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Abstract
The impact of different extended-magnetohydrodynamic (MHD) contributions on the stability
thresholds of peeling-ballooning modes in ELMing and ELM-free plasmas in the spherical
tokamak NSTX is investigated with the initial value code M3D-C1. We show that ELMing
discharges in NSTX are limited by resistive current-driven peeling modes, whereas
non-ELMing wide-pedestal H-mode discharges are located near the ideal pressure-driven
ballooning threshold. It is demonstrated that extended-MHD can lead to more reliable edge
stability predictions than existing ideal-MHD models. Resistive peeling-ballooning modes are
found to exist well before the ideal stability threshold is met, and kink-peeling modes exhibit
considerable sensitivity to plasma resistivity. Other effects not considered in ideal-MHD
models affect PB modes in NSTX in a weaker way. Gyroviscous stress appears stabilizing
such that the stability boundary lies closer to the experimental point. Equilibrium rotation can
suppress ideal core modes and thus isolate edge modes. These results are important for the
development of a predictive pedestal model for low-aspect ratio tokamaks.

Keywords: magnetohydrodynamics, NSTX, peeling-ballooning, edge localized modes, ELM,
pedestal, spherical tokamak

(Some figures may appear in colour only in the online journal)

1. Introduction

Characteristic for high-confinement mode (H-mode) [1] oper-
ation in tokamaks is the formation of an edge transport bar-
rier (edge pedestal), a narrow region in which plasma density
and temperature decrease sharply. This is connected with peri-
odic sudden relaxations of the edge pressure gradient termed
edge localized modes (ELMs), which cause expulsion of par-
ticles and heat [2] to the plasma facing components. ELMs not
only limit the performance of present day tokamaks, but due to
the dangerous heat load levels on plasma facing components
[3] are a major challenge for reactor scale devices. Different
types of ELMs have been observed and classified based on
the dependence of their repetition frequency and amplitude on
heating power. Type-I ELMs are typically considered to be the
most dangerous kind [4].
∗ Author to whom any correspondence should be addressed.

The peeling-ballooning (PB) model [5, 6] provides an
understanding of ELMs in terms of macroscopic magnetohy-
drodynamic (MHD) instabilities, where (higher-n) ballooning
modes are driven by the large pressure gradient and peeling
modes (low-n) by the bootstrap current at the edge pedestal
[7, 8]. This ideal MHD model is capable of well capturing the
stability thresholds in conventional aspect ratio devices. How-
ever, it was found that in spherical tokamaks (STs) this model
can be less reliable. While in past studies ELMing discharges
in MAST have been found to be limited by ideal ballooning
modes [9, 10], this is not the case for NSTX. Here, ideal PB
mode stability thresholds can be strongly underestimated, such
that ELMing plasmas are predicted to sit deep inside the sta-
ble domain [11–15]. STs are characterized by a smaller size,
higher normalized pressure, and higher bootstrap current [16]
fraction compared with conventional aspect ratio devices, and
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thus are promising candidates for economically viable fusion
reactors [17, 18]. Understanding the occurrence of ELMs in
STs is crucial for the development of future low aspect ratio
tokamaks. A reason for the inaccurate PB predictions in low
aspect ratio plasmas could be the limitation to ideal-MHD. It is
known that resistivity can expand the unstable domain of ideal
MHD modes, for example resistive ballooning modes [19, 20]
are unstable in the first region of stability (at low pressure) of
ideal ballooning modes.

Studies of non-ideal MHD effects on PB modes have been
carried out for simple toroidal configurations [21] where the
exact experimental configuration (low-aspect ratio, shaping
and the presence of an X-point) were not taken into account. A
shift of the PB stability threshold at realistic plasma resistiv-
ity in ELMing NSTX discharges was described in recent work
[22]. The goal of the present paper is to provide a more detailed
understanding of resistive edge stability limits in NSTX, and to
show the influence of other non-ideal effects such as gyrovis-
cosity and plasma rotation on PB mode stability. This is done
in terms of linear stability simulations with the extended-MHD
code M3D-C1 [23–25].

The analysis takes into account multiple ELMing and non-
ELMing scenarios in NSTX with weak and strong shaping. We
consider standard H-mode with type-I ELMs and ELM-free
wide-pedestal H-mode (WP H-mode) [18] cases. An ELM-
ing discharge in DIII-D is used to compare the characteris-
tics of resistive PB mode eigenfunctions in NSTX with those
described by ideal-MHD in conventional aspect ratio. In our
study it is shown that plasma resistivity crucially alters PB
stability thresholds in ELMing NSTX discharges, thus pro-
viding a consistent picture between multiple experiments and
theoretical calculations for the first time. It is observed that
ELMing NSTX discharges are limited by current-driven kink-
peeling modes, which are sensitive to plasma resistivity. This
can explain why ideal-MHD often does not accurately capture
the stability thresholds in NSTX. Other considered non-ideal
effects have a weak or moderate effect on stability, and can pro-
vide more realistic PB stability boundaries. Surprisingly, it is
also found that NSTX discharges sitting on or near the balloon-
ing (pressure-driven) stability threshold do not exhibit ELMs,
suggesting that it is the current-driven instabilities alone that
are responsible for ELMs in NSTX. These findings can con-
tribute to the development of an EPED-like predictive pedestal
structure model, which is important for the path towards a
compact fusion power plant.

This paper is structured as follows: section 2 explains
the calculation of the stability boundary with extended-MHD
models implemented in the M3D-C1 code, and shows the
experimental equilibria used in the simulations. Section 3
investigates the effect of resistivity on macroscopic edge sta-
bility in ELMing and ELM-free discharges in NSTX. The
characteristics of resistive and ideal edge modes in terms of
their eigenfunctions are described in section 4. In section 5 we

Table 1. Overview of analyzed NSTX discharges.

Shot number Plasma current Ip Elongation Triangularity ELMing

129038 0.8 MA 1.86 0.483 No
132543 1.0 MA 2.10 0.538 Yes
139037 1.2 MA 2.38 0.572 Yes
139047 1.0 MA 2.31 0.626 Yes
141125 0.9 MA 2.46 0.755 No

discuss the influence of finite-Larmor radius effects on PB sta-
bility. Finally, section 6 investigates the effect of equilibrium
rotation on PB stability in NSTX.

2. Calculation of the peeling-ballooning stability
boundary with M3D-C1

2.1. Plasma equilibria

The linear stability simulations are based on kinetic EFIT equi-
librium reconstructions [26–28] of NSTX experiments, which
in addition to the Grad–Shafranov solution also contain infor-
mation about density, temperature and rotation profiles of the
different particle species. For the ELMing discharges the mea-
surements of the Thomson scattering diagnostics are averaged
during the last 20% of the inter-ELM period, to obtain a bet-
ter spatial resolution for the ne and Te profiles [29]. In the
ELM-free discharges 129038 and 141125 the averaging is per-
formed over a window of 100 ms centered at 400 ms and
840 ms, respectively. To study the stability thresholds in ELM-
ing scenarios, we choose three typical (often termed ‘narrow
pedestal’) H-mode discharges 132543, 139037 and 139047
[14, 30, 31]. These cases exhibit steady type-I ELMs and the
availability of good measurements ensures robust equilibrium
reconstructions. ELM-free operation in NSTX is achieved in a
regime termed ‘wide-pedestal H mode’ (WP H-mode), where
evaporative lithium coatings are used to reduce deuterium
wall recycling [32]. This results in a wider density pedestal
with smaller gradient. Together with changes in anomalous
transport the reduction of particle density close to the plasma
edge shifts the strong pressure gradient region inwards, which
enables ELM-free operation. In this study we consider two
WP H-mode cases 129038 (lower single null divertor) and
141125 (double null divertor) [11, 33]. A summary of rele-
vant parameters for the discharges used in this study is shown
in table 1.

The plasma profiles for electron density ne, electron temper-
ature Te, ballooning parameter α (normalized pressure gradi-
ent) [34] and surface-averaged toroidal current density 〈 jφ〉 of
the considered discharges are shown in figure 1. The pedestal
top is located around ψN = 0.9 in the ELMing cases and
around ψN = 0.7 in the ELM-free cases. The shown ne and
Te profiles result in a well pronounced pressure pedestal in all
cases except 139047, where the pedestal shoulder is very weak,
but the normalized pressure α reaches values comparable to
the other ELMing discharges. Ion density ni and temperature
T i are part of the equilibrium reconstruction, but do not enter
the stability calculations, as in the MHD model ni = ne and T i

is thus determined by the electron profiles and total pressure.
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Figure 1. Reconstructed profiles of (a) electron density ne,
(b) electron temperature Te, (c) ballooning parameter α and (d)
toroidal current density jΦ as a function of the normalized poloidal
flux ψN prior to the onset of ELMs. (e) Time trace of divertor Dα.

Figure 1 also shows the divertor Dα emission time trace show-
ing the occurrence of ELMs in discharges 132543, 139037 and
139047.

To compute the stability threshold for PB modes relative
to the experimental operational point, we vary the pedestal
pressure and the pedestal current density around the original
equilibrium reconstruction. This variation is performed with

the VARYPED tool [29], such that the total energy and colli-
sionality remain constant. This provides plasma equilibria with
associated kinetic profiles that range up to the last closed flux
surface. In order to avoid discontinuities around the separatrix,
the profiles for electron density and electron temperature are
extended beyond ψN = 1 by fitting a modified tanh function
of the form c1[1 − tanh(c2(ψN − c3))] to the pedestal (c1, c2

and c3 are free parameters). This keeps the profile within the
ψN = 1 flux surface unchanged while providing a more realis-
tic transition to the open field line region. A solution to the
Grad–Shafranov equation is then calculated with M3D-C1
on a high resolution mesh, before linear simulations are per-
formed for each equilibrium. Having interfaced M3D-C1 and
VARYPED it is possible to calculate the PB stability boundary
in α− j-parameter space using extended-MHD models, and
thus determine the influence of individual effects on stability.
j denotes the normalized pedestal current density.

2.2. Physical model & numerical approach

The initial value code M3D-C1 implements an extended-MHD
model based on the Braginskii equations. In this work we
seek to study the impact of plasma resistivity, gyroviscosity
and equilibrium rotation, for which two-fluid terms can be
neglected. The model is given in terms of the equations

∂�

∂t
+∇ · (�u) = 0,

�

(
∂u
∂t

+ u · ∇u
)

= J × B −∇p−∇ · Π,

∂p
∂t

+ u · ∇p+ Γp∇ · u = (Γ− 1)
[
ηJ2 −∇ · q −Π : ∇u

]
,

E = −u × B + ηJ,

J =
1
μ0

∇× B ,
∂B
∂t

= −∇× E,

(1)

where, as usual, B denotes the magnetic field, p the pressure, �
the ion mass density, u the fluid velocity, J the current density,
E the electric field, η the resistivity, Π the viscous stress ten-
sor and q the heat flux density [35]. This system of equations
is solved in M3D-C1 using C1 finite elements [24, 25] on an
unstructured triangular mesh. The mesh is generated individ-
ually for each equilibrium, and adapted such that the mesh
elements align with the flux surfaces having high resolution
in the pedestal region and lower resolution in other parts of the
computational domain.

Plasma resistivity is calculated according to the Spitzer
resistivity model. We take the limit of ideal-MHD to be at 10%
of Spitzer resistivity. This is justified as the growth rate remains
nearly unchanged as resistivity is lowered further [36]. In a
recent study it was shown that the growth rate of PB modes
in NSTX scales with resistivity η [22]. A strong dependency
of the growth rate on resistivity is found when η is half of
the Spitzer value or above. M3D-C1 simulations show that
for lower resistivity values the scaling becomes weaker and as
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Figure 2. PB stability boundary and normalized growth rate
γ/(ω∗i/2) of the most unstable mode calculated with M3D-C1 for
ELMing discharges. The numbers denote the most unstable toroidal
mode at each location, and the solid lines represent the stability
boundary at γ/(ω∗i/2) = 1. (a) 132543, resistive MHD and
comparison to ideal MHD limit. (b) 139047, ideal limit. (c) 139047,
Spitzer resistivity.

resistivity approaches values of 10% of the Spitzer value and
below, the growth rate remains nearly constant.

PB modes are typically observed to rotate in the direction
of the ion fluid. For most parts of this study and where not
otherwise noted, we therefore choose to set the fluid veloc-
ity to the measured toroidal ion rotation ωi = ωE×B − ω∗m,

where ω∗m is the main ion diamagnetic rotation frequency. We
do not modify the equilibrium to take centrifugal effects into
account, as this can cause numerical issues. A detailed analysis
of the effect of equilibrium rotation is presented in section 6.
In our model the stress tensor Π includes the effect of finite
viscosity, which has a direct influence on the growth rate. It is
difficult to determine the exact value of viscosity in a fusion
plasma. However, by investigating the sensitivity of the PB
mode growth rate on viscosity it was determined that within
the range of realistic viscosity values the growth rate does not
vary strongly in NSTX. Hence, choosing a realistic value for
viscosity is expected to result in accurate stability thresholds.
For the linear simulations in this paper toroidal mode num-
bers from n = 1–20 are considered, which are typically the
most relevant for PB modes. The mode growth rate is deter-
mined as γ = 1

2 d/dt ln(Ekin), where Ekin is the plasma kinetic
energy. Mode types are characterized in terms of their eigen-
function by evaluating radial and poloidal location, poloidal
mode spectrum and driving mechanisms. In the remainder of
this paper, ψN = (ψ − ψ0)/(ψ1 − ψ0) denotes the normalized
poloidal flux. Here, ψ0 and ψ1 are the poloidal flux at the mag-
netic axis and the separatrix, respectively. For the (single fluid)
simulations we adopt the same simple model of diamagnetic
stabilization as in ELITE [37]. With this normalization the sta-
bility boundary is given as γ/(ω∗i/2) = 1. The plasma is con-
sidered stable if γ/(ω∗i/2) < 1 and unstable if γ/(ω∗i/2) > 1.
Here, γ is the mode growth rate and ω∗i is the effective ion
diamagnetic frequency in the pedestal. The latter is defined as
half of the maximum diamagnetic frequency n

eini

dpi
dψ inside the

pedestal region (ei is the ion charge, pi the ion pressure and ψ
the poloidal flux).

3. Resistive scaling of PB modes in NSTX

In the following, we investigate the impact of resistivity on PB
modes in NSTX. While a shift of the stability threshold with
resistivity was recently reported [22], we now provide more
detail of the resistive dependency of PB modes in ELMing dis-
charges. We will also show that ELMing discharges are limited
by resistive peeling modes, whereas non-ELMing discharges
are located close to an ideal ballooning stability boundary. It
is our intention to compare different physical models in mul-
tiple discharges. Therefore, in the following, all stability plots
showing the same discharge use the same range of the col-
ormap, i.e. contour colors are identical in plots showing the
same discharge.

3.1. ELMing discharges

Within the PB model, it is expected that the operational point
is located near or inside the unstable domain in α− j param-
eter space for discharges exhibiting ELMs3. When employ-
ing the ideal-MHD model in M3D-C1 computations this is,

3 Whether the experimental point lies inside the unstable domain or near the
stability threshold on the stable side depends on the time when the kinetic
profiles were obtained relative to the ELM crash. If averaged over a crash,
it is probable that it lies slightly in the stable domain. However, for the dis-
charges considered in the presented study the averaging was performed before
the ELM crash.
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however, not the case as ELMing NSTX discharges are pre-
dicted to be stable. This was confirmed in simulations with
the ideal-MHD code ELITE [22]. Figure 2 shows the sta-
bility boundaries calculated with M3D-C1 in the ideal-MHD
limit and with the resistive model for two ELMing discharges.
The experimental point (indicated by the cross-hair) is shown
relative to the ideal and resistive PB stability boundaries for
discharges 132543 and 139047. Figure 2(a) summarizes the
result of reference [22] by showing the growth rate calculated
with Spitzer resistivity and overlaying the ideal-MHD stabil-
ity limit. Figures 2(b) and (c) show the results for 139047
in the ideal and resistive model, respectively. When plasma
resistivity is introduced a domain of unstable resistive PB
modes appears. This shifts the stability boundary considerably
to lower values of α and j such that the experimental point
appears on the unstable side consistent with the occurrence
of ELMs. In both cases a region of ideal instability is found
at large values of normalized pedestal pressure α. We will
show below that the resistive domain comprises kink-peeling-
like modes, whereas the ideal region corresponds to unstable
ballooning modes.

A shift of the stability threshold with resistivity is also seen
for discharge 139037, which is similar to 139047 but has a
larger plasma current (Ip = 1.2 MA vs Ip = 1.0 MA). The dif-
ference to the previous two discharges is that the equilibrium of
139037 is already PB unstable in the ideal limit. With the resis-
tive model the unstable domain expands, but less extensive as
in 132543 and 139047. This is shown in figure 3.

We now evaluate the resistive scaling of these novel
resistive PB modes and compare it to the well known scalings
of other resistive modes. Figure 4 shows the normalized
growth rate γ/ωA for various toroidal modes n as a func-
tion of the Lundquist number S = τR/τA ∝ 1/η, where
τR = μ0a2/η is the resistive time, a is the minor radius and
τA = 1/ωA is the Alfvén time. The Alfvén frequency is
given as ωA = B0/(L0

√
μ0N0mi), using L0 = 1 m, B0 = 1 T,

N0 = 1020 m−3 and mi being twice the proton mass. As we
are interested in comparing the power scalings of γ with S
(i.e. the slope of each curve in figure 4) rather than the real
growth rates of tearing and infernal modes, the growth rates
for tearing modes and resistive infernal modes are normalized
to match that of PB modes at the lowest value of S. It is
seen that resistive infernal modes exhibit a relatively weak
scaling of S−3/13 [38] and remain rather unstable even for
larger values of S (i.e. less resistive plasmas). In the range
2 × 105 � S � 106, i.e. when resistivity is larger than Spitzer
resistivity, PB modes exhibit a scaling of approximately S−1/2

in discharge 132543, which is slower than tearing modes
(S−3/5). We also calculated the scaling for discharge 139047
where it is roughly γ ∝ S−0.65, which is faster than that of
tearing modes. The different scaling laws among these two
discharges can be understood by recalling that PB modes can
have pressure and current-driven components, which do not
necessarily exhibit the same sensitivity to resistivity. As will
be shown below, it is the current-driven modes that have a
strong sensitivity to resistivity, whereas the pressure-driven
part scales only weakly with resistivity. Towards the ideal
limit, the resistive PB growth rate exhibits a very steep

drop and eventually crosses the marginal point of stability.
The simulations are performed with finite viscosity and this
drop is likely associated with the stabilizing effect of finite
viscosity on slowly growing modes. M3D-C1 simulations
performed with an unrealistically low value of viscosity show
weakly unstable modes in the range of n = 9–20. The values
for the resistive PB power scalings provided in figure 4 are
obtained by fitting a function of the type aS−b to the simula-
tion results before the drop off occurs at larger values of S.

3.2. ELM-free discharges

After finding a strong destabilizing effect of plasma resistiv-
ity on PB modes in ELMing cases, we now want to expand
the scope of our model by considering ELM-free scenar-
ios in NSTX, namely WP H-mode. This allows us to deter-
mine how the different pedestal parameters of WP H-mode
affect PB stability and whether resistivity has a similar impact
as in the ELMing narrow pedestal cases. Two discharges
are considered: 129038 has weaker shaping (elongation κ =
1.86, triangularity δ = 0.483) and is single null diverted; dis-
charge 141125 has stronger shaping (κ = 2.46, δ = 0.755),
is double null diverted and uses non-axisymmetric magnetic
perturbations.

Figure 5 shows the stability boundary for NSTX WP H-
mode discharges 129038 and 141125 calculated with M3D-
C1 in the ideal-MHD limit and with the resistive model. The
operational point of both discharges is located on the stable
side independent of the model (ideal or resistive MHD) used,
thus indicating stability with respect to ELMs. Contrary to the
ELMing cases of section 3.1 no shift of the stability threshold
close to the operational point is seen as resistivity is intro-
duced. However, a (smaller) domain of resistive instability
appears for large values of edge current density. This pro-
vides a consistent picture in terms of PB stability among the
two WP H-mode cases. The most unstable part of parameter
space is observed at large values of edge pressure and moder-
ate edge current density. This is the domain where ballooning
modes can become unstable, as the pressure is destabilizing
and magnetic shear is sufficiently large. The closeness of the
two operational points to this unstable region indicates that WP
H-modes discharges are close to the ballooning stability limit,
rather than the kink-peeling limit. 129038 is slightly closer
to this limit than 141125. The observed shape of the stabil-
ity boundary is typical for strongly shaped plasmas [39]. (Note
that all of the considered NSTX plasmas exhibit strong shaping
compared to many conventional aspect ratio discharges.)

As it is the case for ELMing discharges, by employing
a resistive single-fluid MHD model the theoretical calcula-
tions locate the experimental points on the correct side of the
stability boundary in the considered WP H-mode discharges.
The positions of the operational points relative to the stability
boundaries indicate that resistivity appears to be important for
low-aspect ratio cases that are peeling-limited, i.e. limited by
current-driven modes. On the other hand, resistivity appears to
be negligible when discharges are pressure-limited, i.e. sit on
the ballooning side. A more detailed discussion of the observed
resistive and ideal edge modes is presented in the following
section.

5
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Figure 3. PB stability boundary and normalized growth rate γ/(ω∗i/2) of the most unstable mode calculated with M3D-C1 for ELMing
discharge 139037. The numbers denote the most unstable toroidal mode at each location. (a) Ideal-MHD limit. (b) Spitzer resistivity.

Figure 4. Resistive PB mode growth rate as a function of the Lundquist number S compared with the scaling of tearing modes and resistive
infernal modes. The points represent the actual growth rates calculated with M3D-C1, and the solid lines represent a fit through those points
at high resistivity.

4. Analysis of mode eigenfunctions

In section 3 it was seen that ELMing discharges are unstable to
resistive current-driven modes, whereas ELM-free discharges
are located close to an ideal stability threshold. To better under-
stand the differences between resistive and ideal PB modes
in NSTX, we now analyze the structure of these modes in
terms of their eigenfunction ξ ∝ δp = p(t > 0) − p(t = 0),4

and show how resistivity affects peeling harmonics, but not
the ballooning harmonics. For this purpose the poloidal mode
spectrum is calculated in PEST coordinates. We also com-
pare the characteristics of these NSTX edge modes to DIII-D
results.

4 To ensure that the eigenfunction corresponds to that of the most unstable
mode, p(t > 0) is taken during a phase of constant growth rate, i.e. when the
most unstable mode is isolated.

We first inspect the eigenfunctions of resistive and ideal
edge modes of ELMing discharge 132543. The left-hand side
of figure 6 shows the poloidal spectrum of the most unstable
toroidal mode at two locations: in the region of ideal instability
at large values of α and in the region of resistive instability at
moderate values of α and large values of edge current j. The
ideal mode (n = 20) shows dominant edge ballooning mode
features, i.e. it is a predominantly internal perturbation which
peaks well inside the pedestal. Furthermore, the mode has a
broad poloidal spectrum and the perturbation is localized at
the low-field side. The resistive modes are current-driven as the
growth rate scales with j. For the shown resistive mode (n = 8)
the poloidal harmonics peak close to or at the last closed flux
surface, indicating an external kink or peeling mode. In the
region of resistive instability the most unstable modes are of
lower n as in the domain of ideal ballooning modes (at large
α). Similarly, the right-hand side of figure 6 compares the
poloidal spectrum of resistive and ideal modes in non-ELMing

6
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Figure 5. PB stability boundary and normalized growth rate γ/(ω∗i/2) of the most unstable mode calculated for NSTX WP H-mode
discharges 129038 (top) and 141125 (bottom) in the ideal-MHD limit (left) and with Spitzer resistivity (right).

Figure 6. Poloidal spectrum of modes on the resistive kink-peeling side and in the ideal ballooning domain. (Left) for ELMing discharge
132543. (Right) for ELM-free WP H-mode discharge 129038. The eigenfunction of the most unstable mode is shown at the locations
indicated by green circles.

7
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Figure 7. Mode eigenfunctions on the current-driven side of the stability boundary for a discharge in DIII-D (top) and in NSTX (bottom).
The most unstable mode in the DIII-D case is n = 1, whereas in the NSTX discharge it is n = 12.

WP H-mode discharge 129038. As seen in figure 5 the opera-
tional point is close to an ideal region of instability. The modes
inside this region exhibit similar features as in the ideal region
of instability in 132543. The perturbation peaks inside the
plasma and is weak at the boundary. Due to the wider pedestal
in 129038 the peak of the perturbation is shifted further away
from the last closed flux surface compared with 132543. While
in both discharges the unstable domain expands when plasma
resistivity is considered, the resistive domain in 132543 cov-
ers a considerably larger part of parameter space as in 129038
(cf figures 2 and 5). This can be understood in terms of the
eigenfunctions of the resistive modes in both cases. In dis-
charge 132543, where the resistive domain extends past the
operational point and where resistivity changes the stability
picture from stable to unstable, the peeling-component of the
mode is dominant throughout the resistive domain. In the
ELM-free case 129038, however, the mode in the resistive
region is dominantly of ballooning character with somewhat
weaker peeling mode components. Peeling and ballooning
modes can exhibit a different sensitivity to resistivity, which
implies that the composition of coupled PB modes affects
the resistive scaling. This can explain why ELMing discharge
139037 shows a weaker scaling with resistivity than the other
two ELMing discharges. 139037 is located in a region of unsta-
ble coupled PB modes, and only the peeling harmonics are
sensitive to resistivity.

The features of PB modes in conventional aspect ratio
machines, particularly in DIII-D, are quite similar across a
broad spectrum of discharges [40]. While the characteristics
of modes on the ballooning side in the NSTX discharges is
very similar to ballooning modes in the known large aspect
ratio cases, we will now focus on the difference of resistive
PB modes in NSTX compared with the well known ideal peel-
ing modes. Typical ideal kink-peeling modes in large aspect
ratio have low toroidal mode number n and a rather narrow
poloidal spectrum in straight field line coordinates as the per-
turbation wraps around the poloidal circumference [41, 42]. To
compare the properties of kink-peeling modes in NSTX and
DIII-D, we choose DIII-D discharge 147105. This discharge
was previously investigated [43] in the frame of ideal-MHD,
and also used as a benchmark case for M3D-C1 simulations
[22]. Since 147105 is a relatively recent discharge compared to
other previously analyzed ELMy H-mode discharges in DIII-
D, equilibrium reconstruction benefits from better diagnostics
measurements. For DIII-D discharge 147105 [43] the M3D-C1
simulations recover the typical characteristics of PB modes in
the ideal-MHD limit, as seen in figure 7. For the shown case,
which is located on the peeling side, the most unstable toroidal
mode is n = 1, and the perturbation in the poloidal plane is
clearly kink-like. Such low-n modes are not seen in similar
studies with the ELITE code, as a result of the underlying
expansion in inverse toroidal mode number [7]. The kink-like
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Figure 8. PB stability boundary calculated with the inclusion of
gyroviscous stress. (a) 132543, with Spitzer resistivity. (b) 139037,
ideal limit. (c) 139037, Spitzer resistivity.

properties are, however, also seen for the n = 5 mode and thus
consistent with ELITE observations. The characteristics of the
resistive current-driven modes in NSTX are different. When
unstable modes of low-n are seen on the peeling side, these
modes correspond to a mode in the plasma core and ξ in the
pedestal is weak. Such modes are not associated with ELMs
and hence not considered in the frame of the PB model. An
example is seen on the bottom of figure 7, where the n = 1
mode is localized in the core and the most unstable mode is

Figure 9. Comparison of normalized growth rate γ/ωA as a
function of the toroidal mode number n without equilibrium rotation
and with initial ion rotation for NSTX discharge 132543 with
multiple values of plasma resistivity. In the turquoise area the most
unstable mode is localized in the core, whereas in the two purple
regions edge modes are dominant.

n = 12 with a strong perturbation inside the pedestal. This is
typical for external kink/peeling modes, yet the perturbation
is localized on the low field side, indicating a sensitivity to
field line curvature, a typical feature of ballooning modes. It
should be noted that NSTX discharges exhibit strong shap-
ing and low-aspect ratio, conditions that contribute to poloidal
mode coupling due to toroidicity [44]. Since both, pressure
and current density, provide driving forces for instabilities in
the plasma edge, it is not unusual that the observed PB modes
show features of peeling and also ballooning modes.

5. Finite-Larmor-radius effects

Finite-Larmor-radius stabilization can be represented in MHD
models in terms of modifications to the stress tensor and
Ohm’s law [45]. Oftentimes MHD codes use the gyroviscous
cancellation where ∇ ·Π ≈ −nv∗ · ∇v to include the diamag-
netic drift and v∗ is taken to be the diamagnetic drift veloc-
ity. So far, in our model diamagnetic effects have been con-
sidered in terms of the growth rate normalization. We now
investigate the effect of gyroviscosity, which enters the model
directly via the gyroviscous-stress tensor in equation (1) and
avoids the approximation made by the gyroviscous cancella-
tion. In our model FLR effects are represented via the terms
containingΠ in equation (1) but not in Ohm’s law. FLR effects
are fully implemented only in the two-fluid model. Details
about the implementation of the gyroviscous stress in M3D-
C1 can be found in reference [46]. We note in passing that
unlike fluid viscosity gyroviscous stresses are perpendicular
to the fluid velocity. Figure 8 shows stability thresholds with
the additional effect of gyroviscosity for ELMing discharges
132543 (Spitzer resistivity) and 139037 (Spitzer resistivity and
ideal-MHD limit). It is seen that gyroviscosity has a moderate
stabilizing effect that moves the stability boundary closer to
the experimental point when compared with the models that
neglect gyroviscous effects in figures 2 and 3, respectively. In
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Figure 10. PB stability boundary and normalized growth rate γ/(ω∗i/2) of the most unstable mode calculated for NSTX discharge 129038
using equilibrium rotation based on the measured E × B rotation profile.

this ‘standard’ resistive single-fluid model employed above,
the experimental point lies deep inside the unstable region, and
it should be expected that a plasma would have produced an
ELM already before reaching this point. When including the
effect of gyroviscosity, the threshold moves closer to the exper-
imental point, provided that the threshold is still determined by
the condition that γ = ω∗i/2. It is questionable whether this
choice of threshold is justified for a model that includes gyro-
viscosity, however, given that the ω∗i/2 threshold is intended
to represent the value of γ below which diamagnetic effects
(including gyroviscosity) would fully stabilize the ideal-MHD
PB mode. In a model that includes diamagnetic effects, one
might conclude that the threshold γ = 0 would be the appro-
priate one. In fact, simulations that include resistivity find
small (γτA 	 1) positive values of γ over a much broader
range of conditions than where ELMs are actually observed,
and therefore there is evidently a threshold for γ below which
these slow-growing instabilities do not result in ELMs, either
due to saturation at small amplitudes or stabilization by addi-
tional physics. These questions should be investigated through
calculations using more complete physics models and careful
validation against experiment.

6. Effect of plasma rotation on PB modes in NSTX

Ideal-MHD PB stability calculations in conventional aspect
ratio devices are typically carried out without plasma equi-
librium rotation, as its effect on the growth rates is negligible
[47]. It is, however, not clear if this is also true for resistive PB
modes in low-aspect ratio plasmas [48]. M3D-C1 is capable of
processing a variety of measured rotation profiles, including
E × B rotation, and rotation of electron and ion species. In the
following, we will discuss to what degree equilibrium rotation
is important when assessing edge stability limits in NSTX. To

include the effect of rotation in M3D-C1, the initial fluid veloc-
ity v(t = 0) is set based on the measured rotation values, but
the equilibrium is calculated without centrifugal effects as this
can cause numerical difficulties.

We now calculate the growth rate γ without equilibrium
rotation, and demonstrate that in the considered NSTX cases
equilibrium rotation can suppress ideal-MHD modes located
in the core, and thus helps isolate edge modes. This is illus-
trated in figure 9, which shows the linear growth rate in dis-
charge 132543 as a function of the toroidal mode number n for
multiple values of plasma resistivity without equilibrium rota-
tion and with main ion rotation. The resistivity scale factors
are chosen to illustrate the dependence of γ on resistivity and
do not necessarily have a physical meaning. In the calculations
with zero equilibrium rotation an ideal mode localized in the
plasma core (ψN < 0.6) is strongly unstable. An example of
such a low-n core mode is seen in figure 7, where the perturba-
tion peaks aroundψN = 0.4. It is not clear if at low-n indepen-
dent edge modes occur as well, since the edge perturbation is
rather weak and could be due to coupling with the main mode
in the core. When equilibrium rotation is considered based
on the measured main ion rotation profile, ideal core modes
become suppressed at n ≈ 4–10 (depending on resistivity) and
edge modes are seen. For η well above the Spitzer value plasma
rotation appears to be stabilizing on edge modes. However, this
cannot be said about edge modes at lower resistivity as edge
modes are obscured by more unstable core modes. At low-
n the core modes persist and coexist with weak edge modes.
However, for the calculation of the PB stability boundary these
low-n modes are not relevant as higher-n modes are the most
unstable.

We also want to compare the PB stability boundary cal-
culated with rotation profiles based on the measured E × B
rotation in order to increase confidence in the results. For this

10
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comparison we choose discharge 129038 as it features a clear
ideal (ballooning) stability limit and also a resistive stabil-
ity limit. Figure 10 shows the PB stability boundary calcu-
lated with equilibrium E × B rotation. The stability boundary
closely resembles that of the simulations with equilibrium ion
rotation of figure 5. While equilibrium rotation can suppress
ideal core modes found in some NSTX discharges, a consider-
able effect on PB stability cannot be inferred at realistic values
of resistivity.

7. Conclusions

A study of PB stability thresholds in ELMing and ELM-
free NSTX discharges using extended-MHD models was pre-
sented. It is found that plasma resistivity is crucial to the sta-
bility of PB modes in NSTX, and that other non-ideal effects
can be moderately stabilizing. ELMing NSTX discharges are
found to be predominantly limited by current-driven peel-
ing modes. Plasma resistivity can considerably expand the
peeling-unstable domain in these discharges, such that the
experimental point is correctly located on the unstable side.
One ELMing case (139037) was found to be unstable to cou-
pled PB modes, and the scaling with resistivity is somewhat
weaker. On the other hand, wide-pedestal H-mode discharges
sit inside the stable domain close to the ballooning stabil-
ity threshold in both, the ideal-MHD limit and the resistive
model. This difference is understood by investigating the mode
properties of the ideal and resistive modes. Analysis of the
mode eigenfunctions implies that resistivity destabilizes only
the kink-peeling harmonics, while the ballooning harmonics
are ideal. The ideal modes are localized inside the pedestal,
whereas the resistive modes peak at the plasma boundary,
which is characteristic of kink-peeling modes. Compared with
ideal peeling modes in DIII-D, these resistive modes have a
larger toroidal mode number and a broader poloidal spectrum.
The study found that gyroviscosity has a moderate stabiliz-
ing effect and can result in more accurate stability thresholds.
Equilibrium rotation most notably suppresses core modes, but
also appears to stabilize edge modes at large values of resis-
tivity. Our resistive single-fluid model including gyroviscous
stress is capable of capturing the PB stability limits in ELM-
ing as well as ELM-free discharges. This result will contribute
to the development of a high-fidelity predictive pedestal struc-
ture model that is applicable to a broader range of tokamaks,
particularly NSTX. It is unclear whether the destabilization of
resistive kink-peeling modes is a result of spherical tokamak
geometry or alterations to the plasma profiles due to Li coating.
This is currently under investigation.
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