

total terms are initially positive and decreases 
to zero as the island grows and saturates. ∆′

ql decreases 
monotonically as the island grows. ∆′

A  and ∆′
δj  increase 

weakly as the island grows. ∆′
A  and ∆′

ql in the numerical 
and semi-analytical calculations agrees well in magnitude. 
The ∆′

δj  term is much larger in the numerical calculation, 
because M3D-C1 solves the heat diffusion equation and the 
thermal perturbation term is modeled better. The numerical 
model and the semi-analytical model are similar, and their 
results can be compared against each other.

7. Summary

A numerical model is developed to simulate the thermo-
resistive tearing mode growth when the plasma density is 
increased toward the density limit. The numerical model is 
an improvement of the semi-analytical model. An advanced 
finite element code M3D-C1 is used to solve the resistive 
MHD equations. The large time scale separation and high 
anisotropy problem is solved by using the split implicit 
method, annihilation operators and the block-Jacobi precon-
ditioner. A pressure gradient dependent thermal diffusivity 
model is implemented as an attempt to include the reduced 
diffusivity inside the island, though it turns out to be numer-
ically unstable. A scaling method is developed and the CPU 
hour is reduced greatly. The self-consistent FRS equilibrium 
is used in the simulations. The convergence of the simula-
tions is examined by using different temporal and spatial 
grid sizes. The simulations show that the tearing mode is 
sensitive to thermal perturbations inside the island and less 
sensitive to thermal perturbations outside the island. The 
island grows larger when cooled inside the island interior 
and shrinks when heated inside the island. The simulations 
calculate different thermo-resistive tearing mode growths 
by increasing the plasma density. The results show that the 
maximum island width increases by a factor of 170% when 
the plasma density is increased from 0.8nG to 1.05nG. The 
numerical model is also compared with the semi-analytical 
model by calculating the ∆′ terms as defined in the modified 
Rutherford equations. Good agreement is observed between 
the two models.
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Appendix. Convergence of simulations

As this work aims to study the tearing mode at the density 
limit, it is crucial to get converged island growth results. The 
convergence of the simulations are examined by varying the 

toroidal grid size, the poloidal grid size and the time step size. 
In figure A1, the poloidal grid size is 0.03, the time step size 
is 40, and the number of toroidal planes is varied from 6 to 16. 
It is found that 6 toroidal planes is good enough to resolve the 
island growth. In figure A2, the number of toroidal planes is 
6, the time step size is 40 and the poloidal grid size is varied 

0 2000 4000 6000 8000
0

0.05

0.1

Figure A1. The toroidal grid size convergence.
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Figure A2. The poloidal grid size convergence.

0 2000 4000 6000 8000
0

0.05

0.1

Figure A3. The time step size convergence.
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from 0.01 to 0.03. The island growth converges at the poloidal 
grid size of 0.03. In figure A3, the poloidal grid size is 0.03, 
the number of toroidal planes is 6, and the time step size is 
varied from 10 to 80. The island growth converges at the time 
step of 10. Therefore the tearing mode growth converges when 
the poloidal grid size is 0.03, the toroidal plane number is 6 
and the time step size is 10.
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