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A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety

factor at q � 1, thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simu-

lations using the M3D-C1 code. In these simulations, the most important mechanism responsible

for the flux pumping is that a saturated ðm ¼ 1; n ¼ 1Þ quasi-interchange instability generates an

effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtooth-

ing is prevented in the simulations if b is sufficiently high to provide the necessary drive for the

ðm ¼ 1; n ¼ 1Þ instability that generates the dynamo loop voltage. The necessary amount of

dynamo loop voltage is determined by the tendency of the current density profile to centrally peak

which, in our simulations, is controlled by the peakedness of the applied heat source profile.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4990704]

I. INTRODUCTION

The sawtooth instability is a relaxation-oscillation of the

core plasma ubiquitous in most large tokamaks.1 A sawtooth

cycle consists in a slow rise and a subsequent fast flattening

of the pressure in a central region of the plasma. A basic

model that is commonly used as a point of reference for the

theoretical treatment of the sawtooth instability has been pro-

posed by Kadomtsev.2 According to this model, the sawtooth

instability is caused by an internal kink instability with a

ðm ¼ 1; n ¼ 1Þ mode structure, where m and n are the poloi-

dal and toroidal mode number, respectively. It is destabilized

by a peaking of the central toroidal current density profile

that corresponds to a value of the safety factor (q) on the

magnetic axis below unity. A ðm ¼ 1; n ¼ 1Þ magnetic

island develops on the q¼ 1 surface, and the magnetic recon-

nection proceeds until the island has entirely replaced the

original plasma core, leaving the plasma center in an axisym-

metric state with a flat safety factor profile close to unity.

While numerical simulations have confirmed that the dynam-

ics described by Kadomtsev’s model occur within the resis-

tive magnetohydrodynamic (MHD) model, the model does

not account for a variety of experimental observations.1 One

example is that measurements on several tokamaks suggest

that the magnetic reconnection process does not complete

and the value of the safety factor on axis (q0) stays below

unity during the entire sawtooth cycle, e.g., Refs. 3–6.

Sawteeth can provide seed islands for neoclassical tear-

ing modes (NTMs), an instability that has the potential to

degrade the energy and particle confinement of a discharge

and can even lead to a disruption.7 A mode of tokamak oper-

ation that avoids sawtoothing is the Hybrid scenario. Hybrid

discharges are characterized by a flat, sometimes slightly

reversed, central safety factor profile close to unity and

exhibit good core confinement.8 Originally called improved

H-mode, the scenario became known as Hybrid as it repre-

sents a mode of operation in between the inductive Standard

H-mode which has positive magnetic shear with q0�1 (and

exhibits sawteeth) and the fully non-inductive Steady-state

scenario with reversed magnetic shear and q0 > 1.9

Hybrid discharges have been generated in most large toka-

maks10–14 by additional heating during the current ramp-up

phase, which leads to broader current density profiles as a result

of reduced current diffusion. Transport simulations for dis-

charges of this type often predict q0 < 1 during the stationary

phase,15–17 which would lead to sawtoothing. However, meas-

urements show that the toroidal current density is redistributed

such that the central safety factor profile is clamped to values

close to unity. The mechanism responsible for this is referred to

as magnetic flux pumping.17 The self-regulating redistribution

of current has the advantage that external current drive can be

applied in the plasma center where it is most effective. This and

the favorable confinement and stability properties make the

Hybrid scenario a candidate for an advanced Tokamak sce-

nario.13 In order to extrapolate the properties and accessibility of

the Hybrid scenario to larger future devices like ITER, it is cru-

cial to understand in detail the mechanism behind flux pumping.

This paper aims at broadening the understanding of the

flux pumping mechanism based on the explanation given in

Ref. 18. We present the asymptotic states of 3D nonlinear

resistive MHD simulations that can be classified into two

basic types: Sawtoothing cases where q0 decreases to values

significantly below unity and q0 � 1 is periodically restored

by a change of the magnetic topology, and steady-state saw-

tooth-free cases with a helically perturbed core, low mag-

netic shear in the center, and a central safety factor profile

that stays close to unity. Tokamak plasma states similar to

this stationary state have been previously examined by

means of nonlinear MHD simulations19–22 as well as 3D

MHD equilibrium calculations.23–25 The results of 3D ideal

MHD equilibrium calculations have been compared to linear

and nonlinear ideal MHD stability calculations in Refs. 26

and 27. The purpose of the work presented here is to give an

explanation of how and under which conditions such a state
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sustains itself nonlinearly and how this explanation can be

applied to flux pumping in Hybrid discharges. A main ingre-

dient for the flux pumping mechanism discussed in this work

is an MHD dynamo. Dynamo theory that has been known to

be applicable to other magnetic confinement configurations

such as spheromaks28,29 and reversed-field pinches

(RFPs)30–33 has only recently been applied to explain the

phenomenon of magnetic flux pumping in tokamak plas-

mas.18,34 In Ref. 34, the role of the dynamo effect in a toka-

mak and in an RFP is compared. The nonlinear simulations

of the tokamak plasma presented in this reference result in a

similar sawtooth-free stationary state with a helical core as

some of the simulations presented here. The calculations that

are done in cylindrical geometry only and at zero pressure

reflect a situation where an externally applied ðm ¼ 1; n ¼
1Þ perturbation leads to flux pumping. In contrast, the results

presented in the following focus on Hybrid discharges with-

out externally applied perturbations as the necessary ðm ¼
1; n ¼ 1Þ perturbation is provided by a saturated pressure-

driven quasi-interchange instability.

While in the following we will discuss all types of long-

term behavior that are obtained in the simulations, we focus on

reviewing and elaborating on the explanation of the current

redistribution mechanism (Sec. III) and analyzing under which

conditions this mechanism is strong enough to prevent saw-

toothing in the simulations (Sec. IV). The set-up of the presented

3D nonlinear simulations is briefly described Sec. II. In Sec. V,

some aspects of the discussed flux pumping mechanism are ana-

lyzed in more detail by means of a linear stability analysis of an

equilibrium with low central magnetic shear and q0 � 1.

II. SIMULATION SET-UP

The presented calculations have been performed using

the high-order finite element MHD code M3D-C1.35 It uses a

tensor product of reduced quintic finite elements36,37 in the

poloidal plane and Hermite cubic finite elements36 in the

toroidal direction. A split-implicit time advance allows long-

time integrations. The code offers several modes of opera-

tion, physics models, and geometries. The full set of equa-

tions that are solved is described in Ref. 35. In this study, we

use the resistive single-fluid MHD model in toroidal geome-

try (see the Appendix). The number of toroidal elements is

eight, and each R–Z plane has about 1000 nodes. For each of

the 3D nonlinear simulations, a corresponding 2D axisym-

metric nonlinear calculation is done for comparison. Select

2D and 3D runs have been made at double the spatial resolu-

tion with no qualitative difference in results.

As we focus on the asymptotic states of the simulations,

they cover time spans of a few 105sA where sA ¼
l0
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
=B0 � 0:3 ls is the Alfv�en time and l0, q0, and B0

are typical values for the length scale, mass density, and

magnetic field, respectively. The simulations effectively start

from a safety factor profile that is flat and close to unity in

the plasma core which is generated by an initial sawtooth

reconnection event.

In most cases, except for a few at very low b, the heating

profile is determined by the shape of an added source term in

the energy equation (see the Appendix). We analyze a large set

of calculations, obtained by varying three parameters: the poloi-

dal b, the perpendicular heat diffusion coefficient v? together

with the strength of the heat source, and the peakedness of the

heat source profile. In all cases, the simulations are set up such

that, in the absence of instabilities, the heat source would drive

the central safety factor profile to a value below unity.

All other parameters are held fixed as described in Ref.

18. The applied loop voltage is PI feedback controlled to main-

tain the total toroidal current. The total number of particles is

kept constant by a particle source that is added to the continu-

ity equation and whose strength is as well controlled via a PI

feedback controller. To keep the Spitzer resistivity similar

between simulations with different values of b, it is rescaled

accordingly. The central value of the resistivity of g �
4� 10�6 X m is a factor of 102::103 higher than realistic resis-

tivities in modern large tokamaks due to limited computational

resources. To ensure a realistic ratio of resistive and heat diffu-

sion time scales, the perpendicular heat diffusion coefficient is

scaled up similarly. The Lundquist number and the magnetic

Prandtl number in the center are S � 106 and Pm � 12, respec-

tively. In order to examine the influence of varying the resistiv-

ity while keeping its ratio to the perpendicular heat diffusion

coefficient fixed, one simulation (case “n”) has been rerun

with both g as well as v? and the strength of the heat source

scaled up by a factor of three (case “nX3”). More details on

the simulation set-up are given in the Appendix.

III. FLUX PUMPING MECHANISM

As described in Ref. 18, we find an asymptotic state in

3D nonlinear MHD simulations which is characterized by a

central region with very low magnetic shear where the safety

factor profile has a value close to unity and which is thus sta-

ble to the internal kink instability. This state features a sta-

tionary ðm ¼ 1; n ¼ 1Þ perturbation in the core, in particular,

a ðm ¼ 1; n ¼ 1Þ helical flow as shown in Fig. 1. The flow is

generated by a saturated quasi-interchange instability and a

pressure-driven ðm ¼ 1; n ¼ 1Þ instability allowed for by the

ultra-low magnetic shear.38–40 The comparison of the safety

factor profiles in such a simulation and in a corresponding

2D axisymmetric calculation in Fig. 2 shows that a 3D effect

is responsible for the observed flattening of the central cur-

rent density. The 2D simulation can be seen as an analog to

the transport simulations in Refs. 15–17 which falsely pre-

dict q0 < 1 for the described Hybrid discharges.

In the following, it is illustrated which 3D effects can

alter the background (n¼ 0) toroidal current density by ana-

lyzing the induction equation

@tB ¼ �r� E; (1)

where E is the electric field. After replacing the magnetic

field B by B ¼ r� A, where A is the magnetic vector

potential, integration of Eq. (1) leads to

@tA ¼ �E�rU : (2)

Here U is a single valued potential. Using cylindrical coordi-

nates (R;/; Z), the projection of Eq. (2) onto the toroidal

direction yields
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@tW ¼ �RgJ/ þ R/̂ � v� Bð Þ � R/̂ � rU : (3)

Here Ohm’s law E ¼ gJ� v� B has been used to eliminate

the electric field, and the toroidal component of the magnetic

vector potential has been replaced by Wr/, where W
denotes the negative of the poloidal magnetic flux per radian.

We split all quantities into an axisymmetric part and a non-

axisymmetric part and only take into account the dominant

n¼ 1 component of the latter. [Note, that the index 0 always

refers to the n¼ 0 component of the indexed quantity, with

the exception of q0 which refers to the value of the safety

factor on axis to be consistent with the common notation.]

The toroidal average of Eq. (3) then gives

@tW0 ¼ �Rg0J/;0 � R g1J/;1½ �n¼0
þ R /̂ � v1 � B1ð Þ

h i
n¼0

:

(4)

Note that rU0 ¼ 0 and we assume v0 ¼ 0. The n¼ 0 quanti-

ties can be expressed in terms of the corresponding quantities

in the 2D axisymmetric system plus a deviation due to the influ-

ence of the 3D perturbation on the n¼ 0 background: W0 ¼
W2D þ DW; g0 ¼ g2D þ Dg and J/;0 ¼ J/;2D þ DJ/. The

toroidal induction equation for the 2D system reads

@tW2D ¼ �Rg2DJ/;2D : (5)

For a stationary state, @tW2D is given by VL=2p, where VL is

a constant corresponding to the externally applied tokamak

loop voltage.

The expressions for W0; g0, and J/;0 introduced above

are now inserted into Eq. (4). As the difference between the

2D and the 3D n¼ 0 state is not too large, terms of second

order in Dg and DJ/ are neglected. After eliminating @tW2D

by making use of Eq. (5), one obtains

0 ¼ �RDgJ/;2D � Rg2DDJ/ þ R /̂ � v1 � B1ð Þ
h i

n¼0

� R g1J/;1½ �n¼0
; (6)

where the term @tDW has been dropped because it vanishes

for stationary cases as well as for cases with a quasi-

stationary periodic time evolution when it is time averaged

over one period. Note that this induction equation describing

the difference between the 3D n¼ 0 and the 2D state is pre-

sented only to facilitate the understanding of the simulation

results which result from fully 3D nonlinear calculations.

The last term on the right of Eq. (6) is negligible in the

simulations as will be shown later. Out of the three remaining

terms, the second term on the right describes the observed dif-

ference in the toroidal current density between a 3D and a 2D

calculation and the two other terms represent mechanisms

which can potentially be responsible for this difference. One

possibility to obtain a flattening of the central current density

profile is via a flattening of the central resistivity profile as

described by the term that is proportional to Dg. In some of

the simulations presented, this is the leading effect as the

resistivity flattening is caused by a convective flattening of the

temperature profile through the helical ðm ¼ 1; n ¼ 1Þ flow

described above. This flow is also crucial for the second cur-

rent flattening effect described by the third term on the right

of Eq. (6). In this case, the velocity perturbation combines

with the perturbation of the magnetic field yielding a n¼ 0

reduction of the background current density in the plasma cen-

ter via a dynamo mechanism. This effect corresponds to an

effective incremental negative loop voltage in the center of

the tokamak opposing the externally applied loop voltage.

The strength of the different terms in Eq. (6) in the

plasma center is shown in Fig. 3 for stationary states in two

different simulations. In the case shown on the left, the resis-

tivity flattening effect is dominantly responsible for the

FIG. 1. Difference between the poloidal velocity stream function in a sta-

tionary 3D simulation and in the corresponding 2D axisymmetric calculation

for different toroidal angles. Negative values are indicated in blue and posi-

tive values in red. It can be seen that the velocity perturbation has the form

of a ðm ¼ 1; n ¼ 1Þ convection cell in the plasma center. (Case “n”). Note

that M3D-C1 uses a form of a Helmholtz representation for the poloidal

velocity field.41 The incompressible component, whose stream function is

plotted here, greatly exceeds the compressible component of the field.

FIG. 2. Comparison of the safety factor profile in the asymptotic state of a

3D and the corresponding 2D axisymmetric simulation. For the 3D case, the

safety factor profile has been calculated using the toroidally averaged mag-

netic field. (Case “n”).
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diminished central toroidal current density, whereas in the

other case the current flattening is predominantly caused by

the dynamo loop voltage effect. The difference between

these two cases is the value of the perpendicular heat diffu-

sion coefficient v? and correspondingly the strength of the

heat source. They are higher in the second case, which leads

to a stiffer temperature profile that cannot easily be altered

by convection. Therefore, the resistivity flattening effect

does not play a significant role in the second case. The tem-

perature gradient remains large, driving the instability that

results in the dynamo driven loop voltage. In modern large

tokamaks, and in particular, in Hybrid discharges which are

characterized by strong heating and large turbulent heat flux,

the ratio of the resistive time scale to the heat diffusion time

scale l0v?=g is in a regime where the dynamo effect is dom-

inant as in the case on the right.

IV. CONDITIONS FOR FLUX PUMPING

In order to analyze under which conditions the flux

pumping mechanism described above is sufficiently strong to

prevent sawtoothing, we present a set of 3D nonlinear MHD

simulations run to their asymptotic states. Three parameters

have been varied: (1) The poloidal beta defined as

bp1 ¼
2l0

B2
h

ðr1

0

r

r1

� �2

� dp

dr

� �
dr; (7)

where r is the midplane minor radius and r1 is the radius

where the velocity perturbation vanishes and q first differs

from unity. The value of bp1 determines the drive of the

instability that enables flux pumping by generating the nec-

essary helical flow. (2) The ratio of the resistive time scale to

the heat diffusion time scale l0v?=g has been varied by

varying v? at the same rate as the strength of the applied

heat source while keeping g fixed. As mentioned before, this

quantity controls the stiffness of the temperature profile and

thus the effectiveness of the resistivity flattening effect. (3)

The third parameter varied is the peakedness of the heat

source. In a 2D simulation, this parameter determines the

value of q0 which is a measure for how strong the current

flattening mechanism in a 3D simulation needs to be in order

to keep q0 ¼ 1. We define D2D as the corresponding rate of

magnetic flux pumping

D2D ¼ �
2gB/;axis

l0Raxis

1� q0;2Dð Þ
q0;2D

� gJ/;axisðq0 ¼ 1Þ � gJ/;axisðq0 ¼ q0;2DÞ : (8)

Here, we have used the approximation q0 � 2B/;axis=
ðl0J/;axisRaxisÞ42 in order to express J/;axis in terms of q0. The

different types of asymptotic behavior resulting from our

simulations are discussed in the following.

A. Sawtooth-free states

One possibility for an asymptotic state is the sawtooth-

free time-independent state with a flat central safety factor

close to unity characterized by a ðm ¼ 1; n ¼ 1Þ convection

cell in the plasma center as described in Sec. III. We also

find a slight variation of this behavior which features the

same characteristics, but superimposed with an oscillation.

The magnetic and kinetic energies in the first two toroidal

harmonics for a stationary and an oscillatory case are shown

in Fig. 4. The strength of the dynamo loop voltage effect as

well as the time evolution of the minimum value of the

safety factor (qmin) and q0 for an oscillatory case is shown in

Fig. 5. It can be seen that despite the oscillation, the central

safety factor profile is still very close to unity at all times so

that sawtoothing is prevented. Note that in contrast to saw-

tooth oscillations, in these cases the magnetic field line struc-

ture is not repetitively rearranged by a reconnection process.

B. Sawtooth-like behavior

This is different for the sawtoothing cases where the safety

factor on axis decreases to values significantly below unity

such that q0 � 1 is restored in periodically repeating crashes.

The time traces of the n¼ 1 magnetic and kinetic energies as

well as q0 for such a case are shown in Fig. 6. The evolution of

the magnetic topology is in agreement with Kadomtsev’s full

FIG. 3. Terms of Eq. (6) in the plasma center in two simulations with different values of l0v?=g. A flattening of the central n¼ 0 current density profile can be caused

by a flattening of the resistivity profile described by DgJ/;2D and by a dynamo loop voltage described by �ðv� BÞ/;D ¼ �½ðv� BÞ/;3D;n¼0 � ðv� BÞ/;2D�. Note

that the sum of the three terms is negligible showing that these two effects fully account for the occurring change of the current density [i.e., the last term of Eq. (6) is

negligible]. The case on the right has a higher value of v? and a proportionately stronger heat source yielding a stiffer temperature profile which decreases the effective-

ness of convective resistivity flattening.
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reconnection model as can be seen from the Poincar�e plots for

different points in time during one cycle in Fig. 7. As the

Lundquist number used is significantly below its realistic value

and two-fluid effects are not included into our calculations, sev-

eral characteristics of realistic sawtooth crashes like the fast

crash times as found in Refs. 43–45 are not expected to be

reproduced in these simulations.

In another type of sawtoothing cases that we find, the

sawtooth cycle starts similarly as described above with a

decrease of q0 destabilizing an internal kink, but instead of

completing, the reconnection process stops and reverses. The

corresponding evolution of the magnetic topology is shown in

Fig. 8. In these cases, axisymmetry is not recovered after the

crashes which manifests itself in an offset in the n¼ 1 mag-

netic energy as shown in Fig. 9. A similar behavior has been

seen in early nonlinear MHD simulations in cylindrical geom-

etry for an off-axis minimum of the safety factor profile46 and

in toroidal geometry for certain intermediate aspect ratios.47

As can be seen from the second plot in Fig. 10, in our simu-

lations, these incomplete sawtooth reconnection cases only

FIG. 4. Kinetic and magnetic energies of the n¼ 1 and n¼ 2 harmonics for a stationary case (left) and for a quasi-stationary oscillatory case (right). In both

cases sawtoothing is prevented.

FIG. 5. Time evolution of the value of q on axis and the minimum value of q (left) and of the strength of the dynamo loop voltage term on axis (right) for a

quasi-stationary case. Despite the oscillation, the dynamo loop voltage effect is strong enough to keep the safety factor profile in the central plasma region flat

with values close to unity at all times.

FIG. 6. Kinetic and magnetic energies of the n¼ 1 and n¼ 2 harmonics (left) and time evolution of q0 during about one cycle (right) for a case exhibiting a

sawtooth-like behavior. After each crash q0 � 1 and axisymmetry is restored.
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occur at low values of D2D which corresponds to low linear

drive for the internal kink instability. It is possible that in a more

complete model than the one used for the presented calculations,

a similar behavior occurs also at higher D2D if the internal kink

is stabilized by a more realistic physics model including, for

example, diamagnetic drift, finite Larmor radius, or energetic

particle effects.48 It is to be investigated in future work if this

might then provide a possible explanation for the experimental

observations indicating incomplete sawtooth reconnection.

We now focus on analyzing under which conditions the flux

pumping mechanisms are strong enough to be able to prevent

sawtoothing in the simulations. In Figs. 10–12, each data point

corresponds to one 3D nonlinear MHD simulation. According to

both plots in Fig. 10, sawtooth-free states only occur at suffi-

ciently high bp1. Below that threshold in bp1, the pressure-driven

instability at low magnetic shear is not strong enough to provide

the helical flow necessary for the flux pumping mechanisms to

work. The existence of a threshold in b is consistent both with

the simulation results presented in Ref. 21 and with Hybrid dis-

charges being characterized by high values of b.

As illustrated in Fig. 11, we find that sawteeth are

avoided only if the combined strength of the two current

FIG. 7. Poincar�e plots showing the magnetic field line structure in the central plasma region at different points in time during a sawtooth cycle. As described in

Kadomtsev’s model, the ðm ¼ 1; n ¼ 1Þ magnetic island grows until it has entirely replaced the original plasma core. (Case “m0”).

FIG. 8. Poincar�e plots showing the magnetic field line structure in the central plasma region at different points in time during an incomplete sawtooth cycle.

Before the ðm ¼ 1; n ¼ 1Þ magnetic island can replace the original plasma core, the reconnection process stops and reverses. Note that this series of plots cover

one entire cycle, showing that an axisymmetric state is not reached at any time. (Case “m3”).

FIG. 9. Kinetic and magnetic energies of the n¼ 1 and n¼ 2 harmonics (left) and time evolution of q0 and qmin during about two cycles (right) for a case exhibit-

ing incomplete sawtooth reconnection. Like in sawtoothing cases as “m0,” q0 cannot be prevented from dropping to values significantly below unity leading to the

growth of the ðm ¼ 1; n ¼ 1Þ magnetic island. However, since the reconnection process does not complete, there is a finite offset in the n¼ 1 magnetic energy.
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flattening mechanisms equals or exceeds the rate of magnetic

flux change needed to keep q0 � 1, a quantity which is

approximately given by D2D. For quasi-stationary cases, the

strength of the current flattening terms has been time-

averaged over one period.

In Fig. 12, the two mechanisms are separated showing

that for increasing l0v?=g the strength of the resistivity flat-

tening effect decreases, whereas the dynamo loop voltage

effect strengthens. As discussed before, the former trend is

due to the decreased effectiveness of the convective flattening

of the temperature profile for high values of v? and strong

heat sources. The decrease of the strength of the dynamo volt-

age effect for low v? is due to the fact that the strong resistiv-

ity flattening effect already provides enough current flattening

to keep q0 � 1. An additional dynamo loop voltage would fur-

ther increase the central value of the safety factor above unity.

This would stabilize the low-shear pressure-driven instability

which needs q � 1 and thus weaken the helical flow responsi-

ble for the dynamo voltage. In this way, the strength of the

dynamo loop voltage effect is self-regulated to always provide

a flat safety factor profile close to unity in the plasma center.

Note that in Fig. 12, only cases with a similar value of D2D

should be compared to each other as the necessary amount of

flux pumping depends on this parameter.

V. LINEAR ANALYSIS

In Secs. III and IV, it has been discussed how in 3D non-

linear MHD simulations a saturated quasi-interchange insta-

bility allowed for by low central magnetic shear and q0 � 1

gives rise to perturbations of the velocity and the magnetic

field which can generate an effective loop voltage via a

dynamo effect. By means of a linear stability analysis of an

equilibrium featuring such a safety factor profile, it is con-

firmed that the most unstable mode can be characterized as a

quasi-interchange instability and that the linear perturbations

of the velocity and magnetic field can be combined to calcu-

late a corresponding dynamo loop voltage term.

The calculations have been performed using the linear

eigenvalue code CASTOR3D.49 The geometry and parameters

are based on a 3D nonlinear simulation (case “bb”); however,

the equilibrium is 2D and diffusion coefficients have not been

included except for the resistivity. As an exact equivalent to the

safety factor profile in a 2D equilibrium cannot be calculated

from a 3D state, a simple safety factor profile which is flat and

close to unity in the plasma center has been chosen (see Fig.

13). As expected, it is found that the most unstable mode is

ideal as can be seen from Fig. 13 which shows that its growth

rate is approximately independent of the resistivity for a wide

range of resistivities. As shown in Fig. 14, the mode features

the characteristic ðm ¼ 1; n ¼ 1Þ flow pattern of a quasi-

interchange instability which is clearly distinguishable from the

flow pattern of an internal kink instability.

FIG. 10. Overview of the covered parameter space. Each data point corresponds to a 3D nonlinear simulation run to its asymptotic state. Stationary and quasi-

stationary sawtooth-free cases are marked in blue and green, respectively. Cases exhibiting complete and incomplete sawtooth reconnection are marked in red

and orange, respectively. Open symbols correspond to cases with a more peaked heat source profile. The case marked by a triangle has a three times larger

resistivity. Note that for cases with bp1 < 0:03 and l0v?=g < 1:5� 102, Ohmic heating plays a role in determining the heating profile.

FIG. 11. Combined strength of magnetic flux pumping effects on axis versus

the amount of flux pumping which is necessary to keep q0 ¼ 1 for the differ-

ent 3D nonlinear simulations. The black line indicates where the two quanti-

ties are equal. The sawtooth-free cases (blue and green) lie at or above this

threshold, whereas the sawtoothing cases (red and orange) are found below.

As the strength of the flux pumping effects varies with time for the oscillat-

ing and the sawtoothing cases, error bars indicate the range of their oscilla-

tion and the data points are set to their time-average over one period.
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The obtained linear velocity and magnetic field pertur-

bations can be used to calculate a ðm ¼ 0; n ¼ 0Þ dynamo

loop voltage ðv� BÞ/ in the plasma center as shown in Fig.

15 (red curve). The resulting dynamo loop voltage is com-

pared to the amount of loop voltage that needs to be provided

in the 3D nonlinear simulation in order to maintain q � 1 within

the central region of the plasma (black curve). This voltage defi-

cit is calculated from the safety factor profile in the correspond-

ing 2D nonlinear simulation as 2B/;2Dg2Dð1� 1=q2DÞ=ðl0RÞ.
The comparison shows that the strength of the dynamo loop

voltage which has been calculated from the scaled linear

eigenfunctions is comparable to the dynamo loop voltage in

the 3D nonlinear simulation, even exceeding it by a factor of

two in the center. Note that perfect agreement is not expected

as the linear stability calculation is based on a 2D axisym-

metric equilibrium, whereas the sawtooth-free state in the

3D nonlinear calculation has a 3D helical core. Also, in the

3D nonlinear simulation, the self-regulation mechanism dis-

cussed in Sec. IV can adjust the amount of flux pumping to

the voltage deficit. In contrast to this result for the quasi-

interchange instability, it is found that a comparable, suffi-

ciently strong dynamo loop voltage cannot be obtained from

the linear perturbations of an internal kink instability as

shown in Fig. 15.

FIG. 12. Strength of the resistivity flattening effect (left) and the dynamo loop voltage (right) on axis for different sawtooth-free cases. The value of v? which

is varied together with the strength of the heat source controls the stiffness of the temperature profile.

FIG. 13. Left: Safety factor profile that has been used for the linear stability analysis. UN denotes the normalized toroidal magnetic flux. Right: Growth rates of

the most unstable mode for different resistivities.

FIG. 14. Left: Velocity field in the

plasma center for a quasi-interchange

instability obtained from the linear sta-

bility analysis. Right: For comparison,

the velocity field in the plasma center

for an internal kink instability is

shown. The internal kink instability is

obtained by shifting the safety factor

profile shown in Fig. 13 down such

that q0 ¼ 0:945.
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VI. SUMMARY AND OUTLOOK

We have presented a large set of long-term 3D nonlinear

MHD simulations in toroidal geometry that have been set up

such that a heat source works towards driving the central

safety factor to values below unity. The resulting asymptotic

states are characterized either by repeating sawtooth-like

reconnection cycles or by a stationary flat central safety fac-

tor profile with values close to unity. In the sawtooth-free

cases, a saturated quasi-interchange instability leads to a sta-

tionary helical ðm ¼ 1; n ¼ 1Þ perturbation of the plasma

core, in particular, a ðm ¼ 1; n ¼ 1Þ convection cell. The

most important mechanism that prevents q0 from falling sig-

nificantly below unity in the sawtooth-free states is that this

ðm ¼ 1; n ¼ 1Þ flow combines with the perturbation of the

magnetic field to generate an effective negative loop voltage

via a dynamo effect as proposed in Ref. 18. It is found that

the magnetic flux pumping mechanism in the simulations is

only able to prevent sawtoothing at sufficiently high b.

Above this threshold, the quasi-interchange instability is suf-

ficiently strong to generate the necessary amount of magnetic

flux pumping in order to counterbalance the tendency of the

current density profile to centrally peak. It is shown that the

dynamo loop voltage mechanism is self-regulating.

A linear stability analysis of an equilibrium with low

central magnetic shear and q0 � 1 confirms that the most

unstable mode in this configuration can be characterized as a

quasi-interchange instability and that the resulting linear

velocity and magnetic field perturbations can be combined to

calculate a dynamo loop voltage comparable to the one

obtained in the 3D nonlinear simulations.

As a next step, it would need to be examined in more detail

if the presented results obtained from the 3D nonlinear MHD

simulations can be used to explain the phenomenon of mag-

netic flux pumping in Hybrid discharges. Corresponding experi-

ments could, e.g., test the existence of a threshold in b for flux

pumping to occur and that this threshold depends on how low

q0 should be according to the applied loop voltage and the

amount of on-axis current drive and heating. Furthermore,

experimental observations specific to Hybrid discharges in the

different tokamaks, like the dependence of flux pumping on the

presence of a (3, 2) neoclassical tearing mode17 or an externally

excited ðm ¼ 1; n ¼ 1Þ perturbation of the plasma core50 in

DIII-D, need to be understood in detail. Simulations using an

ASDEX Upgrade like geometry are subject of ongoing work.
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APPENDIX: DETAILS ON THE SIMULATIONS

In Tables I and II, more details on the simulation set-up

are given.

FIG. 15. Left: ðm ¼ 0; n ¼ 0Þ component of the dynamo loop voltage term calculated using the linear eigenfunctions of the quasi-interchange instability (red)

is compared to the voltage that is necessary to raise the safety factor profile in the center to unity in the corresponding 2D nonlinear simulation (black). The lin-

ear eigenfunctions have been scaled by a factor such that the maximum of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

R þ v2
Z

p
matches the same quantity in the corresponding 3D nonlinear simulation

(case “bb,” t ¼ 145600 sA). Right: The same curves are shown using the eigenfunctions of the internal kink instability for comparison.

TABLE I. Parameters used for the presented set of simulations. The values

for j0, aS, and dS for the different cases are listed in Table II.

Perpendicular thermal

diffusivity

v? � 5� 1010 � j0 � T½K��1=2
m2=s

�1:3� 101 :: 2:3� 104 m2=s

Parallel thermal diffusivity vk � 3:45� 107 m2=s

Energy source S ¼ 1:25� 10�17 � aS

d2
S

� exp
ðR�RaxisÞ2þZ2

�2:03�d2
S

� �
Pa=s

Magnetic diffusivity g=l0 � 3:2 � ð T
Taxis
Þ�

3
2 m2=s

Kinematic viscosity �=ðminÞ ¼ 38 m2=s

Toroidal magnetic

field on axis

Baxis ¼ 1 T

Target total current for

feedback control

Itot ¼ 6:4� 105 A

Target total number of

particles for feedback control

ntot ¼ 2:3� 1021

Central density naxis ¼ 3:6� 1019 1=m3

Shape of last closed

flux surface

R½m� ¼ 3:2þ cos ðhþ 0:2 sin hÞ

Z½m� ¼ 1:3 sin h
Time normalization sA ¼ 2:90� 10�7s

Lundquist number S ¼ aBaxis
ffiffiffiffiffi
l0

p� �
= g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
naxismi
p� �

� 106

Magnetic Prandtl number Pm ¼ ð�l0Þ=ðgnaxismiÞ � 12
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The equations that are solved by the M3D-C1 code for

the above presented calculations (in SI units) are

@n

@t
þr � nvð Þ ¼ dnr2nþ Sn; (A1)

@B

@t
¼ �r� E; (A2)

nmi
@v

@t
þ v � rv

� �
¼ �rpþ J� Bþ �r2v; (A3)

3

2
n
@T

@t
þ 3

2
nv � rT þ nTr � v

¼ �jrvj2 þ gJ2 þr � v?nrT þ vkn
BB

B2
� rT

� �
þ S :

(A4)

Here, n is the particle density, T is the sum of the ion and

electron temperatures (in eV), v the fluid velocity, p¼ nT
is the total pressure, Sn and S are the particle and energy

sources, � the dynamic viscosity, g the resistivity, v? and

vk are the perpendicular and parallel heat diffusion coeffi-

cients, dn is an additional anomalous particle diffusion

coefficient, and mi is the ion mass. The magnetic field B,

the electric field E, and the electric current density J are

defined as

B ¼ r� A; (A5)

E ¼ �v� Bþ gJ; (A6)

J ¼ 1

l0

r� B ; (A7)

where A is the magnetic vector potential.
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