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Abstract
We investigate how non-ideal-magnetohydrodynamics (MHD) effects, in particular plasma
resistivity, impact the peeling–ballooning stability thresholds in spherical tokamaks. This
analysis follows the discovery of resistive kink-peeling modes in ELMing National Spherical
Torus Experiment (NSTX) discharges. In the present study we extend this modeling to ELMing
pulses in the Mega Ampere Spherical Tokamak (MAST) and MAST—Upgrade (MAST-U),
where we find a clear resistive scaling for peeling–ballooning modes. While in NSTX
ideal-MHD predicts stability for ELMing discharges, in MAST-U we find that the plasma is
slightly unstable to peeling–ballooning modes, but is fully stabilized once diamagnetic effects
are considered in terms of a growth rate normalization. A resistive power law scaling is
calculated for these modes on MAST-U, which lies in between that of tearing modes and
resistive interchange modes. A comparison between M3D-C1 and NIMROD shows reasonable
agreement for this scaling. Resistivity destabilizes the modes and the peeling–ballooning
unstable domain is considerably expanded in both, MAST and MAST-U. In addition to the
MAST/-U pulses we also analyze resistive PB stability in a NSTX-similarity discharge on
DIII-D. While having a different aspect ratio from NSTX, this discharge uses NSTX-like
shaping parameters, toroidal field and plasma current. By considering these discharges
alongside NSTX cases, we identify conditions influencing the onset of resistive
peeling–ballooning modes. Our findings indicate that magnetic shear in the pedestal region is
closely linked to the emergence of resistive edge modes.

Keywords: magnetohydrodynamics, MAST-U, peeling–ballooning, edge localized modes,
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1. Introduction

Edge-localized modes (ELMs) have been known to con-
stitute a major challenge for the operation of reactor-scale
tokamaks [1], and their control and avoidance is of crucial
importance. Current tokamak experiments provide a good
platform for understanding the onset of ELMs and devel-
oping models to describe the underlying physics and pre-
dict ELM-free regimes. For some machines such as DIII-
D and other large aspect ratio tokamaks ideal peeling–
ballooning (PB) modes explain the occurrence of type-I ELMs
sufficiently well [2]. However, some scenarios have been
described where this is not the case [3–7], and higher fidel-
ity models are required. Recent modeling with extended-
magnetohydrodynamics (MHD) models has been performed
and identified that plasma resistivity can explain ELM stability
limits in the National Spherical Torus Experiment (NSTX) [8–
10] and JET-ILW [11] scenarios. Further work has revealed the
importance of non-ideal effects on PB stability [12]. Nonlinear
simulations of ELMs have also been performed in the past with
different codes [13–15]. It is therefore important to understand
in which parameter regimes such resistive PBMHDmodes are
associated with type-I ELMs as this can facilitate the predic-
tion of ELM-free scenarios and aid in scenario development
for future devices.

It is still unclear whether tokamaks besides NSTX and JET-
ILW are prone to developing resistive PB instabilities. An
ideal-MHD peeling–ballooning stability studywith the ELITE
code showed that ELMing discharges in the Mega Ampere
Spherical Tokamak—Upgrade (MAST-U) are located close to
the peeling–ballooning stability threshold [16]. An open ques-
tion in this study remained about how to define the stability
threshold for these plasmas. In ideal-MHD the transition from
stability to instability happens at a normalized growth rate of
γ/ωA = 0, where γ is the ideal-MHD growth rate and ωA is
the Alfvén frequency. However, for the presented MAST-U
pulses the stability limit had to be set at slightly larger, finite
values of γ/ωA. While these adjusted thresholds effectively
captured the stability characteristics of the discharges, it is an
indication that additional physical effects may influence ELM
stability thresholds on MAST-U. One such effect could be
plasma resistivity, which was previously found to destabilize
peeling–ballooningmodes inNSTX [8–10] and JET-ILW [11].
Since MAST and MAST-U feature a similar aspect ratio as
NSTX and operate with comparable magnetic field strength, it
is worth investigating whether these spherical tokamaks (STs)
also exhibit such resistive edge modes.

In this paper we present extended-MHD simulations with
the M3D-C1 code [17] to calculate the resistive peeling–
ballooning stability threshold of a MAST and a MAST-U
pulse with single-fluid extendedMHDmodels and in the ideal-
MHD limit. In the context of this paper, ‘extended-MHD’
refers to any MHD model that includes effects beyond the
ideal-MHD model, e.g. plasma resistivity, plasma viscosity,
etc. The exact model used in the presented simulations, is
described in section 2. To increase confidence in the results
a comparison with the NIMROD code [18] is performed. We

also include toroidal plasma rotation to understand whether
equilibrium rotation can influence peeling–ballooning stabil-
ity. For this analysis, we use the available rotation profiles
from experimental measurements in the given pulses. Our goal
is to provide a preliminary assessment of whether equilibrium
rotation plays a significant role. PB stability analysis includ-
ing equilibrium rotation is rarely performed. And while few
studies exist on conventional tokamaks that include equilib-
rium rotation [12, 19], the influence of rotation on macro-
scopic edge modes remains an uninvestigated problem on STs.
Another goal of this paper is to determine plasma conditions
that are associated with the occurrence of resistive peeling–
ballooning modes. To broaden the parameter space, we also
include a DIII-D discharge with NSTX-like parameters.

This paper is structured as follows: section 2 describes the
extended-MHDmodel adopted in theM3D-C1 code. Section 3
investigates linear PB mode stability in MAST and MAST-
U, including the sensitivity of edge modes to resistivity and
calculation of the stability boundary w.r.t. the experimental
point. It also provides a short comparison with the NIMROD
code. A discussion of the physics associated with the occur-
rence of resistive PB modes in different tokamaks is presented
in section 4. This includes a discharge in DIII-D with some
NSTX-like parameters.

2. Calculation of edge stability limits with M3D-C1

2.1. Physical model & numerical approach

Since our goal is to extend our previous study of the effect
of plasma resistivity from NSTX to other STs, we employ
the same physical model using the M3D-C1 initial value sta-
bility code. M3D-C1 uses an extended-MHD model that is
derived from the Braginskii equations. In particular, in this
study we adopt a set of single-fluid extended-MHD equations
that include the effects of resistivity, viscosity as well as
particle and thermal diffusivity. We employ the following set
of equations:

∂ns
∂t

+∇· (nsu) = Σ ,

mins

(
∂u
∂t

+u ·∇u
)
= J×B−∇p−∇ ·Π −miuΣ ,

∂p
∂t

+u ·∇p+Γp∇· u= (Γ− 1)

[
ηJ2 −∇ · q

−Π :∇u− 1
2
mi v

2Σ

]
,

E=−u×B+ ηJ ,

J=
1
µ0

∇×B ,
∂B
∂t

=−∇×E , (1)

withΣ := D∇2ns and where, ns = ni = ne is the particle dens-
ity of the electron and ion species, u the fluid velocity, B the
magnetic field, p the pressure, J the current density, E the
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electric field, η the resistivity, Π =−µ [∇u+(∇u)t] the vis-
cous stress tensor, q=−κ∇T−κ∥b̂b̂∇T the heat flux dens-
ity, Γ = 5/3 the adiabatic index, mi the ion mass, D denotes
particle diffusivity κ the isotropic heat conductivity, κ∥ the

parallel heat conductivity, b̂ the unit vector in direction of
the magnetic field and µ is the isotropic viscosity [20]. This
system of equations is solved in M3D-C1 using C1 finite
elements [17, 21] on an unstructured triangular mesh. The
mesh is adapted for each equilibrium, such that the mesh
elements align with the flux surfaces. This ensures high res-
olution in the pedestal region and lower resolution in other
parts of the computational domain. Since equations (1) con-
stitute a single fluid-model, i.e. there is only one bulk fluid
velocity u, diamagnetic rotation is not naturally included in
the system of equations that is solved in the present analysis.
While the code is capable of including diamagnetic effects in
the full two-fluid model, this treatment is reserved for future
work as it introduces additional numerical and physical chal-
lenges. Plasma resistivity is calculated according to the well-
known Spitzer resistivity model. Due to the requirement of
quasi-neutrality (ni = ne) in MHD calculations, and because
the total pressure p is specified in addition to ne and elec-
tron temperature Te, the main ion temperature is determined
by these quantities as Ti = p/ne −Te. The Te and Ti profiles
are comparable in magnitude and thus calculation of the res-
istivity profile from Te is justified. Note that in our model
we use a Spitzer resistivity profile without neoclassical or Zeff
corrections. However, the expected neoclassical correction to
the Spitzer resistivity profile would be approximately a factor
of 2, which lies within the range of scaled resistivity values
in our study. Based on the results of our resistivity scan we
expect these corrections to the Spitzer profile to be further
destabilizing. At the same time the single-fluid MHD model
ignores some stabilizing effects that would be expected in a
full two-fluid MHD model, such as gyroviscosity and Hall
effects. We would thus expect that these effects would coun-
teract the destabilizing effect of the corrected resistivity pro-
file. The magnitude of these contributions is to be explored in
future work. Because finite values of resistivity are required
in M3D-C1, we take the ideal-MHD limit to be at 10% of
Spitzer resistivity. This limit is justified since the growth rate
remains nearly constant below this threshold as laid out in [22]
and confirmed with linear M3D-C1 simulations on NSTX. In
our model the stress tensor Π includes the effect of finite vis-
cosity, which has a direct influence on the growth rate. It is
difficult to determine the exact value of viscosity in a fusion
plasma. However, by investigating the sensitivity of the PB
mode growth rate on viscosity it was determined that within
the range of realistic viscosity values the growth rate does not
vary strongly. Hence, choosing a realistic value for viscosity is
expected to result in accurate stability thresholds. We choose
a value of 2.577 735 22 ×10−7 kgm−1s−1 . This is within
the range of viscosity values of about 1.0×10−7 kgm−1s−1

to 2.5×10−6 kgm−1s−1 that is typically used in M3D-C1 and
other extended-MHD simulations [23]. Equilibrium rotation
can be included in two ways: 1) By including a centrifugal

term in the Grad–Shafranov equation. 2) By solving the regu-
lar Grad–Shafranov equation without this term and initializing
the initial fluid velocity field based on a given rotation profile.
Here, we choose the latter approach as the centrifugal term in
the Grad–Shafranov equation often introduces numerical chal-
lenges, which is unpractical for running a large amount of sim-
ulations as shown in this paper.

In the M3D-C1 simulations f = RBϕ = 0 on the bound-
ary, which implies t̂ ·∇f = 0 along the boundary. Additional
boundary conditions are set to prevent normal flow, poloidal
flow and toroidal flow at the boundary. In all of the presen-
ted simulations the boundary is sufficiently far away from the
plasma such that the density is negligible, i.e. the amount of
plasma at the boundary is small enough that potential flows
along the boundary would not be expected to have an effect on
mode stability in the pedestal. We would also like to emphas-
ize that the mode perturbation in the presented cases does not
extend to the plasma boundary.

In linear simulations the toroidal modes are decoupled
and simulations are carried out for each n individually. The
growth rate is determined as γ = 1

2d/dt ln(Ekin), where Ekin

is the plasma kinetic energy. Since initial value simulations,
like those we perform with M3D-C1, will pick up any type
of unstable mode anywhere in the plasma, an analysis of
mode types is performed to distinguish PB modes from other
types of instabilities. The modes are characterized in terms
of their eigenfunction by evaluating radial and poloidal loc-
ation, poloidal mode spectrum and their sensitivity to certain
physical effects that drive the instability. In the remainder of
this paper, ψN = (ψ−ψ0)/(ψ1 −ψ0) denotes the normalized
poloidal flux. Here, ψ0 and ψ1 are the poloidal flux at the
magnetic axis and the separatrix, respectively. As in previ-
ous analysis, we adopt the same simple model of diamagnetic
stabilization as in ELITE [24]. This allows for a better com-
parison with ideal-MHD studies and our previous work on
NSTX [8, 9]. With this normalization the stability boundary
is given as γ/(ω∗i/2) = 1. The plasma is considered stable if
γ/(ω∗i/2)< 1 and unstable if γ/(ω∗i/2)> 1, where γ is the
mode growth rate and ω∗i is the effective ion diamagnetic fre-
quency in the pedestal. Since the ion diamagnetic frequency
varies strongly in the pedestal region, an effective diamagnetic
frequency ω∗i is chosen for the normalization. It is defined as
half of the maximum value of the ion diamagnetic frequency
inside the pedestal. This is the same approach as in ELITE and
enables a better comparison [24]. A constant approximation
for ω∗i instead of retaining a radially varying ω∗i can affect
the magnitude of the diamagnetic stabilization [25, 26].

3. Stability analysis in MAST and MAST-U

To better understand the role of plasma resistivity on ELM sta-
bility thresholds in STs beyond NSTX, we now expand our
analysis to MAST andMAST-U.We first determine the resist-
ive scaling in ELMing pulses of these two machines and then
calculate the PB stability thresholds for a discharge in each
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device using ideal and resistive MHD models. In this section,
linear stability simulations are carried out for these pulses with
toroidal modes ranging from n= 1− 40. To determine the res-
istive scaling all toroidal modes ⩽ 40 are considered, but for
the calculation of the stability boundaries we choose a step
size of of 3, i.e. n= 1,4,7,10, . . .,40. We increased the max-
imum value of n compared with previous NSTX simulations,
because ELITE simulations have shown larger toroidal mode
numbers to be important on MAST/-U [16, 27]. The step size
of 3 is chosen as a trade-off between capturing many toroidal
modes and reasonable computational cost for the simulations.

3.1. Plasma equilibrium

The first equilibrium considered in the present analysis is for
MAST-U pulse 45 272 at time 477ms. This discharge exhibits
type-I ELMs and was recently studied [16] using the ideal-
MHD code ELITE. (Partial) kinetic equilibrium reconstruc-
tions on MAST and MAST-U are typically being performed
with the EFIT++ Grad–Shafranov solver [28]. Because such
EFIT++ [29] equilibrium calculations can exhibit inconsist-
ent pressure profiles at the plasma edge, i.e. it is not guaranteed
that p⩾ pe + pi (impurities and fast particles can also contrib-
ute to the total thermal pressure). Aworkflowwas employed to
ensure that p is the sum of the partial pressure contributions.
The kinetic EFIT was obtained through the kineticEFITtime
OMFIT [30, 31] module using EFIT++ as equilibrium solver.
In a next step the total pressure was recalculated from the spe-
cies’ particle pressures and a newGrad–Shafranov equilibrium
was calculated with the fixfit code, a fixed-boundary equilib-
rium solver. fixfit was also used to calculate the equilibria with
scaled pressure and current profiles through VARYPED [32].
For more details regarding the VARYPED workflow we refer
to [16]. The equilibrium that are obtained in this manner, are
calculated only up to the last closed flux surface and the pol-
oidal flux is extrapolated by fixfit to fill a rectangular com-
putational box that is only marginally larger than the plasma
itself. Such a small computational box does not fully cover the
computational domain required for simulations withM3D-C1.
To address this limitation the equilibrium is recalculated with
the CHEASE equilibrium solver [33]. This yields an essen-
tially identical equilibrium within the last closed flux surface
while extending the flux field outward to ensure a sufficiently
large computational domain. Since M3D-C1 can model vessel
components as conductors with realistic resistivities, we usu-
ally try to include the inner wall in the computational domain
using an appropriate resistivity value. However, because the
MAST and MAST-U equilibria had to be recalculated with a
fixed-boundary solver, the computational domain of the input
equilibriumwas not large enough to fit the device wall of either
MAST or MAST-U into the domain. Hence, the inner wall is
omitted from the simulations. In these cases theM3D-C1 com-
putational domain acts as an ideal wall, and is kept at roughly
the same distance as the actual device walls of MAST and
MAST-U. Such a wall distance is expected to not considerably
affect peeling stability [34].

The second equilibrium considered here is forMAST (prior
to the upgrade) pulse 29 782 at time 446ms. Similar to the
MAST-U case described above, this is a typical H-mode pulse
with type-I ELMs. The equilibrium has been reconstructed
with the EFIT++ equilibrium solver. Unlike in the MAST-U
case the total pressure profile was consistent with the sum of
the reconstructed electron pressure pe and ion pressure pi pro-
files, eliminating the need to compute a new Grad–Shafranov
solution. Nevertheless, to calculate the equilibrium variation
with VARYPED it was necessary to again employ fixfit, and
thus process the varied equilibria with CHEASE as described
above.

Equilibrium shape and the profiles for electron density ne,
electron temperature Te, total pressure p and flux-averaged tor-
oidal current density< jϕ > for theMAST andMAST-U equi-
libria are shown in figure 1.

3.2. Resistive peeling–ballooning growth rates

We now determine the sensitivity of the PB mode growth rate
w.r.t. plasma resistivity η in the MAST and MAST-U dis-
charges using the kinetic equilibria described above. η is cal-
culated based on the Spitzer resistivity model and scaled in
a range from 0.1− 10. The mode growth rates at different
plasma resistivities are compared in figure 2 using two differ-
ent normalizations for the growth rate γ. The modes in both
pulses show a dependence on resistivity, however, between
the ideal-MHD limit and twice the Spitzer resistivity value it
is much weaker than what was previously seen in NSTX [8,
9]. When increasing the resistivity profile from regular Spitzer
resistivity to twice its value, the growth rate roughly doubled
on ELMing NSTX discharges, whereas on the investigated
MAST/-U pulses it only increases by a factor of about 1.2, as
seen in figure 2. The resistive scaling is further quantified in
section 3.3. When γ is normalized w.r.t. the Alfvén frequency
ωA the growth rate increases with toroidal mode number n
for all considered values of resistivity. While ELMing NSTX
plasmas appeared to be fully stable (γ/ωA < 0), the considered
MAST and MAST-U discharges appear unstable already for
n= 1 and n⩾ 8 in the ideal-MHD limit (ηS × 0.1) when the
same stability criterion of γ/ωA = 0 is applied. This is the key
difference to the NSTX observations [8]. Another commonly
used normalization for PB modes considers the ion diamag-
netic frequency in the pedestal ω∗i as explained in section 2.
This normalization has two advantages: it provides a simple
physical model to include diamagnetic stabilization [35] and at
the same time provides a physically justified stability threshold
of γ/(ω∗i/2) = 1 that can eliminate slightly unstable modes,
which are often seen in resistive MHD simulations, but grow
so slowly that they would not be associated with the explos-
ive nature of ELMs. With this normalization the MAST pulse
appears PB-unstable in the ideal-MHD limit, but the MAST-U
pulse stays underneath the stability limit of γ/(ω∗i/2) = 1 and
would be considered stable.

The n= 1 growth rate in MAST pulse 29 782 corres-
ponds to a pure core mode, which could to be similar to
the long-lived mode that has been described in many MAST
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Figure 1. Equilibrium of the MAST and MAST-U pulses used for
peeling–ballooning stability analysis. (top) Flux surfaces (lcfs is
shown bold), magnetic axis (+) and first wall. (middle) electron
density ne and electron temperature Te. (bottom) Total pressure p
and flux-averaged toroidal current density jϕ.

experiments [36, 37]. Unlike the edgemodes at n> 1, this core
mode shows no destabilization with increasing resistivity, sug-
gesting that it is an ideal instability. In the MAST-U pulse
we do not find such an ideal core mode. Nevertheless, soft x-
ray spectra reveals a core mode in the experiment [16], which
could be explained by including resistivity. The magnitude of
this core mode is, however, determined by the nonlinear evol-
ution of the instability and growth rates alone do not necessar-
ily provide insight on how strong the experimentally observed
mode would be.

3.3. Characterizing the resistive scaling with M3D-C1 and
NIMROD

In this section we determine the resistive scaling of resist-
ive peeling–ballooning modes in terms of the Lundquist num-
ber S= LvA/η, where L is the typical length scale of the sys-
tem, vA is the Alfvén velocity and η is resistivity. In order to
increase confidence in the resistive nature of these instabilit-
ies, linear stability simulations are also carried out with the
NIMROD code [18] and compared with the M3D-C1 com-
putations. We have initiated linear code comparisons between
M3D-C1 and NIMROD for PB modes without equilibrium
flows for the time being. For this initial code comparison of
extended-MHD simulations on modes in the edge pedestal
MAST-U pulse 45 272 is chosen, and the focus is on a linear
resistivity scan within an extended-MHD model similar to the
one used in M3D-C1. While both codes employ an extended-
MHD model that is derived from the Braginskii equations, a
major difference in terms of the physics model concerns the
implementation of diffusive processes. M3D-C1 uses a con-
stant thermal conductivity κ, whereas NIMROD uses a con-
stant thermal diffusivity χ = κ/ns (where ns = ne = ni is the
particle density). A similar difference exists for the isotropic
viscosity, which in M3D-C1 is directly specified with dimen-
sions of mass / (length · time) and held constant, whereas
in NIMROD a diffusivity with dimensions of length2/time is
held constant, which differs from the constant viscosity in
M3D-C1 by a factor of mass density ρ. The NIMROD sim-
ulations were performed with uniform particle and thermal
diffusivity profiles set to 1m2s−1 and parallel viscosity fixed
at 1× 105m2s−1. Simulations were performed for the whole
plasma domain including the scrape-off-layer (SOL) without
two-fluid effects. The computational grid is varied in the pol-
oidal direction from 126 to 504 grid points, depending on
the mode number, while the radial resolution is maintained at
72 grid points with a polynomial degree of 5. These settings
ensure adequate resolution for capturing the linear growth of
MHD instabilities driving ELMs in the MAST-U tokamak
with high values of q in the plasma edge.

In order to quantify the resistive scaling of resistive PB
modes we calculate a power law of the form aSb by fitting
the growth rates γ/ωA at different resistivity values for given
toroidal mode numbers. Here, S is the Lundquist number and
a,b are fitting parameters. Figure 3(a) shows the growth rates
γ/ωA as a function of S for n= 10,12,15,18,20 calculated
with M3D-C1 and NIMROD. A clear destabilization of PB
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Figure 2. The mode growth rate γ/ωA as a function of toroidal mode number n at varying values of resistivity. A Spitzer resistivity profile
ηS is used and scaled by factors in the range of 0.1− 10. (left) MAST 29 782. (right) MAST-U 45 272. The horizontal black line shows the
stability threshold γ/(ω∗i/2) = 1.

modes with resistivity is found in NIMROD similar to M3D-
C1. Overall, M3D-C1 shows a stronger decrease of the resist-
ive scaling with increasing n than NIMROD does, i.e. M3D-
C1 shows γ ∝ S−0.513 for n= 10 and γ ∝ S−0.302 for n= 20,
whereas NIMROD provides a somewhat slower scaling at
n= 10 of γ ∝ S−0.410 and a slightly faster scaling than M3D-
C1 for n= 20 of γ ∝ S−0.345. Nevertheless, in both codes the
calculated scalings lie in approximately the same range and are
slower than that of tearing modes (γ ∝ S−0.6) and faster than
that of resistive interchange modes (γ ∝ S−3/13). The resist-
ive scaling in MAST pulse 29 782 was calculated with M3D-
C1 and is similar to that of the MAST-U pulse. Figure 3(b)
compares the resistive scaling seen on MAST-U #45272 with
the scaling of resistive kink-peeling modes that was previ-
ously observed on NSTX [9]. Whereas the exponent in the
power law decreases with n on the investigated MAST-U dis-
charge, it increases for the resistive kink-peeling modes seen
on NSTX, but otherwise they cover a similar range. However,
in the NSTX case the exponent was calculated only by fitting
the growth rates in the range from S= 3 × 105 to S= 8 × 106,
because for higher values of S the resistive scaling deviates
from the power law. If those points were included, the overall
scaling would be faster on NSTX than it is on MAST-U. It can
also be asserted that between S= 1× 107 and S= 1× 108 the
modes in NSTX are much more sensitive to resistivity than on
MAST-U. In fact, for high values of S the growth rate γ/ωA

becomes negative on NSTX, whereas it remains positive on
MAST-U. This prohibits the calculation of a scaling law of
the typical form aSb for NSTX.

3.4. Extended-MHD PB stability boundaries

Equilibria with varied pedestal pressure and current density
are now used for linear stability simulations to determine the
PB stability thresholds relative to the experimental points in
MAST #29782 andMAST-U #45272. The simulations are per-
formed with resistive MHD and in the ideal-MHD limit at
10% of Spitzer resistivity. Furthermore, the stability bound-
ary is calculated both without equilibrium rotation and with
a given rotation profile. However, the approach for the rota-
tion profile differs between the two discharges. For the MAST
discharge we do not have a measured toroidal rotation pro-
file and the simulations can only use the diamagnetic term
of the E×B flow ωE×B, as this can be calculated from the
available profiles. For the MAST-U discharge a set of rota-
tion profiles is available based on measurements of carbon
rotation. In these reconstructed profiles the diamagnetic term
for the main ions does, however, show a strong and narrow
peak close to the LCFS, which appears unphysical, and thus
the diamagnetic term dpC

dψ /(6nC), in the E×B rotation pro-
file is not considered in the MAST-U discharge. Here, pC and
nC are the measured carbon impurity pressure and density,
respectively. Figure 4 shows the rotation profiles used in the
simulations. Due to limitations with the equilibrium recon-
struction on MAST and MAST-U on the given pulses, the
rotation profiles for the two cases were obtained in different
ways and differ qualitatively. The ion E×B profiles obtained
in the equilibrium reconstruction are consistent with realistic
radial electric field Er profiles. While we strive to use the full

6



Plasma Phys. Control. Fusion 67 (2025) 085026 A Kleiner et al

Figure 3. (a) Resistive peeling–ballooning mode growth rate as a
function of the Lundquist number S calculated with M3D-C1
(circles) and NIMROD (squares) for different toroidal mode
numbers n for MAST-U #45272. A scaling law of the form aSb is
fitted to the M3D-C1 results (solid lines) and to the NIMROD
results (dashed lines). (b) Comparison of resistive scalings in NSTX
#132543 (diamonds, dotted lines) and MAST-U #45272 (circles,
solid lines) calculated with M3D-C1.

ion E×B rotation profiles whenever possible, there are prac-
tical limitations in some cases, which is why the MAST and
MAST-U profiles each use only part of the full E×B rota-
tion profile. Despite this limitation the magnitude of the tor-
oidal rotation is comparable in between all three cases. Note
that the goal of this study is only to provide some insight into
whether the presence of equilibrium rotation can affect the
PB stability boundaries, since this is still an open question.
Because we employ a single-fluid model in M3D-C1 as given
by equation (1), there is only one toroidal bulk fluid velocity
with zero poloidal velocity. The normalization γ/(ω∗i/2) can
thus still be applied without accounting for diamagnetic stabil-
ization twice. Figure 4 also shows the rotation profile of a DIII-
D discharge that is analyzed in section 4.1. A more detailed
analysis of how plasma rotation can impact PB stability is cur-
rently under investigation.

Figure 4. Reconstructed rotation profiles for MAST #29 782,
MAST-U #45 272 and DIII-D #140 996. These profiles are used in
M3D-C1 to initialize the fluid velocity in the equilibrium. The
profile shown for DIII-D is the main ion E×B velocity, for MAST
29 782 the diamagnetic contribution to the E×B velocity, and for
MAST-U 45 272 it is the main ion E×B velocity profile without the
diamagnetic term.

While the stability of ideal peeling–ballooningmodes in the
presence of equilibrium rotation has not yet been thoroughly
explored, previous studies of resistive peeling–ballooning
modes on NSTX were carried out with equilibrium rotation
included [8, 9]. This was done because in NSTX plasma rota-
tion stabilizes core modes at intermediate n that make it dif-
ficult to isolate edge modes in linear simulations. In con-
trast, apart from the n= 1 core mode in MAST, which has a
much smaller growth rate thanmost higher-nmodes, such core
modes are not observed in the MAST/-U discharges investig-
ated here, thus enabling a direct comparison of PB stability
thresholds both with and without the inclusion of some form
of equilibrium rotation. It also allows us to determine whether
rotation affects ideal PB modes, resistive PB modes, or both.

First, we focus on pre-upgrade MAST pulse 29 782. The
PB stability boundaries calculated with and without equilib-
rium rotation and using the ideal-MHD limit as well as res-
istive MHD are presented in figure 5. A moderate increase of
the growth rate γ is observed when Spitzer resistivity is intro-
duced. This is true for both, the cases with and without equilib-
rium rotation. In all four cases γ exhibits a strong dependency
on pressure gradient, but not on current density. Together with
the fact that the perturbation is localized in the bad curvature
region it can be asserted that thisMAST pulse is limited by bal-
looning modes. The only moderate shift of the stability bound-
ary with Spitzer resistivity is similar to that seen in a type-I
DIII-D discharge that was used as a benchmark to test our res-
istive PBmodel [8]. The results show that resistivity has only a
marginal effect on the stability limits in this MAST discharge
and hence ideal-MHD describes PB stability sufficiently well.
This is in line with previous studies that investigated PB stabil-
ity on MAST prior to the upgrade and found that ideal-MHD
models can reasonably well describe the occurrence of ELMs
[27, 38, 39]. When comparing the growth rates and location of
the stability boundary at γ/(ω∗i/2) = 1 between the caseswith
and without equilibrium flows in figure 5 it is seen that rota-
tion has a somewhat ambiguous effect on stability. On the one
hand it moves the stability threshold towards higher values of
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Figure 5. Peeling–ballooning stability boundary and normalized growth rate γ/(ω∗i/2) of the most unstable mode calculated for MAST
pulse 29 782. The top row shows the results without equilibrium rotation, and the bottom row using a rotation profile based on the
diamagnetic term (blue curve in figure 4). (left) ideal-MHD. (right) resistive MHD (Spitzer resistivity). Note that the top right figure uses a
larger range of α compared to the other figures such that the stability threshold can be captured.

the normalized edge pressure gradient α, and thus acts stabil-
izing, but on the other hand it increases the mode growth rate
at high values of edge pressure (i.e. large α) by about 10% and
acts destabilizing in this part of parameter space in the ideal-
MHDmodel. However, in the resistive model rotation acts sta-
bilizing across the domain. Note that the most unstable modes
are in the range of n= 13− 16, and are comparable at large α
independent of whether rotation is included or not. This res-
ult could indicate that the effect of rotation on PB stability is
rather complex and could go beyond being overall stabilizing
or destabilizing. Further studies are necessary to assert how
plasma equilibrium flows affect macroscopic edge stability.

Next, figure 6 shows the stability boundary in MAST-U
#45272 calculated with the same models that were employed
for MAST #29782. In the ideal-MHD calculations the exper-
imental equilibrium is located close to a ballooning stability
threshold, but still on the stable side. This is not too differ-
ent from earlier ideal-MHD ELITE computations, where a
different growth rate normalization and criterion for the sta-
bility threshold were used [16]. When equilibrium rotation is
considered, the ideal-MHD stability threshold remains essen-
tially unchanged. The PB growth rates are not affected con-
siderably by rotation either, which indicates that at least in
this case ideal peeling–ballooning stability is not impacted
by equilibrium rotation. The shape of the stability bound-
ary here is comparable to the ELITE calculations in [16] and
indicates that the discharge is located more on the ballooning

side than the kink-peeling side. The experimental point and
the error bars are, however, completely on the stable side,
which indicates that the discharge should be stable to ELMs.
Note that MAST #29782 has not been investigated with
ELITE. Due to the overall challenges of using the conven-
tional ELITE code on low aspect ratio equilibria [40] and non-
availability of the low aspect ratio version of ELITE, perform-
ing ELITE simulations and comparing those toM3D-C1 is out
of scope of the current study. When Spitzer resistivity is intro-
duced, the unstable domain increases in size significantly and
now encloses the experimental point—and in contrast to the
ideal-MHD calculation—indicating instability to ELMs. This
increase of the unstable domain is similar to what was seen
previously in ELMingNSTX discharges [8]. However, the res-
istive modes in the MAST-U discharge do not exhibit a strong
and clear sensitivity to current density as the modes in NSTX.
The resistive instabilities here have features of ballooning
modes, which can also be resistive in nature [41]. Due to the
relatively weak gradient of the growth rate in the j−α plane
it was not possible to capture the stability boundary within the
domain. Note that the discharge is becomingmore stable at lar-
ger values of j. Due to the effect of j on magnetic shear s this
indicates that the plasma might approach the second region of
ballooning stability in this region. It is expected that the stabil-
ity threshold moves closer to the experimental point as soon as
two-fluid effects are considered, which is reserved for a future
study.
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Figure 6. Peeling–ballooning stability boundary and normalized growth rate γ/(ω∗i/2) of the most unstable mode calculated for MAST-U
pulse 45 272. The top row shows the results without equilibrium rotation, and the bottom row using the toroidal rotation profile without the
diamagnetic term (orange curve in figure 4). (left) ideal-MHD. (right) resistive MHD.

Note that in the calculations based on the Spitzer resistiv-
ity model the experimental point is somewhat deep inside the
unstable region. As the pedestal builds up during an ELM
cycle the plasma usually is expected to develop an ELMonce it
passes the stability boundary. It is thus not yet clear why in the
resistive calculations the experimental point is not closer to the
stability limit. Even though ourmodel considers more physical
effects than ideal-MHD it still does not consider full two-fluid
effects. Gyroviscosity, for example, can have an additional sta-
bilizing effect as shown in [9]. The results nevertheless show
that resistivity has a major impact on the stability limits, and
the development of a more refinedmodel including thoroughly
measured rotation profiles is subject to future study.

4. Conditions for resistive PB modes

In this section we analyze the condition under which resist-
ive PB modes are observed across the STs MAST, MAST-U
and NSTX, but also a ‘NSTX similarity’ discharge in DIII-D,
which adopts some NSTX-like parameters.

4.1. PB stability in ‘NSTX similarity’ discharge on DIII-D

A series of experiments has been performed on DIII-D, which
aimed at achieving NSTX-like conditions [42]. While these
discharges had major and minor radii typical for DIII-D, the
toroidal magnetic field Bt, plasma current Ip, normalized beta
βN and shaping parameters (elongation κ, triangularity δ) were

in the range that was typically achieved on NSTX. Given that
ideal PB modes are seen on DIII-D, and resistive PB modes
on NSTX, a discharge that uses some parameters from each
device can provide a more comprehensive understanding of
the conditions leading to unstable resistive edge modes. For
this study, we select DIII-D discharge 140 996, which exhibits
type-I ELMs and has a toroidal field of Bt =−0.584T, plasma
current of Ip = 0.637MA, normalized β of βN = 3.277, trian-
gularity of δ= 0.556 and κ= 1.873. The aspect ratio in this
discharge is A= 2.77, which is about double the values on
NSTXwhereA≈ 1.2− 1.5. A fully kinetic equilibrium recon-
struction was performed at 2517ms with a window of 600ms.
As this is a free-boundary equilibrium we are able to include
the inner wall of DIII-D in the computational domain. The flux
surfaces of the reconstructed plasma are shown in figure 7(a),
and the Dα signal in figure 7(b). This discharge has a wider
pedestal than most other discharges on DIII-D, and in fact the
pedestal width is in the range of type-I ELMy H-mode dis-
charges on NSTX.

As for the MAST/-U cases above we calculate the peeling–
ballooning stability limit in the ideal-MHD limit and with
the resistive model. The results are presented in figure 8. The
plasma appears unstable to PBmodes in the ideal-MHDmodel
with the experimental point being localized on the ballooning
side. Plasma resistivity has a negligible effect on the growth
rates and does not considerably shift the stability boundary.
Thus, as in other conventional DIII-D discharges the type-I
ELMs in this ‘NSTX similarity’ discharge are also associated
with ideal PB modes.
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Figure 7. Equilibrium of DIII-D discharge 140 996, which has some
NSTX-like parameters. (a) Equilibrium shape. (b) Dα signal
showing the presence of type-I ELMS.

4.2. Discussion of physics associated with resistive PB
modes

Table 1 lists scalar plasma parameters in ELMing discharges
on MAST, MAST-U, NSTX and DIII-D in which PB sta-
bility was analyzed with resistive MHD models in M3D-
C1. This is the entire set of ELMing discharges that were
analyzed with M3D-C1. The NSTX discharges were chosen
based physical relevance: cases with weaker and strong shap-
ing and good quality equilibrium reconstructions. The MAST
case was chosen as it showed clear type-I ELMs, and good
measurements in the last 20% of the ELM cycle. Given the
limitations of EFIT++ we were able to reconstruct an equi-
librium with self-consistent pressure profiles, which is not
guaranteed for all pulses on MAST. The MAST-U pulse was
chosen as it was recently studied with ELITE and the results

indicated that additional physics could play a role. The DIII-
D discharge is a type-I ELMing discharge from a later cam-
paign, where better diagnostics were available than in earlier
campaigns. For each discharge the table states how strongly
PB modes scale with resistivity. The quantities listed include
parameters related to plasma shaping (aspect ratio A, elong-
ation κ, triangularity δ), global parameters (βN, q95), which
directly affect MHD stability, as well as pedestal parameters
collisionality ν∗, ballooning parameter α, normalized current
density5 jNELITE and pressure pedestal width wped and height
hped. These parameters are expected to have the potential to
affect PB stability. There is no clear correlation between the
resistive scaling and any of the geometrical quantities, nor the
pedestal parameters nor βN. In particular, it can be asserted that
resistive destabilization of PB modes is not directly linked to
the aspect ratio of the plasma. However, q95 > 6 for discharges
where an effect of resistivity on PBmodes is observed andwell
below this value when there is a weak influence of resistivity. It
should also be noted that modes in the peeling-limited regime
appear to be more sensitive to resistivity than modes on the
ballooning-limited side6. However, this observation is based
on a limited amount of discharges, and needs to be confirmed
further by simulations of additional discharges.

The most prominent physical effect introduced in our
extended-MHD model compared with ideal-MHD is plasma
resistivity, as discussed. In the Spitzer resistivity model,
plasma resistivity η ∝ T−3/2

e , which suggests that either res-
istivity itself or electron temperature could directly correlate
with the occurrence of unstable resistive peeling–ballooning
modes. These and other normalized and non-normalized pro-
files are shown in figure 9 for all of the (ELMing) discharges
that are listed in table 1. The color coding indicates how
strongly the mode growth rates change when going from the
ideal-MHD limit to Spitzer resistivity for each discharge. Red
indicates a strong resistive scaling and a discharge that is
limited by resistive modes, yellow indicates a discharge that
shows a resistive scaling of medium intensity, and green indic-
ates a weak resistive scaling, where Spitzer resistivity only
marginally destabilizes the modes. Surprisingly, neither Te nor
η in the pedestal region seem to be connected to the observa-
tion of resistive edge modes. Nor do the profiles of electron
density ne, total pressure p and flux-averaged current density
have an influence. Furthermore, it can be seen that neither the
electron density normalized w.r.t. the Greenwald density limit
ne/nG, the ballooning parameter α nor the Lundquist num-
ber S correlate with the impact of resistivity on the growth

5 The normalized current density is defined as jNELITE =
jmax,ped
ELITE +jsepELITE

2javg
with

jELITE = f
R0

⟨
j·B
B2

⟩
and javg = I(ψ)/A(ψ), where jmax,ped

ELITE is the maximum

value of jELITE in the pedestal region, jsepELITE is the value of jELITE at the sep-
aratrix, f = RBϕ, and A(ψ) is the cross sectional area.
6 This is shown in figure 3(b), where at high S, i.e. when moving from the
ideal-MHD limit to Spitzer resistivity, the scaling is much stronger in the
peeling-limited NSTX case than in the ballooning-limited MAST-U case.
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Figure 8. Normalized growth rate γ/(ω∗i/2) of the most unstable mode calculated with M3D-C1. The peeling–ballooning stability
boundary γ/(ω∗i/2) = 1 is shown as black line. The numbers denote the most unstable toroidal mode at each location. (a) ideal-MHD limit.
(b) resistive MHD.

Figure 9. Different flux-averaged quantities are shown for ELMing discharges investigated on NSTX, MAST/-U and DIII-D with M3D-C1.
The colors indicate how strongly the PB growth rates change when going from the ideal-MHD limit to Spitzer resistivity in each discharge.
red: strong resistive scaling, yellow: medium resistive scaling, green: weak/no resistive scaling.

rates7. These normalized quantities might allow for a better
inter-machine comparison. Note that the Lundquist number on
DIII-D discharge 147 105 is considerably higher than for the

7 The Lundquist number S can by itself have an effect on the growth rates as
evidenced by the results in figure 3. When these resistive scalings are determ-
ined only S is scaled in an isolated manner, while other plasma parameters
are held constant. On the other hand figure 9 shows the S profiles of several
discharges with different overall configurations. This shows that the absolute
value of S when compared among different discharges does not determine
whether resistive PB modes are observed in said discharge. For sufficiently
high values of S it would be expected that the growth rates approach those of
ideal modes. However, the given discharges do not lie within this asymptotic
regime.

other shown discharges and is partially excluded from the plot
to better show the comparison for the remaining profiles. A
clear correlation can, however, be seen between how resistiv-
ity impacts PB stability and the magnetic shear in the pedes-
tal. How strong the effect of resistivity is, i.e. how the colors
in figure 9 are chosen, is determined based on how strongly
the stability boundary shifts in the j−α plane in between
the ideal-MHD limit and the Spitzer resistivity models. While
the current study shows a total of three discharges in MAST,
MAST-U and DIII-D, the stability boundaries for the remain-
ing discharges listed in table 1 and shown in figure 9 can
be found in [8, 9]. A ‘strong’ effect of resistivity (red lines)
exists when there is a transition from stability to instability
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Table 1. Scalar parameters taken at the time of the equilibrium reconstruction in ELMing discharges on various devices and how they
correlate with the resistive scaling.

device NSTX NSTX NSTX MAST-U DIII-D DIII-D MAST

discharge 132 543 139 047 139 037 45 272 147 105 140 996 29 782

peeling peeling ballooning ballooning PB corner ballooning ballooning

scaling strong strong medium medium weak weak weak

A= a/R 1.37 1.45 1.27 1.57 3.05 2.77 1.47
elongation κ 2.10 2.31 2.38 2.10 1.82 1.81 1.60
triangularity δ 0.538 0.626 0.572 0.454 0.542 0.486 0.325

βN 5.241 5.466 4.318 2.23 2.371 3.28 3.07
q95 7.347 8.000 6.470 6.11 3.563 2.55 3.62

ν∗ 0.6201 0.6456 0.3748 0.7406 0.1256 0.7196 0.8227
α 6.003 6.086 6.477 8.8 6.314 3.29 2.796
jELITE 0.544 0.641 0.699 0.787 1.700 0.448 0.550

wped (ptotal) in ψN 0.1191 0.1098 0.0829 0.046 0.0614 0.157 0.118
hped (ptotal) in Pa 4933.61 2318.19 3852.20 2232.29 14 965.82 4811.15 1797.27

at the experimental point together with a considerable expan-
sion of the unstable domain. A ‘medium’ effect is character-
ized by the existence of some form of instability at the exper-
imental point in ideal-MHD (such as seen in figure 2), but
at the same time the unstable domain increases in size con-
siderably. A ‘weak’ effect of resistivity is seen when there is
only a negligible shift of the stability threshold in j−α space
between the ideal-MHD and resistive calculations. The correl-
ation with magnetic shear together with the influence of q95 on
resistive modes indicate that the safety factor in the pedestal
region plays a much stronger role in triggering resistive PB
modes than thermal quantities such as Te, p and even plasma
resistivity itself, whether they are taken in absolute values or
normalized.

5. Conclusions

In this study we investigated whether resistive peeling–
ballooning modes can occur in MAST and MAST-U, and we
calculated the stability boundaries using single fluid extended-
MHD and an ideal-MHD limit for comparison. Simulations
were performed with and without equilibrium flows. The
sensitivity of the PB growth rate to resistivity was investig-
ated, and a comparison was performed with the NIMROD
code to increase confidence in the M3D-C1 results. The res-
ults confirm previous ideal-MHD PB thresholds calculated
with ELITE on MAST prior to the upgrade. In MAST-U,
we find resistive PB modes similar to those seen on NSTX
[8]. Resistive PB in MAST-U appear to have more dominant
ballooning features compared with NSTX. In the ideal-MHD
limit the simulations with M3D-C1 recover a PB stability
threshold that is similar to that found by ELITE. While in the
ELITE calculations the stability threshold had to be arbitrar-
ily chosen [16], the present M3D-C1 simulations use a widely

accepted threshold based on the diamagnetic frequency [24,
43–48]. The main benefit of using M3D-C1 over ideal-MHD
codes is the inclusion of non-ideal effects, and as shown in
the present study, plasma resistivity can matter in the destabil-
ization of macroscopic modes in the pedestal. Simulations
including equilibrium flow were carried out, but at least on
MAST and MAST-U its effect on PB stability seems negli-
gible. We also investigated the conditions that trigger resist-
ive PB modes by correlating scalar plasma parameters and
plasma profiles with the intensity of the resistive scaling of
PB modes. For this analysis we chose discharges fromMAST,
MAST-U, NSTX and DIII-D that have so far been studied
with M3D-C1 in the context of resistive peeling–ballooning
modes. It is found that the edge magnetic shear correlates
well with the sensitivity of PB modes to plasma resistivity,
whereas resistivity itself, or shaping parameters are uncorrel-
ated among other quantities. The results show that resistive
peeling–ballooning modes can appear in more plasma condi-
tions in various machines than previously described. While
the extended-MHD model employed in M3D-C1 to study
peeling–ballooning stability still has limitation, such as not
including full two-fluid effects or neoclassical corrections, it
is effective in capturing PB stability thresholds, where ideal-
MHD models struggled. In all cases that have been studied
so far in previous work [8, 9] and in the current study, the
M3D-C1 single-fluid model consistently predicted ELMing
plasmas to be in the PB-unstable domain, and ELM-free dis-
charges on the stable side. This provides an improvement over
pure ideal-MHD models that sometimes fail to do so. Future
work will be focused on improving the model further in order
to obtain stability thresholds that are closer to the experi-
mental point as would be expected based on the idea of ped-
estal evolution (pedestal build-up until stability threshold is
hit upon ELM-crash). This will be done by including gyro-
viscous stress (expected to be stabilizing), neoclassical and
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Zeff corrections to resistivity (expected to be destabilizing), as
well as Hall terms (expected to be stabilizing). Current work
with NIMROD andM3D-C1 is ongoing to refine the extended-
MHD model in order to obtain stability thresholds that lie
closer to the experimental points by including finite-Larmor
radius and two-fluid effects. This will be reported in a future
publication.
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