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Abstract
In order to understand the effect of rotation on the response of a plasma to three-dimensional
magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile
in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the
M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic
field generally increases as the rotation decreases at a rational surface. Multiple peaks in the
resonant field are observed near rational surfaces, however, and the maximum resonant field does
not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant
current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient
shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of
the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear
electromagnetic torque induced by this non-resonant plasma response provides drive to flatten
the rotation, possibly allowing for increased transport in the pedestal by the destabilization of
turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically
stable points near rational surfaces, which would allow for increased resonant penetration. By
one or both of these mechanisms, this torque may play an important role in bifurcations into
suppression of edge-localized modes. Finally, we discuss how these changes to the plasma
response could be detected by tokamak diagnostics. In particular, we show that the changes to
the resonant field discussed here have a significant impact on the external perturbed magnetic
field, which should be observable by magnetic sensors on the high-field side of tokamaks but not
on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes
to the plasma response described here substantially affects the divertor footprint structure.

Keywords: magnetic perturbations, extended magnetohydrodynamics, plasma response, rotation,
torque, edge-localized modes, ELM suppression

(Some figures may appear in colour only in the online journal)

1. Introduction

Externally applied three-dimensional magnetic perturbations
are routinely used in modern tokamaks for a variety of

purposes, including correcting error fields, controlling particle
transport and mitigating or suppressing edge-localized modes
(ELMs). In particular, the need to control ELMs in order to
prevent intolerable heat fluxes to plasma-facing components
in future tokamaks (including ITER) has driven the exper-
imental and theoretical study of the effects of three-
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dimensional magnetic perturbations on plasma equilibrium,
stability and confinement. Varying degrees of mitigation or
suppression have been achieved on DIII-D [1], JET [2],
ASDEX Upgrade [3], KSTAR [4], MAST [5] and EAST [6].

Despite the successes of experimental campaigns, a
predictive theoretical understanding for how magnetic per-
turbations suppress ELMs is still incomplete. Early theoretical
explanations focused on the nature of the applied vacuum
field. In particular, it was noted that the vacuum resonant
magnetic perturbations (RMPs) could couple to the equili-
brium magnetic field to open magnetic islands. If the RMPs
were strong enough, the opened islands could overlap, pro-
ducing a region of stochasticity in the edge-pedestal region.
The increased radial transport in this stochastic layer would
help to maintain the pedestal height and width below the
magnetohydrodynamic (MHD) stability thresholds for ELMs,
thus causing mitigation and/or suppression [7].

Further studies, however, have demonstrated the impor-
tance of including the response of the plasma to the magnetic
perturbations in order to understand properly the nature of
mitigation and suppression of ELMs. Experimentally, the
observation that the electron temperature gradient is typically
unaffected by the application of magnetic perturbations is
inconsistent with the idea of a stochastic pedestal [8]. Fur-
thermore, the magnetic pitch of the applied perturbations has
been varied in DIII-D [9] and ASDEX Upgrade [10] by
continuously varying the toroidal phasing (or differential
phase angle) between vertically separated rows of coils. It has
been observed that the maximum mitigation or suppression of
ELMs occurred at phasings different from the value at which
the perturbed vacuum field was maximally resonant with the
equilibrium magnetic field in the pedestal region. Subsequent
MHD modeling has demonstrated that these optimal phasings
are often well correlated with the total resonant perturbation,
including vacuum and plasma response magnetic fields
[9, 11–13].

Indeed, MHD theory predicts that the plasma response
should have profound effects on the spectrum of magnetic
perturbations. While ideal MHD requires that the resonant
vacuum fields be completely screened by induced plasma
currents at rational surfaces, resistivity permits the resonant
fields to penetrate or even to be enhanced by tearing. Fur-
thermore, non-resonant fields can excite kink-like deforma-
tions that can induce their own transport [14] and/or couple
to resonant tearing modes to alter the behavior of ELM
mitigation. Rotation profiles can also have a significant
impact on the plasma response. In particular, strong, single-
fluid toroidal rotation (or electron perpendicular rotation in
two-fluid MHD) at a rational surface is capable of screening
resonant perturbations, causing a resistive plasma to behave
more ideally.

Recent experiments have suggested that magnetic-per-
turbation-induced ELM suppression is caused by the forma-
tion of an island at the top of the pedestal. Careful analysis of
the bifurcation into and out of ELM suppression on DIII-D
has shown an abrupt shift in the electron perpendicular rota-
tion profile, such that the zero-crossing aligns with a rational
surface at the pedestal top [15]. Linear, two-fluid M3D-C1

modeling has shown that this shift causes an increase in the
resonant field at that surface, indicating that there is larger
tearing drive for island formation at the pedestal top [16]. In
this paradigm, ELM suppression is achieved by this island’s
arresting the growth of the pedestal height and width, pre-
venting an ELM stability threshold from being crossed [17].

A proper test of this hypothesis will eventually require a
comprehensive model that can predict the evolution of the
pedestal across an ELM-suppression bifurcation. This will
include time-dependent, nonlinear, two-fluid MHD simula-
tions and an appropriate transport model, particularly for the
momentum. Nevertheless, we can still pursue research on
individual components of the model. Here, in order to form a
better understanding of the effect that the rotation profile has
on both the resonant and non-resonant plasma response to
magnetic perturbations, we present results from linear, single-
fluid, time-independent M3D-C1 plasma response calcula-
tions as the rotation profile is varied in an equilibrium
reconstruction of a DIII-D ELM-suppression experiment.
While the effect of rotation has been considered in the lit-
erature previously [16, 18–24], this study is unique given,
collectively, its focus on changes in local rotation profiles in
the vicinity of the zero-crossing near the pedestal top, its
detailed examination of the non-resonant plasma response and
its systematic nature.

In section 2, we discuss the M3D-C1 code and equili-
brium in more detail. We also introduce a model rotation
profile that is designed to largely match the experimental

´E B rotation, but allows for systematic variation of the
zero-crossing of the rotation profile. In section 3, we quanti-
tatively assess the effects of the location of the zero-crossing
on the resonant and non-resonant plasma response at and
between rational surfaces. We also investigate how the qua-
silinear torque induced by the plasma response could play a
role in ELM suppression and how the variations in plasma
response could be detected by tokamak diagnostics. Finally,
in section 4, we review this current work and discuss future
work needed to understand these results more fully and to
extend them.

2. Methods

The M3D-C1 code [25] solves the three-dimensional exten-
ded MHD equations including two-fluid effects and dis-
sipative terms (i.e., resistivity, particle diffusivity, viscosity
and thermal conductivity). It uses a high-order finite element
representation in a cylindrical j( )R Z, , coordinate system,
where R is the major radius, j is the toroidal angle and Z is
the height, allowing for simulation of the bulk plasma, the
scrape-off layer and the highly resistive, vacuum-like open-
field-line region (OFLR). In addition to this plasma region, in
which the MHD equations are solved, the M3D-C1 simula-
tion domain contains a finite-thickness resistive wall and an
external vacuum region, in which appropriate equations for
those regimes are solved [26]. In this study, we focus on
single-fluid, time-independent linear simulations. The plasma
is taken to have uniform, isotropic particle diffusivity and
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kinematic viscosity, while the thermal conductivities are
spatially uniform but anisotropic, with a parallel conductivity
106 times the perpendicular value. The resistivity is assumed
to be Spitzer, varying as -Te

3 2. While the resistive wall plays
no dynamic role in these stationary solutions, it is included to
allow for free-boundary-like calculations with the super-
conducting boundary condition placed far from the plasma (in
these cases, outside the poloidal field coils).

M3D-C1 typically takes an experimental equilibrium
reconstruction as an input. In particular, the pressure, p, and
toroidal field function, F, profiles are read from the recon-
struction and the equilibrium is recomputed by M3D-C1ʼs
Grad–Shafranov solver. In simulations where the domain
extends beyond the poloidal field coils, such as those pre-
sented here, the coil currents are taken as inputs and then
iterated upon until a good shape match to the original equi-
librium is achieved. The electron density, ne, electron temp-
erature, Te, and toroidal rotation, ω, profiles are also input
parameters. While they do not affect the Grad–Shafranov
equilibrium, these profiles are used in the linear calculations.
Furthermore, ne, Te, and p are all extrapolated to small values
in the OFLR to ensure that this region exhibits vacuum-like
behavior.

The simulations presented here are based upon an EFIT
[27–29] reconstruction of DIII-D shot 158103 at 3796 ms.
This is the ‘reference’ equilibrium considered in recent mul-
timode plasma response studies [9, 30], which is an ITER-
similar shape (ISS) lower single null plasma with normalized
beta b » 2.2N , pedestal-top electron collisionality *n » 0.30e

and edge safety factor »q 4.1595 (see figure 1). Given the
assumptions of our dissipation models, the magnetic Prandtl
number is ~ ( )Pr 10m

2 and the Lundquist number is
~ ( )S 108 at the pedestal top. In the experiment, toroidal

mode number n=2 magnetic perturbations were applied
using the in-vessel I-coils. Each row of coils carried
approximately 4 kA of current and the phasing fD UL between
the upper (IU) and lower (IL) I-coils was varied throughout
the experiment. ELM suppression was achieved in a narrow
phasing range from fD »UL 0°−45°. The equilibrium

considered here was taken during a non-suppressed period, as
we wish to investigate the role of the rotation profile in
determining plasma response and bifurcation into ELM
suppression.

In this study, we consider single-fluid simulations that
use the ne and Te profiles taken from the experiment (exten-
ded into the OFLR). All simulations consider vacuum 3D
fields produced by idealized, n=2 Fourier-mode currents at
the location of IU and IL. The toroidal rotation profile is taken
to be a free function of the normalized poloidal flux, Y. In
particular, we will use a model rotation profile of the form

w w w wY = - - Y Q Y +¥ ¥( ) ( ) ( ) ( )h
1

2
, 10

where

Q Y = -
Y - Y
DY

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )1 tanh 2c
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w w
w

=
Y

- +
Q Y

¥
¥⎛

⎝⎜
⎞
⎠⎟( )

( )h
1

2 . 3
z z

0

This rotation profile has five free parameters: the on-axis
rotation, w0, the asymptotic rotation as Y  ¥, w¥, the zero-
crossing of the rotation profile, Yz, and the center and width of
the hyperbolic tangent, Yc and DY, respectively. Using
w = 1100 krad s–1, w = -¥ 40 krad s–1, Y = 0.915z and
DY = 0.025, we can match the experimental ´E B rotation
profile well, as seen in figure 2. The location of greatest
difference is at the very edge (Y > 0.97), but the exper-
imental rotation profile is relatively poorly constrained in this
region anyway. By modifying the free parameters from these
values, we are able to vary quantities of interest (e.g., the
rotation and rotation shear at a specific Ψ) while maintaining
an otherwise experimentally relevant rotation profile.

Figure 1. EFIT reconstruction of DIII-D shot 158103 at 3796 ms.
Left: flux surfaces (black) and resistive wall (red). Right: flux-
surface-averaged plasma β (i.e., the ratio of the local thermal
pressure to the local magnetic pressure), safety factor q, electron
density ne and electron temperature Te.

Figure 2. Experimental ´E B toroidal rotation profile for DIII-D
shot 158103 at 3796 ms along with three model rotation profiles
using equation (1). All have w = 1100 krad s–1, w = -¥ 40 krad s–1,
Y = Y + 0.01zc andDY = 0.025, while Yz is varied. The curve with
Y = 0.915z is a good match to the experimental rotation profile,
while the other two are chosen to have Yz coincide with a rational
surface, namely =q 7 2 at Y = 0.888 and =q 8 2 at Y = 0.933
(each denoted by dashed lines). The insert zooms in on the edge
region. The dotted line denotes w = 0.
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3. Results

Previous simulations have found [19, 21, 22, 26, 31] and
experiments have suggested [15, 16] that a zero-crossing of
the rotation profile (or electron perpendicular rotation profile
in two-fluid MHD) at a rational surface permits penetration of
resonant fields, while strong rotation at the surface screens
resonant fields. In order to quantify this more carefully, we
perform a systematic scan of the zero-crossing using the
model rotation profile of equation (1). We take the same w0,
w¥ and DY for the experimentally matched rotation profile
noted in section 2 and vary Yz from 0.87 to 0.95, while
keeping Y = Y + 0.01zc . Two such model rotation profiles
are shown in figure 2, one passing through zero at the
Y = » Y0.888 7 2 and the other at Y = » Y0.933 8 2. Here,
we have defined Ym n as the normalized poloidal flux location
of the q = m/n surface, where q is the safety factor and m is
the poloidal mode number. Note that the rotation profile is
largely fixed outside the vicinity of the zero-crossing.

To examine the effects of the rotation profile on the
plasma response, we will consider a Fourier decomposition of
dB, the perturbed magnetic field. In particular, the radial
perturbed field can be decomposed as

d
p d y

q
q jY =




q j-∬( ) ( ) ·
·

( )( )B
A

B
B

2
e d d , 4mn

m n
2

i

where A is the area of the flux surface and B is the equili-
brium, axisymmetric magnetic field. The integral is taken in
straight-field-line coordinates y q j( ), , , where ψ is the
poloidal flux over p2 and θ is the poloidal angle.

3.1. Resonant response

The magnitude of the resonant magnetic field at Y7 2 and Y8 2
as Yz is varied is shown in figure 3, where the resonant field is

defined as

d d= Y( ) ( )B B . 5mn mn m n
res

We include only these responses as the rotation at any other
rational surface is nearly constant throughout the scan and the
change in the resonant response there is negligible. In addi-
tion, the responses for upper and lower I-coils are shown
separately because the constructive or destructive interference
of the IU and IL responses would introduce the phasing as a
complicating variable in this analysis.

As the zero-crossing passes through a rational surface,
the resonant response at that surface generally peaks. The
upper and lower I-coil responses, however, have two distinct
peaks of different magnitudes. At the =q 7 2 surface, the
larger peak lies where Y = Yz 7 2 for both IU and IL. Each
curve, however, is weighted to either side of the rational
surface, with the IU response (labeled 7U) skewed toward
Y < Yz 7 2 and the IL response (labeled 7L) toward
Y > Yz 7 2. A much smaller peak occurs on the lesser-
weighted side. This effect is even more prominent for the
resonant field at the =q 8 2 surface, with two distinct peaks
on either side of Y8 2 that differ in magnitude by a factor of
two to three. A similar weighting to either side of the surface
is observed, with the Y < Yz 8 2 response greater for IU
(labeled 8U) and Y > Yz 8 2 for IL (labeled 8L).

Figure 3 also shows these same resonant responses
plotted against the ω at the relevant rational surface, as
computed from the M3D-C1 equilibrium. Clearly, the reso-
nant response peaks for low values of rotation, roughly

w∣ ∣ 5 krad s–1, but the weightings and double peaks still
exist, with the IU responses (7U and 8U) skewed toward
negative rotation and the IL responses (7L and 8L) toward
positive rotation. Note that the vacuum levels of the resonant
magnetic fields (i.e. the perturbation field without plasma
response) are also shown in figure 3, indicating that for these

Figure 3. Magnitude of the resonant field induced by the upper and lower I-coils at =q 7 2 and =q 8 2 in the equilibrium of figure 1 for
rotation profiles defined by equation (1) with w = 1100 krad s–1, w = -¥ 40 krad s–1, Y = Y + 0.01zc and DY = 0.025, and varying Yz.
These are plotted both versus Yz (left) and versus ω at the relevant rational surface (right). Each curve is labeled by the negative of its m
number, 7 or 8, along with its coil, upper (U) or lower (L). The locations of the two rational surfaces are denoted by the dotted lines in the
left-hand plot. Total field includes both the vacuum field and plasma response.
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rotation profiles the plasma response at least partially screens
the vacuum field for all but the very lowest rotation
at Y = Yz 7 2.

The cause of the two peaks is uncertain. One possibility
is that multiple distinct modes are being driven in the vicinity
of the rational surface that could constructively or destruc-
tively interfere with each other. The phase of these modes
would change depending on which coil was driving them,
possibly leading to the differing behavior between the IU and
IL responses. Another possibility is that distinct resonances
are being crossed that don’t necessarily align directly on the
rational surface. For example, Alfvén splitting results in two
resonant surfaces forming on either side of a rational surface,
one caused by a rotational resonance with the shear Alfvén
wave and the other with the sound wave. Previous demon-
stration of this effect, however, found it only in the limit of
fast toroidal flow [32], so the applicability of the theory to this
case with a nearby zero-crossing is unclear. Lastly, the
Glasser–Greene–Johnson (GGJ) effect [33] has been shown
to provide a source of resonant field screening at low rotation
[24]. This could explain why the peak resonant response at
the q=4 surface does not occur for zero rotation there. This
same effect, however, is not seen at the =q 7 2 surface,
possibly due to the lower pressure gradient there. That said, it
is not clear how the GGJ effect would not explain asymmetry
between the IU and IL responses or between positive and
negative rotation. Further research is needed to determine
fully the cause of these peaks.

3.2. Non-resonant response

The effect of the zero-crossing is not restricted to the resonant
response as there is broad coupling of the poloidal Fourier
harmonics in the direct vicinity of Yz. This is true even if the
zero-crossing is far from a resonant surface. dBmn is plotted in
figure 4 for Y » Yz 7 2, Y = 0.915z (i.e. between Y7 2 and
Y8 2) and Y » Yz 8 2. In all three cases, a pronounced streak
across m is observed on the left-hand plots in the region
around Y - Y∣ ∣ 0.01z . The plots of dBmn versus Y for
multiple m values on the right-hand side make it clear that
there is local peaking of the near-resonant harmonics (i.e.

-∣ ∣m nq 2) at Yz, while the far-off-resonant harmonics
(i.e. -∣ ∣m nq 2) are reduced.

This modification of the magnetic field is coincident with
a local perturbed current density, dJ, in the vicinity of Yz.
Figure 5 shows the Fourier decomposition of the perturbed
parallel current density for Y = 0.915z between rational sur-
faces and Y = 0.933z coincident with the =q 8 2 surface.
Here, we define

d
p d

q
q jY =


q j-∬( ) ( ) ·

·
( )( )J

A

R J B
B

2
e d d . 6mn

m n
2

i

It is clear that in each case, the current density is localized to
the near-resonant harmonics. While the resonant field is
undoubtedly impacted by this resonant current in the case of
for Y = 0.933z , the current density at Y = 0.915z is not near
an n=2 rational surface and has a broader m spectrum. Thus,

this non-resonant current cannot be related to a tearing
response.

In order to assess the nature of this off-rational perturbed
current, we performed a scan of the shear at Y = 0.915z by
varying DY from ´ -6.25 10 3 to ´ -1 10 1, bracketing the
experimentally matching value of DY = ´ -2.5 10 2 used in
the Yz scan. The flux surface average of the perturbed toroidal
current density is shown for the various shear values in
figure 6. From this, it is clear that increasing rotation shear
leads to an increased plasma response in the vicinity of Yz,
indicating that shear has an amplifying effect on whatever
non-resonant mode or modes are being driven by the field
here. The response is not directly proportional to the shear,
however, and seems to require the crossing of a threshold to
appear, as suggested by the rapid five-fold increase in the
current from w Y = -d d 564 krad s–1 to −1058 krad s–1.
While the exact nature of this response remains unclear from
this analysis, this current must be necessary for restoring force
balance in these non-axisymmetric equilibria with three-
dimensionally perturbed pressures and magnetic fields.

3.3. Quasilinear torque

Thus far we have considered the effect that the rotation profile
has on the plasma response. It is natural to consider how this
plasma response would then, in turn, feed back on the rotation
through the quasilinear electromagnetic torque density,
defined as

t j d dY = á  ´ ñ( ) · ( ) ( )R J B , 72

where á ñ denotes a flux surface average. In figure 7, we
have plotted this torque versus Y and each Yz of the zero-
crossing scan of figure 3. For zero-crossings that are not in the
vicinity of a rational surface, the pronounced non-resonant
response presented in section 3.2 produces a large torque
density localized near Yz. The significant negative torque for
Y < Yz and positive torque for Y > Yz will act to flatten the
negative gradient of the rotation profile near the zero-cross-
ing. By reducing the shear, the quasilinear torque will act to
suppress the non-resonant mode that is driving it. In addition,
the reduced rotation shear could destabilize turbulent modes
in the vicinity of the zero-crossing, providing a possible
mechanism for the limitation of pedestal growth in the pre-
sence applied 3D magnetic perturbations.

The torque profiles in figure 7 change significantly when
the zero-crossing is in the vicinity of a rational surface (i.e.
when there is a significant resonant response). In particular,
there appear to be regions of low torque density with adjacent
regions of particular high torque density. This indicates that
there may exist rotation profiles with Y » Yz m 2 that are
relatively stable compared with the rotation profiles with zero-
crossings between rational surfaces that the quasilinear torque
tends to flatten. As experiments suggest that the zero-crossing
of the (electron perpendicular) rotation tends to align with a
rational surface upon a bifurcation into ELM suppression
[15], the effect of the quasilinear electromagnetic torque on
the location of the zero-crossing is of particular interest. As
negative torque will produce negative rotation at that Y
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Figure 4. Fourier decomposition of the total perturbed magnetic field for IL with the rotation profile used in the Yz scan for various Yz. Left:
dBmn versus the poloidal mode number m and normalized flux Y. The resonant m = nq line is in dashed white. The streak circled in dotted
white is centered about Yz. Right: individual poloidal harmonics versus Y. The Y location for the respective q = m/n locations are indicated
with dashed lines, while the Yz location is denoted in dotted black and overlaps a rational q line in (a) and (c). The color bar on the left and the
y-axis on the right share the same values.
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location, driving the zero-crossing inward, and vice versa for
positive rotation, there will exist stable points of the zero-
crossing when

t
t

Y =
Y

Y <( ) ( ) ( )0 and
d

d
0. 8z

z
z

Figure 8 shows the value of τ at Yz for each rotation profile in
the zero-crossing scan. We can identify two stable points in
the IL-induced torque, one just inside each rational surface,
and one stable point in the IU-induced torque at the =q 7 2
surface. For most values of Yz, the torque density is negative,
driving the zero-crossing inward toward a stable point. For
the small regions of positive torque density just inside the
stable points, however, the drive would be outward.
Regardless, the quasilinear torque density clearly provides a
drive of the zero-crossing toward the vicinity of a rational
surface. While this quasilinear electromagnetic torque must
compete with other sources of torque in the plasma (e.g.,

Figure 5. Fourier decomposition of the perturbed parallel current in response to IL versus the poloidal mode number m and normalized flux Y
for a rotation zero-crossing between rational surfaces (left) and coincident with a rational surface (right). The resonant m = nq line is in
dashed white, with horizontal white ticks denoting the =q 7 2 and =q 8 2 surfaces.

Figure 6. Flux surface average of the magnitude of the perturbed
parallel current density caused by the plasma response to IL for
rotation profiles defined by equation (1) with w = 1100 krad s–1,
w = -¥ 40 krad s–1, Y = 0.915z (marked in dashed black),
Y = Y + DY0.4zc and varyingDY. The legend denotes the rotation
shear at Yz in krad s–1.

Figure 7. The quasilinear electromagnetic torque caused by the
plasma response to IL with 1 kA of current for rotation profiles used
in the Yz scan versus both the zero-crossing location and Y. The
dashed line denotes Y = Yz and the dotted lines denote the =q 7 2
(lower) and =q 8 2 (upper) rational surfaces.

Figure 8. The quasilinear electromagnetic torque at the location of
the zero-crossing for the rotation profiles used in the Yz scan. The
torques induced by the upper and lower I-coils are shown separately.
The dashed lines denote where Yz is coincident with a rational
surfaces.
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quasilinear Reynolds stress, neutral beams, neoclassical tor-
oidal viscosity), it is a promising mechanism for the observed
evolution of the rotation profile during the ELM-suppression
bifurcation.

Finally, we note that non-resonant torque in the vicinity
of the zero-crossing is unexpected based on conventional
MHD studies. Typically, it is assumed that the plasma has an
ideal response outside the narrow resistive layer around a
rational surface, therefore allowing for quasilinear torque at
the rational surfaces but not in between [34, 35]. The present
case, however, seems sufficiently different from the
assumptions of previous studies to permit the torque profiles
in figure 7. Firstly, we would not expect to see significant
resonant torque when the zero-crossing lies between the
rational surfaces, since the resonant response is well screened.
Furthermore, the single-fluid M3D-C1 model goes beyond
standard resistive MHD to include particle diffusivity, kine-
matic viscosity and thermal conductivity. These additional
dissipation terms may provide drive for these non-resonant
modes between the rational surfaces. In addition, even within
the resistive MHD model, the small equilibrium rotation may
create a non-ideal region around the zero-crossing, as can be
seen from the linearized Faraday’s law:

d
wd d w j

d dh hd
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¶
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( · )

( ) ( )
( )

t
n R

B
B B
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where dv is the perturbed velocity and η and dh are the
equilibrium and perturbed resisitivity, respectively. In steady
state and in a region where ω is sufficiently small, the y
projection of this equation requires that the d ´v B term be
balanced by the resistive terms. Such a non-ideal region could
permit the non-resonant currents and torque densities pre-
sented here. Further work, however, is required to determine
the origin of these non-resonant modes with greater certainty.

3.4. Observability

Given the significant variation in both the resonant and non-
resonant plasma response, it is important to investigate how
this behavior affects quantities that are observable by external
measurements. One of the most commonly used diagnostics
on DIII-D for 3D field experiments is a magnetic sensor array
capable of measuring the magnetic field induced by low-n
plasma perturbations [36]. In particular, the magnetic signals
on the low-field side (LFS) and high-field side (HFS) mid-
plane have been used to demonstrate that the n=2 plasma
response is a combination of multiple modes being simulta-
neously driven in the plasma [9, 30] as well as to provide
significant insight into the nature of the ELM-suppression
bifurcation [15].

In figure 9, we have plotted the magnitude and phase of
the perturbed plasma magnetic field (i.e. the total field minus
the vacuum field) induced by IU and IL at the LFS and HFS
midplane probes as the zero-crossing of the rotation profile is
varied, as in the zero-crossing scan of figure 3. On the HFS,

the magnitude varies by ±33% throughout the scan, changing
most significantly when Yz is near a rational surface (i.e. when
there is a significant resonant response). In addition, there is a
significant change in the phase of the HFS response for Yz

near a rational surface. The phase shift near =q 7 2 occurs
only when the zero-crossing is in the vicinity of that resonant
surface, indicating that the shift is due to the enhanced
resonant response there. The shift near Y = Yz 8 2, however,
results in a distinct phase difference between the HFS
response with Y < Yz 8 2 and Y > Yz 8 2. Though seemingly
related to physics at the rational surface, the shift can’t be
solely caused by the resonant response there. This is most
readily seen by the fact that the resonant responses are
comparable for Y = 0.92z and Y = 0.95z (see figure 3), but
the HFS phases for these two zero-crossings are significantly
different. As the other resonant responses are largely
unchanged throughout this range of Yz, this phase shift should
be caused by a change in phase of the non-resonant plasma
response for zero-crossings on either side of the =q 8 2
surface. It may be possible to distinguish between resonant
and non-resonant effects by considering the magnitude of the
response; while both changes in plasma response induce a
phase shift, only changes to the resonant response sig-
nificantly affect the magnitude of the HFS perturbed magnetic

Figure 9. The magnitude and phase of the perturbed magnetic field at
the high-field side (magnitude times three) and low-field side
midplane magnetic sensors on DIII-D versus the location of the zero-
crossing for the rotation profiles used in the Yz scan. The field shown
is only the plasma response (total minus vacuum field) to IU and IL,
separately. The locations of the =q 7 2 and =q 8 2 rational
surfaces are denoted by the dotted lines.
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field. In comparison with these rather robust changes in the
HFS signal, the magnitude of the LFS signal varies by
only±10% throughout the Yz scan and the LFS phase is
essentially constant. Thus, we can conclude that the HFS
magnetic sensors on DIII-D should be capable of detecting
changes to the plasma response caused by shifts in the rota-
tion zero-crossing around rational surfaces, while the LFS
sensors should be largely insensitive to these effects.

Another effect commonly observed in 3D field experi-
ments is the splitting of divertor strike points due to the
creation of homoclinic tangles [37, 38]. On DIII-D, this can
be measured using high-speed cameras directed toward the
lower divertor. In particular, cameras equipped with carbon-
III line filters have shown that the degree of strike point
splitting is greater during periods of ELM suppression than
during ELMing periods with comparable applied 3D fields. In
order to assess how the strike point structure should change as
the zero-crossing of the rotation profile is varied, we have
calculated the divertor footprint structure with the TRIP3D-
MAFOT code [39] for several of the M3D-C1 runs used in
the zero-crossing scan of figure 3. These simulations confirm
that the island width at the =q m 2 surface increases when
Yz is in the vicinity of Ym 2, as required by the increased
resonant response there. Nevertheless, for the 4 kA I-coil
currents applied in the experiment from which our equili-
brium was reconstructed, the calculated islands remain small
enough that they fail to increase stochasticization in the edge.
Thus, the increased resonant response when Yz is near a
rational surface has little impact on the size and phase of
divertor footprints. Likewise, the change in location of non-
resonant modes near the zero-crossing did not substantially
affect the footprints. We conclude, therefore, that the zero-
crossing-induced plasma responses computed here should not
have an observable effect on strike point splitting.

4. Conclusion

A systematic scan of the zero-crossing of the single-fluid
rotation profile in M3D-C1 linear, time-independent plasma
response calculations has been performed for a typical DIII-D
ITER-similar shape reconstructed equilibrium. In general, it
was found that low rotation near a rational surface permitted
the penetration of resonant magnetic fields. Multiple peaks in
the profiles of d∣ ∣Bmn

res for both the upper and lower I-coils
indicate that multiple resonances may exist in the vicinity of a
rational surface and complicate the idea that a zero-crossing
directly coincident with a rational surface is necessary for
significant tearing drive. Furthermore, we observed that the
zero-crossing has significant effects on the plasma response
even when Yz is far from a rational surface. In particular, we
have shown that there is an amplification of near-resonant
(though still non-resonant) Fourier harmonics of the perturbed
magnetic field near Yz, while the far-off-resonant harmonics
are reduced. This broad coupling across magnetic Fourier
modes is induced by a perturbed current density centered
about Yz. A shear scan for the case where the zero-crossing
was in between two rational surfaces indicates that this non-

resonant response is amplified by significant shear at Yz,
although the exact nature of the mode or modes being driven
is unclear. Collectively, these results demonstrate that single-
fluid plasma response calculations can be highly sensitive to
the details of the rotation profile, particularly in the neigh-
borhood of a zero-crossing. When performing such simula-
tions, careful attention should be paid to this rotation profile
in order to ensure that the phenomena of interest are com-
puted with high fidelity.

An analysis of the quasilinear torque density allowed us
to hypothesize that the non-resonant plasma response could
play an important role in ELM-suppression dynamics through
two effects. First, the non-resonant response induced a torque
that would flatten the rotation profile in the vicinity of the
zero-crossing. The reduced rotation shear may destabilize
turbulent modes, increasing transport and arresting the growth
of the pedestal height and width. Second, this torque would
drive the rotation zero-crossing toward particular stable points
in the vicinity of a rational surface, allowing for an increased
resonant response there and possible island penetration.

Finally, by considering some of the commonly used
diagnostics in 3D field experiments, we were able to show
that increases in the resonant response should be detectable by
a change in both amplitude and phase of the perturbed
magnetic field on the high-field side of a tokamak. Changes in
the location of the non-resonant response, however, did not
appear to produce measurable changes in magnetic signals
outside of the plasma. Furthermore, calculations performed
with the TRIP3D-MAFOT code for these M3D-C1 results
revealed that variation of neither the resonant nor the non-
resonant responses described here produced a detectable
change to the divertor footprint structure.

Significant work remains in order to understand these
results more fully, to extend the results and to apply this
research directly to ELM-suppression studies. Additional
numerical zero-crossing scans at different rotation shear
values would allow for the investigation of how the non-
resonant, shear-amplified response interacts with the reso-
nances at or near rational surfaces. It is possible that the
differing behavior between the IU and IL responses shown
here could be due to varying coupling between the resonant,
tearing response and the non-resonant, shear-amplified
response. In addition, modifying the edge of our model
rotation profile to approach zero near Y = 1, as in the
experimental ´E B rotation profile, would allow us to
understand how significant resonant response near the
separatrix impacts the plasma response in the pedestal region,
as well as the observable magnetic signals and divertor
footprints. Further research ought to be done into the nature of
the non-resonant response as well, in order to assess what
modes are being driven in the plasma and to determine if this
response is, at least in part, responsible for bifurcations into
ELM suppression. Quasilinear and nonlinear simulations
would provide necessary insight into the evolution of the
rotation profile due to the plasma response, along with the
saturation level of the resonant and non-resonant responses.

Finally, two-fluid simulations are required for increased
applicability to experimental analysis. The most relevant
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additional physics in such calculations would be the inclusion
of separate ion and electron rotation profiles. The electron
rotation profile generally has similar qualitative features to the
single-fluid rotation we have modeled here. Based on known
theory [17, 40] and computational experience [22, 26], we
expect that the effect of the rotation zero-crossing on the
resonant field presented here should qualitatively extend to
the electron rotation’s zero-crossing in two-fluid simulations.
It is uncertain, however, to which rotation the non-resonant
plasma response, and thus the quasilinear torque, would be
sensitive. The M3D-C1 code and the flexible, parameterized
rotation model presented here should remain valuable tools
throughout all this ongoing work.
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