
Computer Physics Communications 275 (2022) 108313

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Hybrid simulation of energetic particles interacting with

magnetohydrodynamics using a slow manifold algorithm and GPU

acceleration ✩

Chang Liu a,∗, Stephen C. Jardin a, Hong Qin a, Jianyuan Xiao b, Nathaniel M. Ferraro a,
Joshua Breslau a

a Princeton Plasma Physics Laboratory, Princeton, NJ, 08540, USA
b University of Science and Technology of China, Hefei, 230026, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 August 2021
Received in revised form 22 January 2022
Accepted 10 February 2022
Available online 18 February 2022

Keywords:
Plasma physics
Magnetohydrodynamics
Energetic particle
Slow manifold
GPU acceleration

The hybrid method combining particle-in-cell and magnetohydrodynamics can be used to study
the interaction between energetic particles and global plasma modes. In this paper we introduce
the M3D-C1-K code, which is developed based on the M3D-C1 finite element code solving the
magnetohydrodynamics equations, with a newly developed kinetic module simulating energetic particles.
The particle pushing is done using a new algorithm by applying the Boris pusher to the classical Pauli
particles to simulate the slow-manifold of particle orbits, with long-term accuracy and fidelity. The
particle pushing can be accelerated using GPUs with a significant speedup. The moments of the particles
are calculated using the δ f method, and are coupled into the magnetohydrodynamics simulation through
pressure or current coupling schemes. Several linear simulations of magnetohydrodynamics modes driven
by energetic particles have been conducted using M3D-C1-K with the δ f method, including fishbone,
toroidal Alfvén eigenmodes and reversed shear Alfvén eigenmodes. Good agreement with previous results
from other eigenvalue, kinetic and hybrid codes have been achieved.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The physics of enegetic particles (EPs) is an important area
of plasma physics and their confinement is critical to the suc-
cess of International Thermonuclear Experimental Reactor (ITER)
and future fusion reactors. EPs can interact with the bulk plasma
and drive magnetohydrodynamics (MHD) instabilities, which can
cause significant transport of EPs. These physics problems must
be simulated comprehensively as there are strong kinetic effects
associated with EPs. A widely used strategy to study EPs is the hy-
brid simulation, which combines the particle-in-cell (PIC) and the
MHD simulations. In this method, EPs are described with mark-
ers carrying density and momentum, and are pushed following
the equation of motion of the EPs with the electromagnetic fields
from the MHD simulations. The moments of EPs are calculated us-
ing the obtained distribution function, where the δ f method can
be used to reduce the noise. The moments are then coupled into
the MHD equations, which characterizes the energy and momen-

✩ The review of this paper was arranged by Prof. Z. Was.

* Corresponding author.
E-mail address: cliu@pppl.gov (C. Liu).
https://doi.org/10.1016/j.cpc.2022.108313
0010-4655/© 2022 Elsevier B.V. All rights reserved.
tum exchange between the EPs and the bulk plasmas. With such
a coupling scheme in the simulation, when the motion of EPs is
in resonance with some MHD modes, the EP distribution can be
significantly altered near the resonance region and can give strong
feedback to the modes. Compared to fully kinetic simulations in
which both the EPs and the bulk plasmas are described using par-
ticles, the hybrid approach can save substantial simulation time
while still keeping the essential physics related to EP-MHD inter-
action.

In most of the previously developed hybrid simulation codes,
including MEGA [1], M3D-K [2], NIMROD [3], JOREK [4], XTOR-K
[5], HMGC [6], and CLT-K [7], particle pushing is done following
the guiding center equations of motion in order to reduce the
particle phase space dimension and allow the usage of timesteps
larger than the gyro period. It has been observed [8] that advanc-
ing guiding center equations using explicit integration methods
like the Runge-Kutta method can lead to breakdown of energy and
momentum conservation and large deviation of particle orbits for
long time simulations due to the accumulation of numerical er-
ror. Recently, a series of methods for pushing the slow manifold of
magnetized particles have been developed [9]. In those methods,
the mirror force was treated as an additional conservative force,

https://doi.org/10.1016/j.cpc.2022.108313
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108313&domain=pdf
mailto:cliu@pppl.gov
https://doi.org/10.1016/j.cpc.2022.108313

C. Liu, S.C. Jardin, H. Qin et al. Computer Physics Communications 275 (2022) 108313
which enabled people to use full orbit particle pushing algorithms
like the Boris algorithm with timesteps larger than the gyro pe-
riod while still keeping the simplicity and the structure preserving
property of the algorithm.

In order to perform long time hybrid simulations to study the
physics of EPs, we have developed a new hybrid code M3D-C1-K,
in which we have implemented one of the slow manifold algo-
rithms introduced in [9], whose essence is to use the Boris algo-
rithm to push the slow manifold of classical Pauli particle orbits.
The code is based on the M3D-C1 code [10], which solves the
MHD equations as an initial value problem using high order 3D
finite elements. The code can do both linear and nonlinear simula-
tions, and the MHD equations can be integrated using fully implicit
or semi-implicit methods [11]. The particle pushing is developed
with particle based parallelization, and can run on graphics pro-
cessing units (GPUs) with significant speedup compared to running
on central processing units (CPUs). In addition to particle pushing,
M3D-C1-K also includes the calculation of the particle distribution
function evolution using the δ f method, and the particle weight
is used to calculate the perturbed moments. The moments of the
particle distribution function are coupled with the MHD equations
using one of two schemes, pressure coupling or current coupling,
which utilize different orders of moments but are physically equiv-
alent. This new code has been tested with a number of linear
simulation problems including the excitation of Alfvén eigenmodes
and fishbone modes, and the results agree well with those of other
codes. Compares to the previous kinetic-MHD codes, M3D-C1-K
is better optimized for heterogeneous CPU+GPU computing and is
suitable for simulation of long-time nonlinear MHD phenomena in-
volving kinetic effects.

This paper is organized as follows: in Sec. 2 we introduce the
new slow manifold Boris algorithm used in this code, including a
test run showing its conservation property. In Sec. 3 we introduce
the δ f method and how we calculate the particle weights that
are used for deposition. In Sec. 4 we discuss the pressure coupling
and current coupling schemes and how they are implemented in
M3D-C1-K. In Sec. 5 we show how the code utilizes GPUs to real-
ize particle based parallelization, and how the data is transferred
between CPUs and GPUs. We also present a comparison of the par-
ticle pushing code running on CPUs and GPUs. In Sec. 6, we show a
series of simulation results using this new code, and a comparison
with results from other codes. In Sec. 7 we conclude.

2. Particle pushing with slow manifold algorithm

In M3D-C1-K, a hybrid model is utilized to simulate the physics
of the bulk plasma and the EPs. The bulk plasma is described
by the MHD equations which are solved using the finite element
method. EPs are represented by markers and advanced using the
particles’ equations of motion, which are calculated using the elec-
tromagnetic field information obtained from the MHD equations.
Then the EP information is coupled back into the MHD equations
by depositing moment information onto the finite element mesh.
This is similar to a PIC simulation. The difference between this and
fully kinetic or gyrokinetic PIC simulation is that in a fully kinetic
simulation, particle density and current are used in the Poisson’s
equation and the Ampere’s law to calculate the electromagnetic
fields. But in a hybrid model we use the pressure or current from
the EPs and insert them into the MHD equations.

In previously developed hybrid codes like M3D-K [2] and NIM-
ROD [3], the orbits of marker particles follow the drift or gyro
kinetic equations. For example, the particles’ equations of motion
implemented in M3D-K can be written as

dX = 1
�

[
v‖B� − b ×

(
E − μ∇B

)]
, (1)
dt B q

2

m
dv‖
dt

= 1

B�
B� · (qE − μ∇B) , (2)

where

B� = B + mv‖
q

∇ × b, (3)

B� = B� · b. (4)

Here E is the electric field, B is the magnetic field, b = B/|B| is the
unit vector in the direction of B, X is the guiding center location,
v‖ is the parallel velocity, μ is the magnetic moment, and m and
q are the mass and charge of particles.

The equations of motion are derived from a Lagrangian written
in guiding center coordinates following the variational principle
[12]. We can see that in this model, the gyro phase angle is an
ignorable coordinate which reduces the explicit phase space from
6D to 5D. The timestep for calculating the equations of motion
can be chosen based on the particles’ drift motion, and can be
much larger than the gyro period (2π/�, � is the particle gyro
frequency) and can thus save considerable computation time.

The guiding center equations of motion can be calculated using
an explicit integration method like 4th order Runge-Kutta (RK4).
Although RK4 minimizes the numerical error at every step, it has
been shown that the error can accumulate and lead to nonphysical
results in long time simulations [8]. For example, for a collisionless
particle moving in a static magnetic field in tokamak geometry,
the toroidal angular momentum (Pφ = qψ + mv‖R Bφ/B , ψ is the
poloidal field flux and φ is the toroidal direction) and kinetic en-
ergy (E = (1/2)mv2‖ + μB) will not be conserved if using RK4
for particle pushing, leading to the particle orbit deviating from
its original drift motion surface [13]. This problem can be more
serious for particles with large parallel momentum such as ener-
getic particles generated in fusion reactions or energetic electrons
such as runaway electrons. To resolve this problem, symplectic al-
gorithms [8,14] and structure-preserving methods [15] have been
developed, which were designed to preserve physical Casimir in-
variants when integrating the equations of motion.

In this regard, in M3D-C1-K, in addition to RK4 integration
of guiding center equations, we have implemented an alternative
method for particle pushing, which is a volume-preserving slow
manifold Boris algorithm. The Boris algorithm has been widely
used for pushing particles in magnetic fields. It has been shown
to have excellent long time accuracy [16]. Since it was developed
for integration of full orbits of magnetized particles, the timestep
is chosen to be much smaller than the gyroperiod. However, it
has been shown [9] that by introducing a mirror force term which
behaves like an effective electric force, one can use the Boris algo-
rithm to calculate the slow manifold of a magnetized particle’s or-
bit. Slow manifold provides a novel way to understand the concept
of “guiding center” that does not involve complicated coordinate
transformation or introduce non locality in phase space [17,18].
The mirror force term will give the effect of the gradient drift,
while the curvature drift will be given by the Boris algorithm it-
self. The algorithm can be described as

Xl − Xl−1

�t
= Vl−1/2, (5)

m

q

Vl+1/2 − Vl−1/2

�t
= E†(Xl) + Vl+1/2 + Vl−1/2

2
× B(Xl) (6)

where E† = E − μ∇B , and Xl and Vl−1/2 characterize the location
and velocity of the slow manifold at l and l −1/2 timestep. Though
Eq. (6) looks like an implicit form with Vl+1/2 appearing on both
sides, it can be calculated explicitly as shown in [16].

As discussed in [9], by including the mirror force in E†, the al-
gorithm can be used to push particles with timesteps larger than

C. Liu, S.C. Jardin, H. Qin et al. Computer Physics Communications 275 (2022) 108313

Fig. 1. The above plots show the simulation results of a passing particle with v‖ = 2.4 × 106 m/s, v⊥ = 7 × 105 m/s, including the particle orbit (red line in (a)), relative error
of toroidal angular momentum Pφ (b) and energy E (c) using Boris and RK4 methods. The below plots show the simulation results of a trapped particle with v‖ = 7 × 105

m/s, v⊥ = 2.4 ×106 m/s, including the particle orbit (red line in (d)), relative error of Pφ (e) and E (f). The data points are plotted for every 100 timesteps. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)
2π/�, as long as particles stay close to the slow manifold.1 Note
that in the Boris algorithm, X and V lie on different times with a
difference of 1/2�t , which is like the leapfrog integration method.
To bootstrap the Boris algorithm at the initial timestep, we use RK4
to advance the guiding center equations of motion (Eqs. (1)–(4)
from X0 to X1, and then use (X1 − X0)/�t as V1/2, to ensures that
markers stay close to the slow manifold of particle motion.

To check the conservation property of the slow manifold Boris
algorithm, we did a test run to push particles in a static magnetic
field without an electric field. The simulation is set up in a DIII-D
tokamak like geometry, with minor radius a = 0.67 m, major ra-
dius R = 1.67 m, and on-axis magnetic field B = 2 T. Two particles
were tested. One is a passing particle with v‖ = 2.4 × 106 m/s and
v⊥ = 7 ×105 m/s. The other is a trapped particle with v‖ = 7 ×105

m/s and v⊥ = 2.4 × 106 m/s. Both are initialized at the low field
side. For the integration of the guiding center equations with RK4
we use a timestep �t = 3.2 ×10−7 s ≈ 5/(2π/�), and for the slow
manifold Boris algorithm we use a smaller timestep �t′ = 1/4�t
which gives a similar total computation time as RK4. Fig. 1 shows
the error of the particles’ toroidal angular momentum Pφ and en-
ergy E using the two methods. We can see that the numerical
error of RK4 will accumulate and reach a significant level for long
time simulation, while the error of the Boris algorithm is always
bounded. The Boris algorithm shows a better long time conserva-
tion property for both Pφ and E , especially for passing particles
with large v‖ , though the benefit is only significant for long time
simulations (t > 500 ms). For short time simulations, the error of
RK4 is smaller as it is derived from a higher order integration
method.

1 If not initialized accurately, markers may just jump back and forth across the
slow manifold which leads to large errors.
3

The simulation result indicates that, though the conservative
property of the slow manifold Boris algorithm is more attractive
for long-time simulation, for most of the to-date kinetic-MHD sim-
ulations with fast ions, this advantage is not significant. Neverthe-
less, we have demonstrated [19] that for high-energy electron sim-
ulation, the benefit can be more significant, and we will present
this using M3D-C1-K in future publications. In addition, the slow
manifold Boris algorithm can give a speedup relative to RK4 when
used in M3D-C1-K, which will be discussed in Sec. 5.

3. δ f method and particle weight calculation

The moments of kinetic particles are calculated using their dis-
tribution function. In order to reduce the numerical noise, we use
the δ f method to calculate the change of the EP distribution func-
tion, meaning that for each marker, in addition to its coordinates,
we also need to calculate the evolution of the value of δ f = f − f0
or particle weight w = δ f / f during the particle pushing. Here f0
is the equilibrium EP distribution function. The δ f method can be
applied to linear simulations, or nonlinear simulations if the per-
turbed quantities are not far from their equilibrium values. This is
the case, for example, in the Alfvén wave frequency chirping simu-
lations. However, for nonlinear simulations with significant change
of quantities, there are no benefits to using this and a full-f method
should be used instead.

The evolution of δ f can be written as

dδ f

dt
= −df0

dt
, (7)

which is derived from the particle Vlasov equation df /dt = 0.
Eq. (7) can also be written as the evolution of w as

dw = −(1 − w)
1 df0

. (8)

dt f0 dt

C. Liu, S.C. Jardin, H. Qin et al. Computer Physics Communications 275 (2022) 108313
In the particle simulation the dw/dt term represents the change of
particle weight following its trajectory, and can be calculated dur-
ing particle pushing. When doing linear simulations, the particle
trajectory is calculated using the equilibrium field only. In addition,
the (1 − w) term in Eq. (8) will be replaced by 1, so that Eq. (8)
only includes linear terms. For nonlinear simulations, the particle
trajectory calculation includes both the equilibrium and the per-
turbed fields.

In the above equations, df0/dt represents the change of the
equilibrium distribution by the perturbed fields, since df0/dt = 0
with the equilibrium fields only. Given that there is no electric
field in the equilibrium, Pφ , E and μ are constants of motion in
the absence of perturbations. The time derivative of f0 can then
be written as

df0

dt
= dPφ

dt

∂ f0

∂ Pφ

+ dE

dt

∂ f0

∂ E
, (9)

and ∂ f0/∂ Pφ and ∂ f0/∂ E can be calculated from the analytical
expression of f0 using the chain rule. Here we assume μ will not
change with perturbed fields following the approximation of guid-
ing center. Since Pφ and E will only be changed by the perturbed
fields, their time derivatives can be expressed as

dPφ

dt
=

(
dX

dt

)
1
· ∇ψ +

(
dv‖
dt

)
1

mR Bφ/B, (10)

dE

dt
= qv · E1 + μ

∂ B1‖
∂t

. (11)

In a linear simulation, the (. . .)1 terms can be expressed as(
dX

dt

)
1
= E1 × B0

B2
0

+ v‖
B1

B0
, (12)

(
dv‖
dt

)
1
= qE · B/B − b0 · μ∇B1‖, (13)

where E1 and B1 are the perturbed electric and magnetic fields,
and B1,‖ = b0 · B1. These equations are derived from guiding-
center equations of motion, and are used in linear simulation to
reduce numerical error. For a nonlinear simulation, (dX/dt)1 and (
dv‖/dt

)
1 can be obtained by calculating the difference between

dX/dt and dv‖/dt from the Boris algorithm including all the per-
turbed fields, with (dX/dt)0 and (dv‖/dt)0 using only the equi-
librium fields following the guiding center equation, in order to
include all the nonlinear contributions. ∂ B1‖/∂t and ∇B1‖ are cal-
culated similarly by taking the difference of the results with and
without perturbed fields.

To include the finite Larmor radius (FLR) effect related to
physics on small spatial scales comparable to the gyroradius, one
can use orbit-averaged fields 〈E1〉, 〈B1〉 in the above equations to
replace the fields E1, B1 evaluated at the guiding center, like

〈E1〉(X) = 1

2π

∫
E1(x)δ(x − X − ρL)dxdθ,

≈ 1

4

4∑
j=1

E1
(
X + ρL, j

)
. (14)

Here ρL = v⊥ ×b/� is the gyro radius vector, v⊥ is the particle ve-
locity perpendicular to the magnetic field calculated from μ, and θ
is the gyro phase angle. The integration can be approximately cal-
culated using the 4-point averaging scheme [20,21], where ρL, j are
4 vectors with length |ρL | and are uniformly distributed in θ . In
addition, for the B‖ terms associated with the particles’ magnetic
moment, the gyroaverage should be taken at an effective Larmor
radius ρ L/

√
2, as discussed in [22]. These terms include the sec-

ond term in Eq. (11) and the second term in Eq. (13), and the
4

mirror force term used in the calculation of the effective electric
field in the Boris algorithm when doing nonlinear simulation.

The calculation of the change in particle weights needs par-
ticle’s v and x (required for field evaluation) at the same time.
When pushing particles using the Boris algorithm, we take vl =(
vl−1/2 + vl+1/2

)
/2, and use xl and vl in the integration of the

weight equation.
After obtaining δ f or w , the moments can be calculated from

them. The parallel and perpendicular pressure can be calculated as

δP‖(x) =
∫

mv2‖ w f B∗dv‖dμdθ,

≈
∑

k

mv2‖ wk
fk

gk
B∗ S (x − xk) , (15)

δP⊥(x) =
∫

μB

(
w + B1‖

B0

)
f B∗dv‖dμdθ,

=
∑

k

μB

(
wk + B1‖

B0

)
fk

gk
B∗ S (x − xk) . (16)

Here
∑

k is the summation of all the particle markers, B∗ charac-
terizes the phase space volume and is used as the Jacobian for the
phase space integral, and S is the shape function used for particle
deposition. In the calculation of δP⊥ the change of perpendicu-
lar pressure due to the variation of B‖ is taken into account. Here
g represents the distribution of loaded makers, which depends on
how the markers are initialized. If the makers are initialized uni-
formly in phase space, then g = B∗ and the summation should
include f in the summation, or include an additional f /g term in
the weight evolution equation like in M3D-K [2]. In M3D-C1-K, we
initialize the markers following the same distribution function f0
using the Monte Carlo method in order to reduce the total number
of markers while keeping a low noise level. With this implemen-
tation, the marker distribution will then follow the evolution of
B∗ f during the simulation, and the f /g term in the summations
of Eqs. (15) and (16) can be ignored.

Note that according to Eqs. (15) and (16) the change of integra-
tion Jacobian B∗ can also affect the particle moments. For example,
when affected by a compressing magnetic field (∇ × E �= 0), the
particle distribution which is initially homogeneous in space and
energy can be compressed by the E × B velocities and form a gra-
dient. This effect can be captured by the particle pushing since it
is equivalent to solving a continuity equation as pointed out by
[20], so that g = B∗ f can be kept. However, it cannot be captured
by the df0/dt term as there is no gradient in the initial particle
distribution function. To address this issue, we can follow the dis-
cussion in [23] and use d = w + (1 − w)B∗

1/B∗ to replace w in
the summation in Eqs. (15) and (16), which was also used in the
M3D-K implementation. For a linear simulation, the definition of
d is d = w + B∗

1/B∗ which only keeps the linear terms. Note that
with this additional term and the B1‖/B0 term in Eq. (16), EPs can
behave like plasma with heat capacity ratio γ = 2 in the perpen-
dicular direction.

In a finite-element representation, the summations in Eqs. (15)
and (16) can be calculated using the Galerkin method to obtain the
particle pressure fields, by multiplying with a test function νi and
integrate in the elements. This can be written as∫

νiδP‖ Jdx =
∑

k

wkmv2
k,‖

∫
νi(x) J (x)S(x − xk)dx, (17)

∫
νiδP⊥ Jdx =

∑
k

wkμk B(xk)

∫
νi(x) J (x)S(x − xk)dx. (18)

The polynomial coefficients can be obtained by solving the mass
matrix. If we take S as a δ-function, the integral can be re-

C. Liu, S.C. Jardin, H. Qin et al. Computer Physics Communications 275 (2022) 108313
duced and the whole calculation is significantly simplified. How-
ever, since in M3D-C1 high order polynomials are used for the
test functions, the obtained pressure fields can be spiky. One can
use a different S like a tent function with a finite width to get
a smoother result, but this means that we also need to use a
finite-width shape function when evaluating the field at the parti-
cle’s location to make the whole scheme self-consistent, which can
complicate the particle pushing and slow down the computation.
For the linear simulations discussed in Sec. 6, we use δ-function as
the particle shape function.

When performing simulations including the FLR effect, the
pressure deposition should be calculated through pull-back trans-
formation and follow the orbit average scheme with 4-point av-
eraging. The S (x − xk) terms in Eqs. (17) and (18) should be re-
placed by 1/4

∑4
j=1 S

(
x − Xk − ρ j

)
, which means that each parti-

cle will contribute to pressure deposition at 4 points along its gyro
orbit. This implementation is consistent with the field evaluation
in Eq. (14).

4. Coupling to MHD equations

In the calculation of the contribution of EPs to the MHD equa-
tions, we assume that the density of energetic particles (nh) is
small compared to the bulk ion density (n). In this case, the major
contribution of EPs lies in the MHD momentum equation. Follow-
ing different assumptions on the meaning of the MHD momentum
equation, one can use either pressure coupling or current coupling
schemes to represent this contribution.

If we assume that the MHD momentum equation describes the
change of total momentum including both the energetic particles
and the rest of the ions and electrons (bulk plasma), the terms re-
lated to the EP momentum change and forces should be included.
In that case, the MHD momentum equation can be written as

ρ

(
∂V

∂t

)
+ ρ(V · ∇V) + ∂Kh

∂t
= J × B − ∇p − ∇ · Ph, (19)

where ρ is the bulk plasma density, V is the bulk plasma velocity.
J = ∇ × B is the total current, p is the bulk plasma pressure, and
Ph = P‖bb + P⊥ (I − bb) is the total EP pressure tensor. To use the
result of the δ f method, one can subtract the equilibrium force
balance equation

J0 × B0 = ∇p0 + ∇ph0, (20)

to only calculate the evolution of the perturbed field. Here we
assume that the EP equilibrium pressure is isotropic.2 The momen-
tum equation then becomes

ρ

(
∂V

∂t

)
+ ρ(V · ∇V) + ∂Kh

∂t
= J0 × B1 + J1 × B0 + J1 × B1

− ∇δp − ∇ · δPh, (21)

where J1 = ∇ × B1 and δPh is calculated from δ f like in Eqs. (15)
and (16). This method is called “pressure coupling” and is imple-
mented in M3D-K [2]. Note that in M3D-K, the ∂Kh/∂t term is
ignored assuming the EP momentum is small compared to the bulk
momentum.

If we assume that the MHD momentum equation describes the
momentum change of bulk plasma only and does not include the
EPs, then it should be instead written as

ρ

(
∂V

∂t

)
+ (V · ∇V) = (J − Jh) × B − ∇p (22)

2 For anisotropic equilibrium EP pressure, there are additional terms that comes
from the ∇ · [(P‖0 − P⊥0)bb

]
which is associated with the perturbed B fields.
5

where Jh is the EP current, and J − Jh is the current from the
bulk plasma. Here EP is coupled into the MHD equation through
Jh rather than Ph , therefore this method is called “current cou-
pling”. Note that in this equation we do not include the electric
force on the bulk plasma −qnhE, which was present in the current
coupling scheme in [24,25] due to the fact that the bulk plasma
is non-neutral. The reason is that this term will cancel part of the
Jh × B term which is due to the E × B drift of EPs, since the E × B
drift will cause both ions and electron to move at the same veloc-
ity with their currents canceling [26].

Jh includes currents from the parallel motion (Jh,‖), the cur-
rent due to the drift motion (Jh,D), and the magnetization cur-
rent which is due to the gyro motion of EPs (Jh,M). The first two
kinds of current can be calculated using the result of dX/dt from
the guiding center equation of motion or the slow manifold Boris
method after pull-back transformation [27]. Note that Jh,‖ will not
contribute to the J × B force in the momentum equation. Jh,M can
be calculated as [27]

Jh,M(x) =
∫

ρ̇δ(X + ρ − x) f B∗d3Xdv‖dμdθ,

= ∇ × M, (23)

where M = P⊥b/B . If we take the drift kinetic limit and choose a
simple representation of drift velocity including the curvature and
gradient drifts,

vD = mv2‖
qB

∇ × b + μ

qB
b × ∇B, (24)

then Jh × B can be simplified as

Jh × B =
[

q

∫
vD f d3v + ∇ × M

]
× B,

= P‖b · ∇b − P⊥∇ ln B × b × b − ∇ ×
(

P⊥
B

b
)

× B,

= [∇ P⊥ + ∇ · [(P‖ − P⊥
)

bb
]] × b × b, (25)

which is close to the ∇ · Ph term in the pressure coupling scheme,
except that here the component parallel to b is eliminated by the
×b × b operator. This means that we can use the result of P‖ and
P⊥ calculated from Eqs. (15) and (16) for both pressure and cur-
rent coupling schemes, rather than calculating Jh separately. The
strategy for current coupling is the same as the method used in
MEGA [1]. For simulation including FLR, this relationship is still
valid as both Jh and Ph should be calculated by doing pull-back
transformation.

When doing a δ f simulation, one should subtract the equilib-
rium force balance equation like in Eq. (21),

ρ

(
∂V

∂t

)
+ ρ(V · ∇V) = (J0 − Jh0) × B1 + (J1 − δJh) × (B0 + B1)

− ∇δp. (26)

The pressure terms in Eq. (25) should be replaced by δP‖ and δP⊥
to give the result of δJh × (B0 + B1). Assuming that the equilibrium
EP current Jh0 is perpendicular to B0 and satisfies the force balance
Jh0 × B0 = ∇ph0, this force of Jh,0 × B1 can be written as

Jh,0 × B1 = b0
B1

B0
· ∇ph0. (27)

This simplified current coupling scheme was also implemented in
the MEGA code [1].

Note that in the pressure coupling scheme in [25], only the
perpendicular part of ∇ · Ph is added in the momentum equation,

C. Liu, S.C. Jardin, H. Qin et al. Computer Physics Communications 275 (2022) 108313
which is exactly the same as the result in Eq. (25) and is equiva-
lent to the simplified current coupling scheme. The reason for only
including the perpendicular part is that, assuming the perpendic-
ular motion of both bulk plasma and EPs are dominated by E × B
drifts, then Kh in the perpendicular direction is much smaller com-
pared to ρV as nh � n and can be safely neglected. However, in
the parallel direction ∂Kh/∂t cannot be ignored, and the momen-
tum evolution of the bulk plasma and EPs should be calculated
separately. In the pressure coupling scheme implemented in M3D-
C1-K, we still include all the components of the ∇ · Ph term and
ignore the ∂Kh/∂t in all directions to follow the implementation
in M3D-K. We find that for all the simulations we have conducted,
the two coupling schemes give almost the same results, with no
difference on numerical stability, which will be discussed in Sec. 6.
These results indicate that the EP parallel momentum term does
not affect much the final results in those cases.

5. GPU acceleration of particle pushing

The M3D-C1 code was developed using the distributed memory
parallelization model with Message Passing Interface (MPI). The
whole 3D mesh is decomposed into the same number of subdo-
mains as the number of CPU processes. Each process is responsible
for calculating the elements of the MHD equation matrices for
one subdomain, and only manages the memory of fields within
it. This is called “domain-based parallelization”. When developing
the particle pushing code for M3D-C1-K, we used a hybrid par-
allelization model, which employs “particle-based parallelization”
and “shared memory model” for particle pushing. We find that if
we stuck with the domain-based model, the code would then need
to take care of particles moving from one subdomain to another,
which would involve frequent communication between different
processes or threads that can significantly slow down the com-
putation. In the particle-based parallelization, each parallel thread
takes care of pushing one particle for several timesteps indepen-
dent of other threads. The field information is duplicated across all
the GPUs. Therefore this model is suitable for large-scale parallel
computing using GPUs. This strategy of particle-based paralleliza-
tion is also used in many gyrokinetic codes like GTC [28] and GTS.

In the development of M3D-C1-K, we utilized GPUs to accel-
erate particle pushing and particle weight calculation, which is
the most time-consuming part of the kinetic module. The particle
pushing code is developed using OpenACC. OpenACC is a coding
standard similar to OpenMP, which provides a list of directives to
help write parallel computing code and simplify data communi-
cation operations between hosts and accelerator devices (such as
GPUs). We also implement the multi-thread parallelization of par-
ticle pushing on multi-core CPUs using OpenMP, so that the code
can run on just CPUs or with GPUs by setting compilation direc-
tives. The calculation of the MHD equation finite element matrix
and the matrix solving is still done by the M3D-C1 code using
CPUs.

In the implementation of particle-based parallelization, each
particle pushing thread must have access to the electromagnetic
field information in the whole mesh, so that the particle can move
to an arbitrary location in the mesh without performing extra
communication. This means that the field information must be
collected from each CPU processes after the MHD calculation and
uploaded to the shared memory of each GPU. For most modern
GPUs, the memory is large enough to store the field information of
the whole 3D mesh. The data collection on CPU processes is done
utilizing the MPI Shared Memory (SHM) model introduced in MPI-
3, which can accelerate the communication between processes on
the same computation node. For communication between different
nodes, the classical message communication interface is used. Af-
ter the pushing, the particle information needs to be downloaded
6

from GPUs and distributed into the distributed memory of each
MPI processes. The data distribution work and the calculation of
P‖ and P⊥ for pressure or current coupling is done using CPUs.

The fields and particles are evolved separately in M3D-C1-K.
The field is evolved according to the MHD equations and is in-
tegrated using the implicit or semi-implicit method [11]. In the
simulation we find that the MHD timestep is not limited by the
Courant–Friedrichs–Lewy (CFL) condition just like in semi-implicit
method, even if the EP calculation is explicit. This means that the
semi-implicit operator [29] is powerful enough to suppress the nu-
merical instabilities brought by the explicit methods in particle
pushing. The particle pushing and weight calculation are done be-
tween the integral of two adjacent MHD timesteps. It has subcycles
for particle pushing in order to increase the accuracy of particle or-
bit calculation. The transfer of field information is done before the
beginning of the particle pushing subcycles, which can save time
for communication between CPUs and GPUs. During the subcycles,
the fields are assumed to be static.

The performance benchmark of the particle pushing code in
M3D-C1-K on CPUs and GPUs is shown in Fig. 2. After porting the
code to GPUs without any modification to the algorithm, we get
about 11 times speed up when pushing 16 million particles for 50
steps using RK4. The benchmark was done on the Summit cluster
using four nodes. The CPU run utilizes 8 IBM POWER9 CPUs with
22 SIMD Multi-Core (SMC) on each processor. The GPU run utilizes
24 NVIDIA Tesla V100 GPUs. The simulation is set in a 3D mesh
with a DIII-D like geometry, with 4 toroidal planes and 5679 ele-
ments per plane. The particles are uniformly distributed in the 3D
mesh with a Maxwellian distribution.

It is also shown in Fig. 2 that there is a speedup when using
the slow manifold Boris algorithm for 200 steps and timestep 1/4
of that of RK4 on GPUs. This speedup is brought by the simplifi-
cation of the field evaluation in the Boris algorithm. In M3D-C1-K,
the electromagnetic fields are represented using scalar and vec-
tor potentials (φ, A). When evaluating the fields (E, B) at a specific
point during particle pushing, the derivatives of the polynomi-
als are needed. Thus if calculating terms like the magnetic field
curvature term in the guiding center equations, one needs to cal-
culate the second order derivatives of the polynomials, which can
be time-consuming when using a 3D mesh. After profiling the
particle pushing code using RK4, it was found that most of the
time is spent in the evaluation of the second order derivatives of
polynomials. When using the Boris algorithm, the magnetic field
curvature term is not needed, and the gradient term ∇B can be
easily calculated by treating B as an additional scalar field, thus
only the first order derivative of the polynomials is needed.

More speedup can be achieved by further optimization, for ex-
ample, by improving the coalescence of the GPU memory access
and using single-precision floating-point arithmetic. For simula-
tions shown in this paper with energetic ions, it is found that
the computation time for particle pushing is already close to the
computation time spent on the CPU for the MHD calculation, thus
further optimization on particle pushing is not critical to the over-
all performance. For future simulations with higher energy ions or
runaway electrons, the optimization on particle pushing is still im-
portant.

6. Simulation results

In this section we show the linear simulation results of M3D-
C1-K, including fishbone, toroidal Alfvén eigenmode (TAE), and
reversed shear Alfvén eigenmode (RSAE). The results are com-
pared with those from other codes, including the mode frequency,
growth rate, and structure.

C. Liu, S.C. Jardin, H. Qin et al. Computer Physics Communications 275 (2022) 108313
Fig. 2. Computation time for pushing 16 million particles in a 3D mesh with 4
toroidal planes (5679 elements per plane) using different methods and processors.
For RK4 the particle-pushing was done for 50 steps and for the Boris algorithm the
pushing was done for 200 steps with the timestep 1/4 of that used in RK4 simula-
tion. Note that this is a comparsion for the computation time for particle pushing
only and not including MHD calculation.

6.1. Linear fishbone simulation

For the linear fishbone simulation we followed the setup in
[2], which includes a benchmark study of linear fishbone simula-
tions between M3D-K and NOVA-K in a large aspect ratio circular
tokamak. The setup was also used for a benchmark between NIM-
ROD and M3D-K in [3]. A circular tokamak with R = 1 m and
a = 0.361925 m was chosen for the test. The plasma consists of
hydrogen ions whose density is uniform with n0 = 2.489 × 1020

m−3. The total pressure profile is p(ψ) = p0 exp(−ψ/0.25), where
ψ is the normalized poloidal flux ranging from 0 at the magnetic
axis to 1 at the boundary. The central pressure p0 = 16335 Pa and
the central total plasma beta βtotal is 8%. The toroidal field at the
magnetic axis is BT = 1 T. The safety factor (q) profile is given by
an analytical expression,

q = q0 + ψ

[
q1 − q0 + (

q′
1 − q1 + q0

) (1 − ψs) (ψ − 1)

ψ − ψs

]
, (28)

where q0 = 0.6 and q′
0 = 0.78 are the value and derivative of q at

ψ = 0, q1 = 2.5 and q′
1 = 5.0 are the value and derivative of q at

ψ = 1. ψs = (
q′

1 − q1 + q0
)
/
(
q′

0 + q′
1 − 2q1 + 2q0

)
.

The density profile of EPs has the same shape as the plasma
pressure profile. In momentum space it follows an isotropic slow-
ing down distribution given by

f (v) = H(v0 − v)

v3 + v3
c

, (29)

where v0 = 3.9 × 106 m/s is the maximum velocity of EPs and
vc = 0.58v0 is the critical velocity. The same value of v0 and vc is
used for all flux surfaces. Since the EP density and pressure follow
the same spatial profile as the plasma pressure, we can vary the
value of the EP density and the bulk plasma pressure to change
the ratio of βh/βtotal (βh is the EP pressure beta) while keeping
the total pressure profile fixed. Note that when initializing the EP
distribution we did not consider the average value of ψ for passing
and trapped particles like the calculation in [2]. Instead, we just
used the local value of ψ for EP initialization. In order to satisfy
the very small value of normalized Larmor radius used in [2], ρL =
v0/ (�a) = 0.0125, we use a reduced EP ion mass mE P = 0.11mH
(mH is the hydrogen mass). This can help reduce the finite orbit
width (FOW) effect of EPs.

The results of a linear simulation with toroidal mode number
n = 1 are shown in Fig. 3, including simulations using pressure
coupling and current coupling schemes. The FLR effect was not in-
cluded in the simulation. We can see that both the growth rate (γ)
7

and the real frequency (ω) agree well with the M3D-K and NIM-
ROD results, except for the mode real frequency at large βh/βtotal .
When βh/βtotal increases from 0 to 0.75, the mode changes from
an ideal MHD kink mode to a fishbone mode with a finite real
frequency due to the response of EPs. The mode growth rate de-
creases as βh/βtotal changes from 0 to 0.25, and then increases as
βh/βtotal changes from 0.25 to 0.75. The real frequency is zero with
βh = 0 and increases almost linearly as βh increases. The results of
simulations using pressure coupling and current coupling schemes
are almost identical.

The mode structure of the perturbed poloidal flux (δψ), the
perturbed EP parallel pressure (δp‖) and the difference between
the perturbed parallel and perpendicular EP pressure (δp⊥ − δp‖)
for a linear n = 1 simulation with βh/βtotal = 0.5 are shown in
Fig. 4. Note that the non-adiabatic response of EP pressure (δp⊥ −
δp‖) is localized at the low-field-side, indicating that this pressure
perturbation mostly comes from trapped particles through reso-
nance with the fishbone mode. The particle pressure results have
some noise because of the usage of the δ particle shape function
and high-order polynomials as test functions. The mode structure
results are consistent with the NIMROD simulation results in [3].

6.2. TAE simulation

For TAE linear simulation we used the setup in [30], which was
also used for a NIMROD TAE simulation in [31]. The simulation
was done in a large aspect ratio tokamak (R = 10 m, a = 1 m). The
magnetic field on axis is BT = 3 T. The bulk ions are hydrogen with
a uniform density of n0 = 2 × 1019 m−3. The bulk plasma pressure
is set to be constant to avoid pressure gradient driven modes, p =
6408 Pa. The safety factor profile is q(r) = 1.71 + 0.16(r/a)2. Note
that at r = 0.5a there is a rational surface q = 1.75.

The energetic ions are deuterium and have a density profile
given by

n(s) = n0c3 exp(− c2

c1
tanh

√
s − c0

c2
), (30)

where s = ψt/ψt(a) is the normalized toroidal flux. n0 = 1.4431 ×
1017 m−3 is the EP density at s = 0. The coefficients c0 = 0.49123,
c1 = 0.298228, c2 = 0.198739 and c3 = 0.521298. This EP density
profile has a large gradient at the rational surface q = 1.75, which
can drive TAE. The EPs are initialized with a Maxwellian distribu-
tion in velocity space with a uniform temperature T f .

The linear TAE simulation was done for n = 6. The growth rates
and frequencies of TAEs as functions of EP temperature from the
M3D-C1-K simulations are shown in Fig. 5, including the results
in the zero Larmor radius (ZLR) limit, and the results including
FLR effect by taking 4-point gyro-averages. The results are plotted
along with the simulation results from other codes which were
benchmarked in [30]. We can see that the M3D-C1-K results are
close to the results from gyrokinetic, hybrid-MHD and eigenvalue
codes. After including the FLR effect, the mode growth rates drop
significantly for high T f cases as the EP Larmor radius is large
for those cases. The TAE frequencies also drop slightly with the
FLR effect. We have done the simulations using both pressure and
current coupling, and the results of mode growth rates and fre-
quencies are equal.

The mode structure of the perturbed poloidal vorticity (δφ)
from the M3D-C1-K simulation for T f = 400 keV including FLR
effects is shown in Fig. 6. The radial structure indicates that the
mode is localized near the r = 0.5a rational surface and is domi-
nated by m = 10 and m = 11 harmonics, which is consistent with
the fact that the mode lies at the rational surface q = 1.75 =
0.5 × (10 + 11)/n.

C. Liu, S.C. Jardin, H. Qin et al. Computer Physics Communications 275 (2022) 108313

Fig. 3. Simulation results of mode growth rate (a) and real frequency (b) as functions of EP beta fraction of the n = 1 fishbone. Blue line is the result of NIMROD [3]. Red line
is the result of M3D-K [2]. Green line is the result of M3D-C1-K using pressure coupling, and the cyan line is the result using current coupling.

Fig. 4. Structure of the perturbed poloidal flux δψ (a), the perturbed EP parallel pressure δp‖ (b) and the difference between the perturbed parallel and perpendicular EP
pressure δp⊥ − δp‖ (c) from the n = 1 linear fishbone simulation with βh/βtotal = 0.5 using M3D-C1-K. The values are normalized according to the maximum absolute value.

Fig. 5. Mode growth rates from calculations without FLR effects (a), with FLR effects (b) and the mode frequencies (c) as functions of T f for the linear n = 6 TAE simulation.
The black diamonds show the results from M3D-C1-K, on top of results from other codes presented in [30].
6.3. RSAE simulation

We also performed linear RSAE simulations in M3D-C1-K. For
those simulations we used real tokamak geometry with plasma
equilibrium and EP distribution from experimental diagnostics. The
equilibrium is obtained from DIII-D shot #159243 at 805 ms, dur-
ing which the deuterium NBI is activated and a series of RSAEs
were excited and measured [32,33]. The simulation follows the
setup in [34], in which a number of eigenvalue, gyrokinetic and
hybrid-MHD codes participated in a linear benchmark. The equilib-
8

rium fields, including the pressure profile, were read from the re-
sult of the equilibrium code kinetic EFIT, which takes into account
the kinetic ion contribution in calculating the Grad-Shafranov (G-
S) equation. As shown in Fig. 3 in [34], the safety factor q profile
has a minimum point (qmin = 2.94) at ρ = 0.4 (ρ is the normal-
ized square root of toroidal flux). The EP distribution is approxi-
mated by an isotropic Maxwellian distribution. Here we used the
EP density and temperature profile from kinetic EFIT, where the
EP pressure was estimated by subtracting the measured thermal

C. Liu, S.C. Jardin, H. Qin et al. Computer Physics Communications 275 (2022) 108313

Fig. 6. (a) Poloidally averaged radial structure of perturbed poloidal vorticity δφ of different poloidal harmonics from the n = 6 TAE simulation using M3D-C1-K. (b) Poloidal
structure of δφ. The values are normalized according to the maximum absolution value.
Fig. 7. Mode frequencies (f) and growth rates (γ) from calculations with FLR effects
for different n numbers for the linear RSAE simulation. The green circles show the
results from M3D-C1-K, on top of results from other codes presented in [34].

pressure from the computed total pressure using the equilibrium
reconstruction. The density and temperature profiles of both bulk
plasma and fast ions used in the M3D-C1-K simulation have been
carefully compared with the data used in [34] to make sure they
are in good agreement.

Using this equilibrium, we did linear simulations using M3D-
C1-K for n = 3 − 6. The results of the RSAE real frequencies and
growth rates are plotted in Fig. 7 along with the results from other
codes presented in [34]. The M3D-C1-K results agree well with re-
sults from the other initial value MHD and gyrokinetic codes. The
mode frequencies increase as the n number, while the growth rate
is largest for n = 4 and 5. For those simulations we include the
FLR effect, and we found that FLR can lead to a decrease of the
mode growth rate similar to what we found for the TAE simula-
tion. The mode structure of the n = 4 RSAE simulation is shown in
Fig. 8, including the radial structure of different m harmonics of δφ
and the 2D poloidal structure. The perturbed field is localized near
the q = qmin flux surface and is dominated by the m = 12 compo-
nent, which is consistent with the RSAE physics (qmin ≈ m/n) and
in agreement with the results in [34] from the other codes.

7. Conclusions

In this paper we have introduced the new code M3D-C1-K,
which was developed based on the M3D-C1 MHD code with parti-
9

cle simulation for the kinetic effects. The particles are described
using markers, which are pushed using a new slow manifold
Boris algorithm. This new algorithm can provide good conservation
properties for long time simulations. In addition, it can simplify the
field evaluation calculation and speed up the particle pushing. The
particle simulation is interfaced with the MHD code by calculat-
ing the moments of the particles using the δ f method, and then
coupled into the MHD equations through pressure or current. The
particle pushing code has been ported to run on GPUs, which gives
a 11 times speed up compared to the CPU version. Both the linear
fishbone simulations and the linear Alfvén mode simulations, in-
cluding TAE and RSAE, have been conducted, and the results agree
well with previous results from other codes.

M3D-C1-K is based on M3D-C1, which utilizes the semi-implicit
method to do MHD calculations with large timesteps. To fit the ki-
netic part into this framework, we integrate the MHD and particle
equations separately, and introduce subcycles for particle push-
ing. Given that the MHD equations are still evolved using a large
timestep which is not limited by the CFL condition, and particle
pushing on GPUs is very fast, we believe that M3D-C1-K is suitable
for simulation of long-time MHD phenomena involving kinetic ef-
fects, including the nonlinear evolution of EP-driven Alfvén modes
with frequency chirping and mode coupling, and kink or tearing
modes interacting with EPs. For those simulations, the compu-
tation time spent on the MHD calculation on CPUs and particle
pushing on GPUs are comparable. For phenomena involving wave-
particle interaction over short timescales, such as global Alfvén
eigenmodes (GAEs) or compressional Alfvén eigenmodes (CAEs),
small MHD timesteps are required which can make the MHD cal-
culation take most of the computation time. In order to better
simulate these kinds of problems, we plan to further optimize the
MHD calculation and have it utilize GPUs.

The new slow manifold Boris algorithm used in the code was
originally developed to preserve physical structures and conserve
constants of motion, which can improve the credibility of long
time simulations. As discussed in Sec. 2, this advantage is not
significant for a typical EP simulation of only hundreds of millisec-
onds as RK4 can provide similar order of absolute numerical error.
For longer time simulations the benefit of the Boris algorithm can
be more significant. In addition, this advantage can be more im-
portant for simulating particles with large parallel velocities such
as high energy electrons. These electrons can be generated through
inductive electric fields as runaway electrons, or through exter-
nal current drive with plasma waves, and can interact with MHD
modes. Given that the high-energy electrons can have velocities
close to the speed of light, it is important to have a particle push-
ing algorithm that can conserve the toroidal momentum and keep
the shape of the particle’s orbit, as discussed in [35,19]. The slow
manifold Boris algorithm therefore is a good candidate for doing
nonlinear MHD simulation with energetic electrons. Nevertheless,
the particle pushing algorithm can still be further optimized and

C. Liu, S.C. Jardin, H. Qin et al. Computer Physics Communications 275 (2022) 108313

Fig. 8. (a) Poloidally averaged radial structure of perturbed poloidal vorticity δφ of different poloidal harmonics of the n = 4 RSAE simulation using M3D-C1-K. (b) Poloidal
structure of δφ. The values are normalized according to the maximum absolution value.
combined with the field evolution to improve numerical stability,
like in [36], which will be done in future work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We would like to thank Yasushi Todo, Andreas Bierwage, Elena
Belova, Nikolai Gorelenkov, Xin Wang, Roscoe White, Jin Chen, Zhi-
hong Lin and Amitava Bhattacharjee for fruitful discussion. We
would like to thank Seegyoung Seol and Mark Shephard of the Sci-
entific Computation Research Center (SCOREC) group at Rensselaer
Polytechnic Institute (RPI) for the implementation and support of
unstructured meshing capabilities in M3D-C1. This work was sup-
ported by U.S. Department of Energy grant DE-AC02-09CH11466.
This research used the Traverse cluster at Princeton University and
AiMOS cluster of Center for Computational Innovations (CCI) at
RPI. It also used the Summit cluster of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

References

[1] Y. Todo, T. Sato, Phys. Plasmas 5 (5) (1998) 1321–1327.
[2] G.Y. Fu, W. Park, H.R. Strauss, J. Breslau, J. Chen, S. Jardin, L.E. Sugiyama, Phys.

Plasmas 13 (5) (2006) 052517.
[3] C.C. Kim the NIMROD Team, Phys. Plasmas 15 (7) (2008) 072507.
[4] G.T.A. Huysmans, O. Czarny, Nucl. Fusion 47 (7) (2007) 659–666.
[5] H. Lütjens, J.-F. Luciani, J. Comput. Phys. 227 (14) (2008) 6944–6966.
[6] S. Briguglio, G. Vlad, F. Zonca, C. Kar, Phys. Plasmas 2 (10) (1995) 3711–3723.
[7] J. Zhu, Z.W. Ma, S. Wang, Phys. Plasmas 23 (12) (2016) 122506.
[8] H. Qin, X. Guan, Phys. Rev. Lett. 100 (3) (2008) 035006.
[9] J. Xiao, H. Qin, Comput. Phys. Commun. 265 (2021) 107981.

[10] N.M. Ferraro, S.C. Jardin, J. Comput. Phys. 228 (20) (2009) 7742–7770.
[11] S.C. Jardin, N. Ferraro, J. Breslau, J. Chen, Comput. Sci. Discov. 5 (1) (2012)

014002.
[12] R.G. Littlejohn, J. Plasma Phys. 29 (01) (1983) 111–125.

[13] H. Qin, X. Guan, W.M. Tang, Phys. Plasmas 16 (4) (2009) 042510.
[14] C.L. Ellison, J.M. Finn, J.W. Burby, M. Kraus, H. Qin, W.M. Tang, Phys. Plasmas

25 (5) (2018) 052502.
[15] J. Liu, Y. Wang, H. Qin, Nucl. Fusion 56 (6) (2016) 064002.
[16] H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun, W.M. Tang, Phys. Plasmas 20 (8) (2013)

084503.
[17] J.W. Burby, J. Math. Phys. 61 (1) (2020) 012703.
[18] J.W. Burby, E. Hirvijoki, J. Math. Phys. 62 (9) (2021) 093506.
[19] C. Liu, C. Zhao, S.C. Jardin, N. Ferraro, C. Paz-Soldan, Y. Liu, B.C. Lyons, Plasma

Phys. Control. Fusion (2021).
[20] W.W. Lee, J. Comput. Phys. 72 (1) (1987) 243–269.
[21] W.X. Wang, Z. Lin, W.M. Tang, W.W. Lee, S. Ethier, J.L.V. Lewandowski, G. Re-

woldt, T.S. Hahm, J. Manickam, Phys. Plasmas 13 (9) (2006) 092505.
[22] L. Chen, Y. Lin, X.Y. Wang, J. Bao, Plasma Phys. Control. Fusion 61 (3) (2019)

035004.
[23] E.V. Belova, R.E. Denton, A.A. Chan, J. Comput. Phys. 136 (2) (1997) 324–336.
[24] W. Park, S. Parker, H. Biglari, M. Chance, L. Chen, C.Z. Cheng, T.S. Hahm, W.W.

Lee, R. Kulsrud, D. Monticello, L. Sugiyama, R. White, Phys. Fluids, B Plasma
Phys. 4 (7) (1992) 2033–2037.

[25] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plas-
mas 6 (5) (1999) 1796–1803.

[26] C. Zhao, C. Liu, S.C. Jardin, N.M. Ferraro, Nucl. Fusion 60 (12) (2020) 126017.
[27] H. Qin, W.M. Tang, Phys. Plasmas 11 (3) (2004) 1052–1063.
[28] W. Zhang, W. Joubert, P. Wang, B. Wang, W. Tang, M. Niemerg, L. Shi, S.

Taimourzadeh, J. Bao, Z. Lin, in: International Workshop on Accelerator Pro-
gramming Using Directives, Springer, 2018, pp. 3–21.

[29] D.D. Schnack, D.C. Barnes, Z. Mikic, D.S. Harned, E.J. Caramana, J. Comput. Phys.
70 (2) (1987) 330–354.

[30] A. Könies, S. Briguglio, N. Gorelenkov, T. Fehér, M. Isaev, P. Lauber, A.
Mishchenko, D.A. Spong, Y. Todo, W.A. Cooper, R. Hatzky, R. Kleiber, M. Bor-
chardt, G. Vlad, A. Biancalani, A. Bottino, ITPA EP TG, Nucl. Fusion 58 (12)
(2018) 126027.

[31] Y. Hou, P. Zhu, C.C. Kim, Z. Hu, Z. Zou, Z. Wang, Phys. Plasmas 25 (1) (2018)
012501.

[32] C.S. Collins, W.W. Heidbrink, M.E. Austin, G.J. Kramer, D.C. Pace, C.C. Petty, L.
Stagner, M.A. Van Zeeland, R.B. White, Y.B. Zhu, Phys. Rev. Lett. 116 (9) (2016)
095001.

[33] W.W. Heidbrink, C.S. Collins, M. Podestà, G.J. Kramer, D.C. Pace, C.C. Petty, L.
Stagner, M.A. Van Zeeland, R.B. White, Y.B. Zhu, Phys. Plasmas 24 (5) (2017)
056109.

[34] S. Taimourzadeh, E.M. Bass, Y. Chen, C. Collins, N.N. Gorelenkov, A. Könies, Z.X.
Lu, D.A. Spong, Y. Todo, M.E. Austin, J. Bao, A. Biancalani, M. Borchardt, A. Bot-
tino, W.W. Heidbrink, R. Kleiber, Z. Lin, A. Mishchenko, L. Shi, J. Varela, R.E.
Waltz, G. Yu, W.L. Zhang, Y. Zhu, Nucl. Fusion 59 (6) (2019) 066006.

[35] X. Guan, H. Qin, N.J. Fisch, Phys. Plasmas 17 (9) (2010) 092502.
[36] Z.X. Lu, G. Meng, M. Hoelzl, P. Lauber, J. Comput. Phys. 440 (2021) 110384.
10

http://refhub.elsevier.com/S0010-4655(22)00031-5/bib311B2E761A8A592394664B5A27301B61s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib767D65AFB891EB716A68C1CE2293DEA9s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib767D65AFB891EB716A68C1CE2293DEA9s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib9EF2328F9ECDBB28CD7C19459D8DCC59s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib4A95F5CEB0053089BCA72A47194D3098s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib4D1C0ECE0AA0332A12F45CAB00D68409s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibBA129381E01444E64B89787DA8FF5D3Ds1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib5E974AFD892495490077D2B612425CD3s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib3BEF9BD64042A35560A68B56C2F1081As1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib5113274489506A2582A9C165C2805FF3s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibB6C35EAD45537A8C7953A4634CDB369Ds1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibFABF4B99E7388FF4CC63EFDA7DFCA29Fs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibFABF4B99E7388FF4CC63EFDA7DFCA29Fs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibE86C26068C05C7CDA193E6365E76987Cs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib347AEFE36515DAA0C0A3A82112FEE5A2s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibD19F23B7AB1E84508FA52E99CD9D3A66s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibD19F23B7AB1E84508FA52E99CD9D3A66s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibD0329EFCB41AA989FCDD21880FBB514Es1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib4ED43652ED97967EB3884555AF139BE2s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib4ED43652ED97967EB3884555AF139BE2s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib6339D723DBA0E8742C3B127FC440EF49s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibD9E8643FBC4F1511C20C65D146B19A06s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib6766CD622BA3CD4BAC6E8D034D8CFBACs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib6766CD622BA3CD4BAC6E8D034D8CFBACs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib2055FB3C8719E8996516DDE184822C13s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib9CDB688AFE4F8C3323E3E9ACD5E2DCE7s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib9CDB688AFE4F8C3323E3E9ACD5E2DCE7s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib19D89D8402F347979A6DAB07AE27A29Fs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib19D89D8402F347979A6DAB07AE27A29Fs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib1E55D29092FEAD6DF049A50EE10862FCs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibE59A50150F9B9627E0A30B9028EB067As1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibE59A50150F9B9627E0A30B9028EB067As1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibE59A50150F9B9627E0A30B9028EB067As1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib3418FC7500BFA6F3D5041CDF633C13C2s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib3418FC7500BFA6F3D5041CDF633C13C2s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib297625A3CC0CD69F6F467B2456A2069Cs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib758DE8FE7F6759537584E67A398CC583s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibFD0514D9098C141E072C8228A19A4F46s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibFD0514D9098C141E072C8228A19A4F46s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibFD0514D9098C141E072C8228A19A4F46s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib38D72D459EFF4ED4B409FC295E564727s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib38D72D459EFF4ED4B409FC295E564727s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib4D8CE3E843F34AE563FBB96E9F674A62s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib4D8CE3E843F34AE563FBB96E9F674A62s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib4D8CE3E843F34AE563FBB96E9F674A62s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib4D8CE3E843F34AE563FBB96E9F674A62s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib298347B45940A8245FFCD4D4FC70D68Fs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib298347B45940A8245FFCD4D4FC70D68Fs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib6336FEE6D95041675D750717FFC36629s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib6336FEE6D95041675D750717FFC36629s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib6336FEE6D95041675D750717FFC36629s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib0887D5595F7388E79C876769454081AFs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib0887D5595F7388E79C876769454081AFs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib0887D5595F7388E79C876769454081AFs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib60CA1110D53F7502FD51AB53D71830CEs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib60CA1110D53F7502FD51AB53D71830CEs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib60CA1110D53F7502FD51AB53D71830CEs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib60CA1110D53F7502FD51AB53D71830CEs1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bibA9B2A8265F1166EDF4FD74D77133F1D8s1
http://refhub.elsevier.com/S0010-4655(22)00031-5/bib0BD80E3D7CFB4DF89CF411605A025B9Cs1

	Hybrid simulation of energetic particles interacting with magnetohydrodynamics using a slow manifold algorithm and GPU acce...
	1 Introduction
	2 Particle pushing with slow manifold algorithm
	3 δf method and particle weight calculation
	4 Coupling to MHD equations
	5 GPU acceleration of particle pushing
	6 Simulation results
	6.1 Linear fishbone simulation
	6.2 TAE simulation
	6.3 RSAE simulation

	7 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

