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Abstract
A new fluid model for runaway electron (RE) simulation based on fluid description is
introduced and implemented in the magnetohydrodynamics (MHD) code M3D-C1, which
includes self-consistent interactions between plasma and REs. The model utilizes the method of
characteristics to solve the continuity equation for the RE density with large convection speed,
and uses a modified Boris algorithm for pseudo particle pushing. The model was employed to
simulate MHD instabilities happening in a RE final loss event in the DIII-D tokamak. Nonlinear
simulation reveals that a large fraction of REs get lost to the wall when kink instabilities are
excited and form stochastic field lines in the outer region of the plasma. Plasma current converts
from RE current to Ohmic current. Given the agreements with experiment on RE loss ratio and
mode growing time, the simulation model provides a reliable tool to study macroscopic plasma
instabilities in existence of RE current, and can be used to support future studies of RE
mitigation strategies in ITER.

Keywords: disruption, MHD, runaway electron

(Some figures may appear in colour only in the online journal)

1. Introduction

Severe damage can be caused by high-energy runaway elec-
trons (REs) generated in tokamak disruption events, which is
one of the major threats to the safe operation of ITER [1]. It
is predicted that large populations of REs can be generated
during the current quench phase through knock-on collisions
and the resulting RE avalanche [2, 3]. The current associated
with REs can be several mega-ampere (MAs). It can alter the
macroscopic magnetohydrodynamics (MHD) stability condi-
tions and thus plays an important role in the disruption pro-
cess. Several present-day tokamaks, including DIII-D [4], JET
[5], ASDEX [6], and J-TEXT [7] have been used to test RE
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avoidance and mitigation strategies in order to control this
issue in ITER and future fusion reactors.

In recent experiments on DIII-D [8] and JET [9] with
large RE current generation, significant MHD instabilities are
observed in the RE current plateau phase after the initial dis-
ruption, which leads to the loss of most REs within tens of
microseconds [10]. These experiments indicate the import-
ance of MHD instabilities in a successful RE mitigation. In
the experiments, high-Z impurities are expelled via deuterium
injection, which also lowers the plasma density [11]. The
interaction between MHD instabilities and RE current has
been studied before theoretically with both analytical theory
and numerical simulations [12–16]. In the simulation, a fluid
description of REs is used to simplify the calculation, in which
RE current is calculated from RE density, and the feedback
of RE current to MHD is included in the generalized Ohm’s
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law ofMHD equations. However, since REs have a convection
speed much larger than the Alfvén velocity, solving the con-
tinuity equation for the RE density is challenging, and can lead
to numerical instabilities. To overcome this issue, a reduced
value of the convection speed is often used, and artificial dif-
fusion of RE density is introduced to damp high-k modes.

In this paper, we present a new model for coupling RE in
MHD simulations, and discuss its implementation inM3D-C1.
This model is based on the fluid description of REs [15]. The
convection part of the RE continuity equation is treated using
the method of characteristics, which can help avoid numer-
ical instabilities associated with the Courant–Friedrichs–Lewy
(CFL) condition. The solution of the characteristic equation
can be obtained by following pseudo particles along charac-
teristic lines, which is similar to particle-pushing in a particle-
in-cell (PIC) simulation and can be easily accelerated using
parallel computing and GPUs. In addition, we utilized a mod-
ified Boris algorithm to advance pseudo particles. The Boris
algorithm [17] can be used to advance changed particles in
magnetic fields, including their slow manifolds [18], which
can conserved phase space volume [19] and help limit the
accumulation of numerical error. This new simulation model
enables us to efficiently calculate the RE continuity equation
with a large value of the convection speed, comparable to the
speed of light.

Using this model we simulate a resistive kink instability
happening in the RE plateau. The simulation is based on a
DIII-D shot 177 040, in which a large RE current is gener-
ated from the avalanche after the initial disruption, and finally
leads to a ‘second disruption’ when the edge safety factor
(qa) approaches 2, and causes the sudden loss of all REs [8].
The linear simulation shows the dominance of the (2, 1) kink
mode near the edge, in agreement with previous work using
MARS-F [20]. In the nonlinear simulation, it is found that as
the (2, 1) resistive kink mode grows exponentially, more than
95% of the REs can get lost to the wall due to the breaking of
flux surfaces and formation of stochastic field lines, which is in
agreement with the experimental observation [8]. The plasma
current is converted from RE current to Ohmic current, and
its Ohmic heating effect results in an increase of plasma tem-
perature, which is self-consistently modeled in the simulation.
After the initial strike of MHD instability, the outer region of
the plasma remains stochastic, and the current density near the
magnetic axis increases which drives a (1, 1) kink mode and
flattens the residual RE density in the core region.

This paper is organized as follows. In section 2 we intro-
duce the fluid model of REs that was implemented in M3D-
C1. In section 3 we discuss the motivation and implementation
of the method of characteristics for solving the RE convection
equation. In section 4 we discuss the modified Boris algorithm
used in pseudo particle pushing, and illustrate its conservation
property. In section 5 we discuss the simulation of a resistive
kink instability with REs happening in a DIII-D equilibrium,
including the linear growth rate and real frequency, and non-
linear saturation and RE loss. In section 6 we give the conclu-
sions and discussion.

2. Fluid model of RE in MHD

M3D-C1 is an initial value code that solves the 3D MHD
equations in tokamak geometry [21]. The code utilizes
high-order C1 continuous finite elements on a 3D mesh which
is unstructured in (R,Z) but extruded in the toroidal angle. It
has the options to evolve the equations using fully-implicit
or semi-implicit methods [22]. The sparse matrices generated
from the Galerkin method are typically solved using the gen-
eralized minimal residual method (GMRES) method with a
block-Jacobi preconditioner. In addition to the plasma region,
the code can also contain a resistive wall region and a vacuum
region, and can represent halo currents shared by the plasma
and wall regions [23]. In combination with a kinetic code,
M3D-C1 can also be used to study effects such as neoclassical
tearing modes [24] and excitation of Alfvén modes driven by
energetic particles [25].

M3D-C1 has been used to study several phenomena related
to tokamak disruptions, such as vertical displacement event
[26], generation of halo current [27], and thermal quench due
to impurities injection [28]. Given the importance of REs in
disruption studies, we have implemented a fluid model of REs
in M3D-C1, by adding a new equation describing the evolu-
tion of RE density [15]. The RE current is calculated using RE
density based on a simplified model of RE momentum distri-
bution. The whole set of MHD equations solved by M3D-C1
can be written as,

nm

[
∂V
∂t

+(V ·∇)V
]
= enREE+(J− JRE)×B−∇p, (1)

∂n
∂t

+∇· (nV) = 0, (2)

∂nRE
∂t

+∇·
[
nRE

(
cREb+

E×B
B2

)]
= SRE, (3)

JRE =−enRE
(
cb+

E×B
B2

)
, (4)

E=−V×B+ η (J− JRE) , (5)

∂B
∂t

=−∇×E, ∇×B= J, (6)

p= n(Te+Ti), (7)

n
(γ− 1)

[
∂ (Te+Ti)

∂t
+∇· ((Te+Ti)V)

]
=−n(Te+Ti)∇·V−∇ · q+ η(J− JRE)2, (8)

q= n
(
κ⊥∇+bκ∥∇∥

)
· (Te+Ti) . (9)

2



Plasma Phys. Control. Fusion 63 (2021) 125031 C Liu et al

In this set, equation (1) is the MHD momentum equation. n
is the plasma number density, m is the ion mass, V is MHD
velocity, E is the electric field, e is the elementary charge, J is
the total current, B is the magnetic field, and p is the plasma
pressure. The first term on the right-hand-side is due to the
positive charge of plasma if excluding REs. Equation (2) is
the continuity equation of plasma density. Equation (3) is the
continuity equation for RE density nRE, where b= B/B, cRE
is the RE convection velocity, and SRE is a source term repres-
enting RE generation. RE current JRE is calculated from nRE
in equation (4), where c is the speed of light. Equation (5) is
the generalized Ohm’s law where η is the plasma resistivity.
Equation (6) is the Faraday’s law, which is used to advance
the vector potential A so that B=∇×A remains divergence
free. The pressure p is calculated from the electron temperat-
ure Te and ion temperature T i. Here we use a unified temperat-
ure for both assuming Te = Ti. Equation (8) is the temperature
equation where γ is the ratio of specific heats and q is the heat
flux. The last term characterizes Ohmic heating. q can be cal-
culated with equation (9), where κ∥ and κ⊥ are parallel and
perpendicular heat conduction coefficients.

Equation (3) describes streaming of REs along magnetic
field lines with parallel velocity cRE and E×B drift included.
Given that most of the REs are relativistic particles with a very
small pitch angle, the value of cRE should be close to the speed
of light c, but is usually set to be a smaller value for numer-
ical efficacy. The E×B drift can be important when MHD
instabilities become significant. Note that here the gradient
and curvature drifts of REs are not included, assuming that the
average energy of REs is small thus these drift motions are sub-
dominant compared to parallel streaming, and the perturbed
magnetic field δB is much smaller compared to the equilib-
rium field.

The current formed by REs can be represented as
equation (4). When substituting this JRE into equation (1),
it is found that the component perpendicular to B can can-
cel the −JRE×B term, and only the parallel component is
left. This component is not included in the current imple-
mentation, given that runaway density is much smaller com-
pared to that of thermal electrons and E parallel to B is smal-
ler than perpendicular part. Since the collisional friction of
REs can be ignored compared to thermal electrons, the res-
istive term in the generalized Ohm’s law is reduced as in
equation (5).

In the split time advance scheme in M3D-C1, the MHD
equations are calculated following the orders in equations
(1)–(9) for every MHD timestep. For each equation the
time-integration quantity is solved using θ-implicit method.
The momentum equation is advanced using the semi-implicit
method, by including a parabolic term that was derived from
second order time derivatives, to ensure numerical stability
[22, 29]. The plasma and RE densities are then calculated
using the magnetic field and electric field from the previ-
ous timestep. The magnetic field equation and the pressure
equation are advanced at the last step, using the velocities
and RE density obtained from both the current and previous
timesteps.

3. Method of characteristics for solving RE
convection

As discussed in the section 2, the continuity equation of RE
density (equation (3)) needs to be solved for the fluid RE
model. In the previous implementation used for linear MHD
simulation in a 2D mesh including RE current [15], this
equation was solved using the same numerical method as other
MHD equations. First a sparse matrix is constructed by way
of the θ-implicit method and the Galerkin method. Then this
matrix is solved using a direct solver.

However, it becomes more challenging to solve the RE
continuity equation in a 3D mesh for nonlinear simulation
with cRE ≫ vA, where vA is the Alfvén velocity. In 3D, a dir-
ect solver is no longer feasible, and the GMRES iterative
method is used with a block-Jacobi preconditioner. This pre-
conditioner is not optimal for equation (3) because the second
term is dominated by the toroidal derivative of the RE density
(∂φnRE, where φ is the toroidal angle) as b is mainly along the
toroidal direction. In the linear simulation where the toroidal
derivative can be represented using a Fourier mode number,
this term is a diagonal term in the matrix. In nonlinear simu-
lation using 3D mesh, this term becomes an off-diagonal term
with block-Jacobi method and can dominate the matrix when
cRE ≫ vA if the timestep is on the order of the Alfvén time.
To overcome the singularity and make the matrix solver con-
verge, one can use a smaller timestep and introduce subcycles
when solving this continuity equation, which will increase the
computation time. Additionally one can use a smaller value of
cRE to reduce the singularity. This method was used in [13, 14]
and in our previous linear simulation [15], where we showed
that the linear growth rate of MHD modes is not sensitive to
the value of cRE. However, it is found in our nonlinear sim-
ulation that one needs a large enough value of cRE to get a
converged result of mode saturation amplitude, as discussed
in section 5.3.

Another issue in our previous implementation is numer-
ical instability, which is linked to the singularity problem and
can become serious as cRE becomes large. This is because
equation (3) is a pure convection equation and high k modes
caused by numerical error will not diffuse. This issue can
be overcome by introducing an artificial diffusion term into
equation (3), which was used in in previous work. However,
when cRE is large, this diffusion term also needs to be large
to suppress the numerical instability, and this large diffusion
term can possibly reduce the MHD mode growth or even sup-
press unstable modes.

In view of the above issues, we developed a new method
to deal with RE convection, by converting the convection part
of equation (3) from a partial differential equation (PED) into
an ordinary differential equation (ODE) and solve it using the
method of characteristics. Using some properties of magnetic
fields, the convection part of equation (3),

∂nRE
∂t

+∇·
[
nRE

(
cREb+

E×B
B2

)]
= 0, (10)
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can be rewritten in a divergence-free form,

∂

∂t

(nRE
B

)
+

(
cREb+

E×B
B2

)
·∇
(nRE
B

)
=
nRE
B2

× [E · (∇× b)] .
(11)

The details of this conversion can be found in appendix A.
The last term characterizes the change of nRE/B due to the
horizontal displacement motion and resistive diffusion, both
of which happen on the resistive timescale that is much longer
than the time for RE convection along field lines. This term can
be treated as an extra source term, and the rest of the equation
can be easily solved by following the characteristic line,

dx(t)
dt

= cREb+
E×B
B2

, (12)

which can help convert the PED into an ODE:

d
dt

(nRE
B

)
[x(t), t] =

∂

∂t

(nRE
B

)
[x(t), t] +

dx(t)
dt

·∇
(nRE
B

)
× [x(t), t] = 0, (13)

whose solution is just (nRE/B) [x(t0), t0] = (nRE/B) [x(t= 0),0].
Therefore, to solve the convection equation, one needs to
integrate along the characteristic line (equation (12)) back-
wards in time to obtain the value of (nRE/B) at x(t= 0), and
then do a pull-back transformation to obtain the new value of
(nRE/B) from it.

When applying this method, we are using the new field
quantity (nRE/B) instead of nRE to represent RE density. In
M3D-C1, all the field quantities are described as coefficients
of finite element basis functions. These coefficients can be cal-
culated by solving a linear algebra equation, if the value of the
fields at each quadrature points is known,∑

i

(νi,Ciui) =
∑
i

(
νi,

nRE
B

)
=
∑
i

∑
m

νi(x= xm)
nRE
B

× (x= xm)J(x= xm), (14)

where ν i is the ith test function and ui is the basis function.
Ci is the coefficient corresponding to ui for the field (nRE/B).
xm is the mth quadrature point used for integration. (·, ·) is the
inner product and J is the Jacobian for spatial integration. The
equation on the left-hand-side can be written as M ·C, where
M is the mass matrix. Therefore, to obtain the values of Ci of
(nRE/B), one needs to calculate its value at each quadrature
point at the end of the timestep. The calculation steps using
the method of characteristics can be described as follows:

(a) Initialize ‘pseudo particles’ at each quadrature point of
every element in the whole 3D mesh.

(b) Push all the particle following equation (12), for a period
of ∆t but backwards in time.

(c) Pull the value of nRE/B at the final position to the initial
quadrature point.

(d) Solve the mass matrix equation (14) to obtain the coeffi-
cients Ci of nRE/B at the new timestep.

(e) Calculate the value of RE source term and add it to the
field.

This process is similar to advancing particles and calculat-
ing their density through mesh deposition in a PIC simulation.
The difference is that in this method RE density is represented
as a MHD field rather than a moment of the distribution func-
tion. Therefore, there is no need to pump in new particles when
REs are lost, and the numerical noise due to the spikiness of
the particle distribution is not present.

Since the RE continuity equation has been converted to
an ODE, the choice of timestep for pseudo particle pushing
is not limited by the CFL condition, and numerical instabil-
ity can be avoided even with large ∆t. This also means that
the artificial diffusion term which was introduced in the RE
continuity equation in previous work is not needed. Neverthe-
less, to ensure the accuracy of the RE orbit calculation with
large cRE, we choose a smaller timestep∆t ′ for equation (12)
calculation than what is used for the MHD calculation. This
means that there are multiple subcycles of particle pushing
within each MHD timestep, during which the MHD fields are
assumed to be fixed. Note that the pushing of pseudo particles
are independent of each other, thus can be easily parallelized
and accelerated using GPUs.

To illustrate the performance of the method of character-
istics, we did a benchmark for calculating equation (10) using
both the θ-implicit method using block-Jacobi preconditioner
and the new method of characteristics on CPUs and GPUs,
for ∆t= 0.65 µs). This benchmark is conducted using the
Summit cluster. The CPU computation is done using 32 IBM
POWER9 CPUs and the GPU computation is done using 96
NVIDIA Volta V100s GPUs. In the benchmark we employ a
meshwith 16 toroidal planes and 6454 elements per plane. The
RE convection velocity is set as cRE = 8 vA, which is close
to the value of speed of light. The total number of pseudo
particles is 1290 800, which is equal to the quadrature points
of all elements (125 per element). Even with such large num-
ber of pseudo particles, the method of characteristics still out-
performs the classical method on computation time, as shown
in figure 1. The reason is that, to make the θ-implicit method
work with such a large value of cRE, we need to use a large
number of subcycles to make the GMRES solver converge,
which slows down the solving of the continuity equation sig-
nificantly. For the method of characteristics, we apply ∆t ′ =
∆t/160 for pseudo particle pushing, but the calculation is still
faster given the simplicity of particle pushing operation and the
acceleration brought by parallelization computing, especially
on GPUs. This example shows that for simulations with large
cRE, the method of characteristics has a significant advantage
over the classical method.

4. Modified Boris algorithm for pseudo particle
trajectory calculation

When using the method of characteristics to solve the RE
continuity equation, one needs to integrate the trajectories of
pseudo particles to update the value of the RE density. It is
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Figure 1. Computation time for calculating RE convection equation
for 16 toroidal planes (6454 elements per plane), 1290 800 pseudo
particles and∆t= 0.65 µs with cRE/vA = 8 using different methods
and processors.

known that classical integration methods for solving ODEs,
such as the explicit Runge–Kutta method, do not conserve
physical quantities and suffer from accumulation of numerical
error for long time simulations. This problem is more serious
for the calculation of trajectories of REs with large convection
velocity. Inaccuracies of numerical integration can lead to the
deviation of a pseudo particle trajectory from its original flux
surface even without perturbations, and can break the conser-
vation of RE density.

This error accumulation problem can be mitigated by using
sympletic or structure-preserving integrators. Recently, a new
algorithm using the idea of slow manifold for calculating
the orbits of charged particles in magnetic fields has been
developed [18]. In this algorithm, the fast gyro motion of
magnetized particles is ignored and only the slow manifold
of motion is calculated, which is similar to the guiding cen-
ter model. Structure-preserving algorithms such as the Boris
algorithm can then be used to evolve this slow manifold with
a timestep not limited by the gyro period. In order to take into
account the effect gyro motion of the slow manifold, the mir-
ror force (−µ∇B) is introduced as an effective electric force
on the particles. This method was shown to have good long
time conservation properties, and was recently implemented
in a MHD-kinetic hybrid code M3D-C1-K for particle push-
ing [25].

Inspired by this algorithm, we developed a modified Boris
algorithm to advance pseudo particles following equation (12),
which is structure-preserving and can be used for long time
simulations.We start from the classical Boris algorithm, which
can be described by the following equations,

xl+1 = xl+ vl+1/2∆t
′, (15)

v ′
l+1/2 = vl+1/2 −

El+1 ×Bl+1

B2
, (16)

v†l+3/2 = v ′
l+1/2 +

q
m

(
v ′
l+3/2 + v ′

l+1/2

2
×Bl+1

)
∆t ′, (17)

vl+3/2 = v†l+3/2 +
El+1 ×Bl+1

B2
, (18)

where we subtract the E×B drift in equation (16) before
doing the velocity rotation with respect to B in equation (17),
and add it back after the rotation in equation (18). Note that
equation (12) can be regarded as the equation of motion of
massless particle in electromagnetic fields, where particles are
only affected by E×B drifts and not affected by gradient or
curvature drifts which depend on particle mass. In terms of
that, we can take the limit of m→ 0 to obtain a modified Boris
algorithm for integration of equation (12). In this limit, in order
to satisfy equation (17), the term in the parentheses must then
vanish. Therefore equation (17) should be replaced by:(

v ′
l+3/2 + v ′

l+1/2

)
×Bl+1 = 0,

∣∣∣v ′
l+3/2

∣∣∣= ∣∣∣v ′
l+1/2

∣∣∣ .
(19)

The last equation is added because the magnetic field force
does not change the kinetic energy of particles. We can see
that in this modified Boris algorithm, the magnetic field is not
used as a guidance for the next step motion like in Runge–
Kutta method. Instead, the next step velocity depends on the
its value at the previous timestep and the magnetic field works
like a reflection mirror that only reverses the component of v
which is normal to it.

As discussed in [18], the Boris algorithm can be used to
push particles with a timestep larger than the gyroperiod,
as long as it follows the slow manifold of particle motion
without gyromotion. When integrating equation (12), we are
only interested in drift motion including E×B drifts, so it
is valid to apply the modified Boris algorithm with ∆t ′ lar-
ger than the electron gyro period. To ensure that the trajectory
stays in the slow manifold, we use the 4th order Runge–Kutta
(RK4) method to calculate the particle motion of the initial
timestep from x0 to x1 following equation (12), and then obtain
v1/2 according to equation (15). These quantities are used as
initial values of the modified Boris algorithm.

To show the conservation property of the modified Boris
algorithm, we did a test simulation to compare the results of
it and RK4 for advancing equation (12) with cRE = 32vA. In
this test, the RE current is advanced following equation (10)
without electromagnetic perturbations or RE source. A plasma
equilibrium from DIII-D shot 177 040 is used, which is also
used for the nonlinear simulation presented in section 5. Given
that J= JRE and there is no resistivity associated with RE
current, the total RE current should not change with time.
Figure 2(a) shows the evolution of the total RE current using
the two algorithms, where the change is due to the accumu-
lation of numerical error. The error of the modified Boris
algorithm is much smaller compared to that of RK4. This res-
ult shows that the modified Boris algorithm provides better
conservation properties for the RE density when calculating
the RE continuity equation. Note that in this simulation the
timestep for pseudo particle pushing of the modified Boris
algorithm is 1/4 of the timestep of RK4, as in RK4 the field
evaluation needs to be done four times in one timestep of

5
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Figure 2. (a) Time series of total RE current in a static field simulation with cRE/vA = 32 using method of characteristics. The blue lines
shows the result using RK4 for pseudo particle orbit calculation, and the red line shows the result using the modified Boris algorithm. (b)
Conservation of magnetic flux for one pseudo particle using the two algorithms.

particle pushing. The total time for particle pushing using the
two algorithms are almost the same.

To better understand the underlying reason for the differ-
ence between the results, we compare the conservation prop-
erty of a single pseudo particle during the calculation. Given
that the system is axisymmetric without any perturbation, the
toroidal angular momentum Pφ = mvφR+ψp should be con-
served. Since pseudo particles are massless, there is no kin-
etic momentum associated with it and the conserved quantity
is just ψp. Figure 2(b) shows the time evolution of ψp for a
single pseudo particle during the particle pushing, using two
different algorithms. We can see that the total error of RK4
is larger for the period of integration. This error can lead to
the start and end points of pseudo particle lying on differ-
ent flux surfaces, resulting in an artificial diffusion and the
breaking of RE density conservation. The numerical error of
the modified Boris algorithm, though larger at each timestep,
does not accumulate with time like in RK4, which is con-
sistent with the structure-preserving property of the Boris
algorithm [19].

5. Numerical simulation of resistive kink mode with
REs in DIII-D

In this section we show the simulation results using the RE
module in M3D-C1 developed for MHD instabilities happen-
ing in a high RE current equilibrium. This setup is based on
DIII-D shot 177 040, where a large RE current is driven by
external loop voltage in the post-disruption phase. The RE
current reaches about 1MA and the safety factor of the last
closed flux surface (LCFS) (qa) drops to close to 2. Deuterium
massive gas injection (MGI) helps purge the impurities injec-
ted earlier to trigger the disruption, and reduces the plasma
density. Note that MHD instabilities can happen both during
the RE current growing stage and the final loss stage when qa
drops to 2. In the former stage, the instabilities happen inter-
mittently, and the loss of REs at the edge can be quickly com-
pensated by the continuous generation near the core. In the
simulation, we focus on the MHD instabilities happening in
the final loss event, where the majority of REs are lost in a
short time without regeneration.

5.1. Plasma equilibrium

Due to the RE shape control system available at DIII-D,
the formed RE beam and the remaining closed flux surfaces
are located near the high field side (HFS) in post-disruption
plasma. The profiles of RE density, the flux contours, and
the finite element mesh used for the simulation are shown
in figure 3. Note that the mesh density is high in the plasma
region, especially near the q= 2 flux surface in order to resolve
the tearing layer structure.

The initial plasma equilibrium satisfying the Grad–
Shafranov equation was obtained using the equilibrium code
EFIT with the experimental data at 1025 ms, which is just
before the final loss event happens. The equilibrium pressure
was set close to zero, thus the force balance equation can be
simplified as J×B≈ 0. This is to ensure that the equilibrium
current J is almost parallel to B, which is consistent with the
fluid RE model by assuming all equilibrium current is carried
by REs (J= JRE). The obtained new equilibrium is shown in
figure 4, including the profile of safety factor (q) and nRE/B.
Note that the equilibrium RE current does not have an off-
axis peak like JET equilibrium in [30], and both q and nRE are
monotonic function of ψp. The toroidal field at the magnetic
axis is BT = 2T. Plasma density is set at n= 1.5× 1019 m−3.
Ions are assumed to be all deuterium given that high-Z impurit-
ies are expelled. Because of the low plasma density, the Alfvén
velocity vA ≈ 0.026c which is larger than that in a normal
tokamak discharge. qa of the initial equilibrium was about
2.1.

5.2. Linear simulation of (2, 1) resistive kink mode

We first performed linear studies of the kink instability. This
is done by running M3D-C1 in a 2D mesh with a spectral rep-
resentation in the toroidal direction, assuming toroidal mode
number n= 1. The plasma resistivity is set to be uniform inside
the LCFS. Outside it the resistivity is set to be 103 larger than
the inside value in order in order to suppress current and sim-
ulate the vacuum region [31]. The value of cRE/vA was set to
be 8. Note that in a linear simulation, the RE density will be
affected by the perturbations of electromagnetic fields, which
can give rise to δnRE, but the RE characteristic line is calculated
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Figure 3. (a) 2D profile of initial RE density. The red lines show the location of q= 1.5 and q= 2 flux surfaces. The blue lines shows the
location of mesh boundary, which is also used as wall in the simulation for RE loss counting. (b) Finite element mesh used in M3D-C1
simulation.

Figure 4. 1D profiles of q and nRE/B, as functions of square root of
normalized poloidal flux.

only using the equilibriummagnetic fields. Thus there is no RE
loss in linear simulations.

Figure 5 shows the kink mode growth rates and the real fre-
quencies, for cases of JRE = 0 and JRE = J. The value of the
normalized resistivity η̂ = ηR/

(
µ0 vAa2

)
(R and a are major

and minor radii, µ0 is the vacuum permeability) is varied. Note
that η̂ can be regarded as the inverse of the Lundquist num-
ber S. The results show that both the growth rate and the real
frequency follow the 3/5 power law of η̂. Only in the cases

with RE current does the mode have a real frequency, which is
consistent with the theoretical analysis in [16]. The largest res-
istivity shown in the figure (η̂ = 3× 10−4) is close to the res-
istivity in DIII-D experiment with plasma temperature Te ≈ 2
eV. For this case, the mode growth rate is about 0.053 τ−1

A
with RE current.

In addition to resistivity, we also vary the value of qa and
study the mode growth rate and real frequency. In order to
change qa, the value of toroidal field in the equilibrium is
scaled while the current density is fixed [32]. In addition to
the resistive kink mode, we also study the stability of the ideal
kink mode by setting η̂ inside LCFS to be zero, while η̂ out-
side is set to be 1 to simulate the vacuum region [31]. The
results are shown in figure 6. It is found that the ideal mode
becomes unstable for qa ⩽ 2 with the growth rate increasing
significantly as qa drops, which is consistent with the theory
[33]. The results of the resistive mode simulations with and
without RE follow this trend, but in those cases the mode is
still unstable for qa > 2 due to large plasma resistivity. The real
frequency of the kink mode with RE increases as qa decreases
when qa ⩾ 2, which is similar to the growth rate. However,
when qa drops below 2, the real frequency drops significantly
while the growth rate increases, as shown in figure 6(b).

Figure 7 shows the structure of the kink mode, including
the perturbed magnetic poloidal flux (δψ) and the perturbed
RE density (δnRE) for cases with η̂ = 3× 10−4 and JRE = J.
It is shown that the mode is dominated by the m= 2 com-
ponent. The perturbed RE density is localized near the res-
onant q= 2 surface. Figure 8 shows the radial structure of
plasma displacement on the direction normal to flux surfaces

7
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Figure 5. Linear simulation results of (a) growth rate γ and (b) real frequency ω of (2, 1) resistive kink mode for different values of
resistivity, for cases with JRE = 0 (blue line) and with JRE = J (red lines).

Figure 6. Growth rate γ (a) and real frequency ω (b) of kink mode with different values of qa, for simulations with no resistivity inside
LCFS (black), with a large resistivity (blue), and with both resistivity and RE current (red). η̂ inside LCFS is set to be 3× 10−4 for the
resistive simulations. η̂ outside LCFS is set to be 1 for all the simulations.

Figure 7. Structure of perturbed poloidal flux δψp (a) and perturbed RE density (b) from the linear simulation. The values are normalized
according to the maximum absolution value.

(ξn) decomposed into different poloidal harmonics. The dis-
placement is also localized near q= 2, which is in agreement
with the linear results found with MARS-F [20].

We did a sensitivity study of the effect of the value of
cRE/vA on the linear growth rates and real frequencies. The
result is shown in figure 9, which indicates that both γ and ω
are not sensitive to this ratio as long as cRE/vA > 4. This is
also consistent with the analytical theory [16]. Similar stud-
ies have been conducted regarding mesh density and value of
timesteps of MHD equation and pseudo particle pushing, and
good convergent results are achieved.

5.3. Nonlinear simulation including RE loss

Based on the linear simulation result, we did a nonlinear simu-
lation of resistive kink instabilities in 3D, with 16 planes in the
toroidal direction. Each plane has structure like in figure 3(b)
and are connected by Hermite cubic elements in the toroidal
direction. In the nonlinear simulation the RE characteristic line
is calculated following the sum of equilibrium and perturbed
magnetic fields, and the E×B drift is included. When calcu-
lating characteristic lines of REs following equation (12), if the
line crosses the mesh boundary, it means that at the position
where the pseudo particles originates there is no newREs from
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Figure 8. Radial structure of normal plasma displacement of
different poloidal harmonics in the linear simulation.

Figure 9. Linear simulation results of mode growth rates (blue line)
and real frequencies (red line) using different values of cRE/vA.

other locations to replenish RE density. Thus the value of nRE
at this original location is set to zero, which indicates RE loss
to the wall. This method is equivalent to using an absorbing
boundary condition for nREwhen solving equation (3) directly
[15].

In nonlinear simulations we use non-uniform Spitzer res-
istivity, which is calculated from the local electron temperat-
ure Te,

η = 0.51
4
√
2π
3

e2 m1/2
e lnΛ

(4πϵ0)2 (kBTe)
3/2
, (20)

where we used Zeff = 1. The electron temperature is evolved
following equations (8) and (9), which is controlled by the bal-
ance of Ohmic heating and thermal conduction. In this simu-
lation, large thermal conduction (both κ∥ and κ⊥) is set to rep-
resent strong collisional diffusion in a post-disruption plasma.
Before the final loss event, due to the strong thermal con-
duction and the absence of Ohmic current, Te will drop very
quickly to the minimum value (set to be 2 eV and controlled

by the boundary condition of Te), which gives a resistivity
value η ≈ 300 µΩm. After the RE current gets lost in the res-
istive kink instability, the Ohmic heating will increase Te thus
decreasing η in the plasma region.

At the beginning of a nonlinear simulation, the (2, 1) res-
istive tearing mode will experience a linear growing stage,
and form magnetic islands near the plasma edge, as shown in
figure 10. Since the islands are touching the LCFS, REs ini-
tially inside the islands can get dumped into the open field line
region and get lost. The islands will also rotate in the plasma
frame, but this rotation is not significant since the linear growth
only lasts a short time.

Figure 11 shows the growth and saturation of kinetic and
magnetic energy of MHD modes in a nonlinear simulation.
Note that in addition to the dominant n= 1 mode, higher n
mode can also get excited due to nonlinear interaction. The
kinetic energy of all modes and the magnetic energy of n> 1
modes all show bursting behavior, while the magnetic energy
of the n= 1 mode has a slow decay following its initial excita-
tion. When the mode amplitude passes a certain threshold, the
field lines become stochastic in the outer region first due to
island overlapping, as shown in figure 10. REs in the stochastic
region get lost very quickly and only REs inside closed flux
surface remain. The stochastic region then grows and further
breaks inner flux surfaces. Within 0.06 ms, almost all the REs
are lost to the wall, and only the REs residing near the mag-
netic axis remain, where there are still closed flux surfaces.

Figure 12(a) shows the evolution of the RE current and total
current. Note that although the RE experience significant loss
(>95%) during the excitation of resistive kink modes, the total
current does not change much. This means that the lost run-
away current is replaced by current carried by thermal elec-
trons. This new current has strong collisional resistivity which
is balanced by parallel electric field, as shown in figure 12(b).
In addition, the change of magnetic field topology also leads
to a flattening of current density in the region of stochastic
fields, and the total internal inductance decreases, which fur-
ther leads to a small current spike of the total current. This
current spike was also seen in JOREK simulation [30] and
has been observed in the DIII-D experiment. The mechanism
is similar to the current spike happening during the thermal
quench of tokamak disruptions [34]. The inductive electric
field can increase the current density at the core region, which
can be illustrated by the evolution of safety factor at magnetic
axis q0. As q0 drops to 1, a (1, 1) kink instability can be excited
and cause a flattening of nRE near the core region.

To better understand RE loss during the instability, we
count the total value of nRE lost at different locations of the
boundary. Figure 13 shows the lost RE deposition location on
the poloidal plane (represented by white spots) and toroidal
angles. In this discharge, since the RE beam is streaming in
the same direction as the magnetic field and the plasma is only
touching the wall on the HFS, most of the lost RE will hit
the lower part of the wall on the HFS after getting transported
into the open field line region. Since the n= 1 mode domin-
ates during the RE loss, the deposition forms a single peak,
which is similar to the results of RE loss simulation in JET
using JOREK [30]. Note that this analysis is only based on RE
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Figure 10. Evolution of RE density and Poincaré plots of magnetic field line structure during the nonlinear simulation, at different time.

Figure 11. Evolution of kinetic energy (a) and magnetic energy (b) of MHD modes with different toroidal mode number in the nonlinear
simulation.

Figure 12. (a) Time traces of RE and total current when resistive kink mode happens. (b) Time evolution of q and electric field at magnetic
axis.
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Figure 13. Sum of RE density during kink instability at different location of poloidal boundary (a) and toroidal angle (b). The white spot in
(a) represents the peak RE loss. The red arrow curve indicated the direction of RE streaming in the simulation.

Figure 14. Convergence study of RE current loss ratio on different number of toroidal planes (a), and evolution of magnetic energy of n= 1
mode using different value of cRE/vA.

density, as in the fluid RE model, no RE energy information is
stored.

We also did some convergence studies regarding paramet-
ers used in the nonlinear simulation, including the number of
toroidal planes for the 3D mesh, and the value of cRE. The
results are shown in figure 14. We found that by increasing
the number of toroidal planes, the RE loss ratio increases, and
there is a significant different between 4 planes and 16 planes.
In M3D-C1, cubic Hermite polynomials are used in toroidal
direction to represent quantities between adjacent planes, so
four planes is usually enough to accurately represent n= 1
mode. However, this difference in RE loss ratio shows that
higher n modes play an important role in the formation of
stochastic fields and determining RE loss. In the study of vary-
ing cRE, it is found that although this change does not signific-
antly affect the RE loss ratio, it has an impact on the mode
saturation level. As shown in previous studies [12], the exist-
ence of RE current plays an important role in determining the
mode saturation amplitude. Thus if RE get lost very quickly

due to the large value of cRE, the mode can saturate in a lower
level due to the absence of RE current in later time. This
study confirmed the necessity of using a large value of cRE for
an accurate nonlinear simulation, and thus the importance of
applying the novel numerical method introduced in sections 3
and 4.

5.4. Nonlinear simulation after final loss event

We continued the nonlinear simulation after the initial RE
loss. Note that in the experiment, after significant RE loss,
the plasma temperature increases due to the Ohmic heat-
ing of thermal electron current, and neutrals can get ionized
which leads to an increase of plasma density. In our sim-
ulation, we have the Ohmic heating term in the temperat-
ure equation, and self-consistent evolution of plasma tem-
perature and Spitzer resistivity, but the ionization of neutrals
is not included. So we artificially increase the plasma dens-
ity by a factor of 10 at t= 0.3 ms, in order to match the
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Figure 15. (a) Time traces of RE and total current after kink instability and RE loss event. Dashed line shows the RE current without
secondary generation. (b) Evolution of magnetic energy of MHD modes with different toroidal mode number.

Figure 16. (a) Profiles of q and nRE/B at t= 1.0 ms. (b) RE density and Poincaré plot of magnetic field line structure.

increase of plasma density in the experiment. For RE dens-
ity we include a source term for secondary generation due
to knock-on collisions, using equation (7) from [35], since
in this case the electric field is much larger than Connor-
Hastie critical field (E/ECH ≈ 300) and there are no high-Z
impurities.

Figure 15(a) shows the evolution of RE current and total
current in the later time. The total plasma current, which
mainly consist of Ohmic current, decays due to the resistive
diffusion. Ohmic heating causes Te to rise to about 20 eV,
which gives a resistivity value η ≈ 15 µΩm. The current decay
time is about 3 ms, which is consistent with experimental
observation [8]. The RE current grows due to the second-
ary generation, but it is still much smaller compared to the
total current. Figure 15(b) shows the evolution of magnetic
energy of MHD modes. The n= 1 mode will remain at a
certain level after the initial excitation, and keep the mag-
netic field stochastic in the outer region. The n= 1 compon-
ent includes both (2, 1) and (1, 1) modes, the latter of which
can keep q0 close to 1 during this time, and q and nRE will
remain flat near the core region, as shown in figure 16, which
is similar to a sawtooth. Since there is no horizontal con-
trol in our simulation, plasma and RE beam will shift toward
HFS during resistive current decay. Eventually the plasma
will hit the wall on HFS and all the remaining RE will get
lost.

6. Summary

In this paper we introduced new developments of the fluid
model of REs inM3D-C1, which helps to enable us to perform
self-consistent simulations of MHD instabilities with RE cur-
rent using realistic physical parameters. In order to simulate
the continuity equation of RE density with large convection
speed, we applied the method of characteristics to convert the
equation into a form of ODE, and then solve it by advancing
pseudo particles. This method is further optimized using the
modified Boris algorithm to push pseudo particle, which can
help reduce the accumulation of numerical error.

The newly developed code is used to simulate a resistive
(2, 1) kink instability happening in a post-disruption RE plat-
eau in the DIII-D experiment. In the linear simulation, good
agreement is obtained betweenM3D-C1 andMARS-F results,
including the growth rate and mode structure. In the nonlinear
simulation, it is found that the (2, 1) mode can grow to signi-
ficant amplitude within 0.6 ms. Together with other modes, the
kink instability can break flux surfaces and make the field lines
in the outer region stochastic, which leads to >95% of REs
getting lost and only REs near the magnetic axis can remain.
The plasma current changes from RE current to Ohmic cur-
rent, and then exhibits a slow decay due to resistive diffusion.
RE deposition shows n= 1 toroidal variation and is localized
near the HFS. After the initial loss event, the strong parallel
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electric field can cause RE density increase through second-
ary generation, and keeps the current density at the magnetic
axis high and the safety factor q close to 1. This simulation
illustrates the effectiveness of the developed RE model, and
new simulations targeting other machines including JET will
be presented in future studies.

It is found from the convergence study of nonlinear simu-
lation that high n modes play important roles in determining
the loss ratio of REs, even though the n= 1 mode dominates.
These high nmodes are excited through nonlinear interaction,
and can increase the stochasticity of the magnetic field thus
accelerating RE loss. Note that in M3D-C1 we do not use an
ad hoc diffusion model for RE density calculation but a pure
convection model, thanks to the method of characteristics. It
is found in the linear simulation that the mode growth rate
does not have a strong dependence on the value of RE con-
vection speed cRE, which is consistent with the JOREK result
[30]. For nonlinear simulations, the value of cRE can be import-
ant in determining the saturation amplitude of the kink mode,
which indicates potential important nonlinear physics associ-
ated with RE convection. The RE loss ratio though is not sens-
itive to cRE. We thus believe it is important to use more real-
istic simulation model for REs in some cases, and it justifies
the necessity of further optimization of the algorithm used in
RE fluid model.

Note that in the current fluid model of REs, the gradient and
curvature drifts are not included in the RE continuity equation.
However, it is found that the curvature drift can be important
for high energy REs, and can lead to a shift of RE drift orbit
center from magnetic axis d= qp∥/(eB) [36]. This shift can
lead to a deviation of RE current iso-surface from magnetic
surface, which make it difficult to form an equilibrium sat-
isfying Grad-Shafranov equation. In DIII-D equilibrium, this
shift is relatively small due to the small RE energy, and can
be controlled using external vertical field coils. For JET and
ITER, REs from disruptions can be more energetic due to bet-
ter confinement, but the maximum energy is also limited by
synchrotron radiation given the larger magnetic field.

In the simulation model used in the paper, no seed RE gen-
eration mechanism such as Dreicer generation or hot-tail gen-
eration is included. This is valid as the plasma temperature
remains below 20 eV in the whole post-disruption phase, thus
the seed generation from the Maxwellian tail is ignorable. For
future simulation work targeting thermal and current quench
phases at the beginning of the disruption, these seed generation
mechanisms should be included, and additional source terms
such as tritium decay and Compton scattering should also be
included if simulating ITER D-T discharge.

In the experiment, it is observed that MHD mode growth
and RE loss can happen in Alfvén timescales. In the simula-
tion the kink instability grows in resistive timescale, but here
the difference between the two timescales is small as the Lun-
dquist number in post-disruption plasma is only about 103,
which is much smaller compared to that before disruption.
Nevertheless, it is possible that fast magnetic reconnection can
play a role in this process which can flatten the ratio of J/B

along themagnetic field linewithinAlfvén timescale [34]. One
evidence of fast reconnection is that the current spike observed
in our nonlinear simulation is still smaller compared to that in
experiment. Simulating fast reconnection on the Alfvén times-
cale is still a challenging job for MHD simulation, and will be
explored in the future.
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Appendix A. Derivation of divergence-free form RE
convection equation

In the appendix we show how to derive equation (11) from
equation (10):

∂nRE
∂t

=−∇ ·
[
nRE

(
cREb+

E×B
B2

)]
, (A.1)

∇· [nREcREb] =∇·
[
nREcRE

B
B

]
(A.2)

= cREB ·∇
[nRE
B

]
+
nREcRE
B

∇·B (A.3)

= cREB ·∇
[nRE
B

]
, (A.4)

∇·
[
nRE

E×B
B2

]
=

E×B
B

·∇
[nRE
B

]
+
nRE
B

∇·
[
E×B
B

]
,

(A.5)

∇·
[
E×B
B

]
= b · (∇×E)−E · (∇× b) (A.6)

=−∂B
∂t

−E · (∇× b) . (A.7)

Thus

∂

∂t

(nRE
B

)
=

1
B
∂nRE
∂t

− nRE
B2

∂B
∂t

(A.8)

=−
(
cREb+

E×B
B2

)
·∇
(nRE
B

)
+
nRE
B2

[E · (∇× b)] .

(A.9)

The last term can be written as:

E · (∇× b) = E ·
(
∇× B

B

)
(A.10)

=
E · J
B

+E ·
(
b× ∇B

B

)
. (A.11)

Given that E= v×B+ η (J− JRE), the first term in
equation (A.11) represents the dissipation of |B| due to res-
istivity of Ohmic current. Since ∇B/B≈−1/RR̂, the second
term is proportional to horizontal displacement of plasma,
which is also related to the resistive decay of current.
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