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Abstract
We explore the impact of realistic plasma resistivity on the linear stability of
peeling-ballooning (PB) modes in tokamak discharges with low-aspect ratio. For this study we
consider discharges that are subject to edge-localized modes (ELMs) in the National Spherical
Torus Experiment (NSTX). Employing the state of the art extended-magnetohydrodynamic
(MHD) code M3D-C1 it is demonstrated that non-ideal effects can significantly affect PB
stability thresholds in NSTX discharges. In particular, robust resistive PB modes are found to
exist well before the ideal PB stability threshold is met. These novel results can explain why
ideal-MHD theory often does not accurately describe ELM onset in spherical torus
configurations, and also present a valuable basis for the development of a predictive model for
ELMs in low-aspect ratio tokamaks.

Keywords: magnetohydrodynamics, NSTX, peeling-ballooning, edge localized modes,
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(Some figures may appear in colour only in the online journal)

Spherical tokamaks (STs), i.e. tokamaks with low-aspect ratio
[1, 2] are promising candidates for economically viable fusion
reactors due to their smaller size, higher normalized pressure,
and higher bootstrap current [3] fraction. A particular advan-
tage of STs is improved (ideal) magnetohydrodynamic(MHD)
stability [4–6]. Periodic relaxations of the edge pressure gra-
dient along with expulsion of particles and heat have been
observed in spherical and conventional aspect ratio tokamaks
operating in the high-confinement mode (H-mode) [7]. These
instabilities, called edge-localized modes (ELMs) [8], limit the
performance of present day machines and are a major issue
for reactor scale tokamaks due to large heat loads to plasma
facing components [9]. The peeling-ballooning (PB) model
[10] provides an understanding of ELMs in terms of macro-
scopic MHD instabilities, where ballooning modes (having
high toroidal mode number n) are driven by the large pres-
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sure gradient and peeling modes (low-n) by the current den-
sity at the edge transport barrier (commonly referred to as
pedestal) [11, 12]. The onset of type-I ELMs is well described
by these ideal-MHD (zero resistivity) instabilities in conven-
tional aspect ratio tokamaks [13], where such computations are
employed in the EPED model [14, 15] to successfully predict
the pedestal structure. A long standing problem has been the
application to STs such as the National Spherical Torus Exper-
iment (NSTX), where the predictions of ideal-MHD PB analy-
sis often do not reflect experimental observations, e.g. by find-
ing all edge modes to be stable in ELMing discharges [16–20].
While this prediction is consistent with improved (ideal) sta-
bility properties of STs, the reasons for this discrepancy might
be associated with the limitation to ideal-MHD computations
in the existing models. Most studies of peeling-ballooning
modes (PB modes)—both in conventional and low-aspect
ratio—have been carried out using ideal-MHD models [16, 21,
22]. Studies of non-ideal MHD effects on PB modes have been
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Figure 1. Reconstructed profiles of (a) electron density ne and (b)
electron temperature Te as a function of the normalized poloidal flux
ψN prior to the onset of ELMs. The pedestal top is located around
ψN = 0.9. (c) Divertor Dα emission time trace. Spikes indicate the
onset of ELMs.

carried out for simple toroidal configurations [23] where low-
aspect ratio, shaping and the presence of an X-point were not
taken into account. Other numerical work indicates that non-
ideal effects can affect PB stability under certain conditions in
JET-ILW discharges [24], but does not identify which of these
effects are important, nor its applicability to STs.

Resistive ballooning modes have been described analyti-
cally in simple geometries [25], where it was found that the
inclusion of resistivity can expand the unstable region in bal-
looning space into the first region of (ideal) ballooning sta-
bility [26, 27]. Since calculations with existing PB models
indicate stability boundaries inconsistent with experiments on
NSTX, in this work we investigate the impact of resistivity on
PB modes. In this work, we allow for both, non-ideal MHD
effects and realistic ST geometry. In this letter, we demon-
strate that the inclusion of resistive physics has a destabilizing
effect on the PB modes in NSTX discharges, and can have an
especially significant effect on the stability threshold of kink-
peeling modes. In this model, NSTX discharges are located
on the unstable side of the PB stability boundary, consistent
with the onset of ELMs in the experiment. We employ the
extended-MHD code M3D-C1 [28, 29] for the linear stability
simulations, and compare our new findings with the results of
linear computations with the ELITE eigenvalue code [11, 12],
which is widely employed in computations of edge stability.

In the remainder of this letter we introduce the character-
istics of the simulated ELMing NSTX discharges, describe
the simulation model, and show the destabilizing effect of
resistivity on PB modes.

In our study we consider two typical (often termed ‘narrow
pedestal’) H-mode discharges 132543 and 139047 [19], which
both exhibit type-I ELMs. The linear stability simulations are
based on a kinetic EFIT equilibrium reconstruction [30–32].
Figure 1 shows the reconstructed radial electron density ne and
electron temperature Te profiles at the edge for both discharges

as well as the time trace of the Dα emission indicating ELM
onset. To obtain a better spatial resolution for the ne and Te

profiles, the measurements of the Thomson scattering diag-
nostics are averaged during the last 20% of the inter-ELM
period [33], in time windows of 74 ms around 700 ms for dis-
charge 132543 and 30 ms around 665 ms for discharge 139047,
respectively. Each interval contains two Thomson profile mea-
surements. The equilibria are reconstructed from experimental
measurements up to the last closed flux surface. In order to
avoid discontinuities at the plasma edge, we smoothly extend
the plasma profiles into the open field line region by fitting a
function of the form c1[1 − tanh(c2(ψN − c3))] to the electron
density ne and electron temperature Te profiles, where ψN is
the normalized poloidal flux and c1, c2 and c3 are free param-
eters. Plasma resistivity η is assumed to follow Spitzer’s law
[34] and is proportional to T−3/2

e . In order to investigate the
effect of resistivity on PB modes we consider both the physical
(classical) resistivity profiles, and uniformly scaled profiles. In
addition to the resistive scaling in M3D-C1 we calculate the
growth rate with the ideal-MHD eigenvalue code ELITE via
the OMFIT framework [32].

The linear simulations are carried out for toroidal mode
numbers from n = 1 to 20, which are typically the most rele-
vant for PB modes. We employ the code M3D-C1 [28] to solve
the following set of resistive single-fluid MHD equations:

∂�

∂t
+∇ · (�u) = 0,

�

(
∂u
∂t

+ u · ∇u
)

= J × B −∇p−∇ · Π,

∂p
∂t

+ u · ∇p+ Γp∇ · u = (Γ− 1)
[
ηJ2 −∇ · q −Π : ∇u

]
,

E = −u × B + ηJ,

J =
1
μ0

∇× B,
∂B
∂t

= −∇× E,

(1)
where, as usual, B denotes the magnetic field, p the pressure, �
the ion mass density, u the fluid velocity, J the current density,
E the electric field, η the resistivity, Π the viscous stress tensor
and q the heat flux density [29]. The system of equations (1)
is solved in a region that extends beyond the separatrix to the
resistive wall. Plasma rotation typically does not have a sig-
nificant effect on ideal PB stability [35], but this might not
necessarily be the case when non-ideal MHD effects are con-
sidered [36]. Since PB modes are typically observed to rotate
in the direction of the ion fluid, we choose to set the fluid veloc-
ity to the measured toroidal ion rotation (we do not modify the
equilibrium to take centrifugal effects into account). The lin-
ear growth rates determined with M3D-C1 are calculated as
γ = 1

2 d/dt ln (Ekin), where Ekin is the plasma kinetic energy.
In order to map the PB stability boundary, we will vary the
pedestal pressure and current density with the Varyped tool
[33].

First, we determine the influence of resistivity on the linear
growth rate of PB modes based on the equilibrium reconstruc-
tions of the two NSTX discharges by scaling the Spitzer resis-
tivity profile η with factors lying in the range of 0.1 to 10. Note
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that these factors are chosen to show the resistive scaling and
do not necessarily represent the real physical value. We con-
sider η × 0.1 as the ideal limit, as the growth rates are almost
unaffected by a further decrease of resistivity in the cases pre-
sented here. In the following, we normalize the growth rates γ
with respect to the Alfvén frequency ωA = B0/(L0

√
μ0N0mi),

using L0 = 1 m, B0 = 1 T, N0 = 1020 m−3 and mi being twice
the proton mass. Figure 2 shows the normalized linear growth
rate γ/ωA as a function of the toroidal mode number n. While
at low values of n the growth rate is independent of resistivity,
γ increases with η for modes with n � 5. An explanation for
these two different behaviors can be found by inspection of
the eigenfunctions ξ ∝ δp = p(t > 0) − p(t = 0) in figure 3,
which shows ξ in real space and its poloidal Fourier harmonics.
The growth rates at low n correspond to ideal core modes that
peak around ψN = 0.3. If low-n PB modes co-exist with these
ideal modes their magnitude is small enough to be neglected.
Clear edge modes with PB character (cf figure 3) are found
at intermediate and large values of n, but as seen in figure 2
their growth rate strongly scales with resistivity. While these
resistive edge modes are stable in the case η × 0.1, they are
unstable at realistic values of resistivity (i.e. Spitzer resistivity)
and not much slower than the ideal core mode. As resistivity
is increased the resistive edge modes become more unstable
and in the case of η × 10 even faster than the ideal mode. In
a real tokamak discharge the actual resistivity would be some-
what larger than in the η × 1 case, both due to neoclassical
effects and due to impurities (as η scales with the effective
charge Zeff). In the ideal limit, which we consider as 10% of
Spitzer resistivity, the PB modes become stable. This result is
consistent with the ideal-MHD growth rates calculated with
the ELITE code for n = 5–20. The ballooning character of
the edge mode eigenfunctions as seen in figure 3 is consis-
tent with experimental findings that confirm an I2

p dependence
[19], which is typical for ballooning modes.

After demonstrating the existence of PB modes at realistic
plasma resistivity, we now determine the stability boundary
of PB modes using the M3D-C1 model of equation (1). As
in the ideal-MHD stability studies with the ELITE code, we
employ the Varyped tool [33] to create a series of equilib-
ria around the experimental kinetic EFIT equilibrium recon-
struction, where the edge pressure and current density are
varied. In these variations the core profiles are adjusted such
that the total stored plasma energy and collisionality remain
constant. The so obtained equilibria will provide the initial
conditions for the linear stability simulations with M3D-C1,
but also for our benchmark with ELITE. The equilibria are
parameterized by the flux surface-averaged current density j
and the normalized pressure gradient α [37] in the pedestal.
In the following we normalize the growth rates with respect
to half of the effective diamagnetic frequency in the pedestal
ω∗i ≡ ωmax

∗i /2, where ωmax
∗i is the maximum of the ion diamag-

netic frequency in the pedestal region. With this normalization
the plasma is considered stable if γ/(ω∗i/2) < 1 and unsta-
ble if γ/(ω∗i/2) > 1 [15]. (It is this normalization that intro-
duces diamagnetic effects in the ideal-MHD code ELITE.)
This allows us to consider diamagnetic effects in the M3D-C1

Figure 2. Normalized growth rate γ/ωA for NSTX discharge
132543 (top) and 139047 (bottom) for various values of the
resistivity [η × 1 represents the physical (Spitzer) resistivity].
Equilibrium rotation is considered in these simulations. In both
shots a clear dependency on resistivity is visible for PB modes.

Figure 3. Eigenfunction ξ of the n = 3 mode (top) and n = 20
mode (bottom) in discharge 132543. (Left) ξ at toroidal angle
φ = 0. (Right) Poloidal spectrum showing clear ballooning-like
features near the last closed flux surface for n = 20.

single-fluid model consistent with ELITE, and thus to provide
a meaningful comparison between the two approaches.

Figure 4 shows the effect of plasma resistivity on the
stability boundary of PB modes in NSTX discharge 132543
in the inter-ELM phase at 700 ms. The linear growth rates γ
are calculated with Spitzer resistivity and in the ideal limit
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Figure 4. PB stability boundary and normalized growth rate γ/(ω∗i/2) of the most unstable mode calculated for equilibrium variations of
NSTX discharge 132543 with (a) the ideal-MHD model of ELITE. (b) M3D-C1 in the ideal limit. (c) M3D-C1 using Spitzer resistivity. The
bold solid lines represent the stability boundary and the cross shows the location of the discharge.

(Spitzer resistivity multiplied by 0.1) with M3D-C1 and
compared with the ideal-MHD growth rates calculated with
the ELITE code. At large values of α, i.e. strong edge pressure
gradients, the plasma is unstable to PB modes in the ideal
limit as well as in the resistive simulations. This constitutes a
region of ideal PB mode instability as the growth rate depends
only very weakly on resistivity. While in the ideal limit
(figure 4(b)) this region is far away from the location of the
actual discharge (indicated by a cross in figure 4) in parameter
space, the situation is different when realistic plasma resitivity
is considered in the model. It can be seen from figure 4(c) that
the unstable region is well extended compared with the ideal
limit. The region of ideal instability is surrounded by a region
where the plasma is unstable, but with lower growth rates
than in the ideal region. This can be interpreted as a region
where resistivity destabilizes PB modes with moderate edge
current density. The transition from the resistive to the ideal
region of instability is very steep on the ballooning side (large
α), while on the kink side (current limited) it is shallower (cf
contour lines in figure 4(c)). This markedly contrasts with
ideal-MHD results, in which the kink-peeling (current-driven)
stability threshold is very steep [38]. The most unstable modes
on the ballooning side have toroidal mode number n = 20,
whereas on the peeling side the toroidal mode number of the
most unstable mode is lower, ranging from n = 11–20. This
behavior is expected, but the mode numbers on the peeling
side are slightly higher than what is observed in conventional
aspect ratio machines [13]. While the experimental point is
deep inside the unstable domain in the resistive calculation,
more refined models including (stabilizing) finite Larmor
radius effects [23, 39, 40] might show a stability boundary
closer to the experimental point, thus explaining why it is
experimentally accessible. Neoclassical corrections to Spitzer
resistivity are expected to provide similar results with slightly
larger growth rates, whereas finite Larmor radius effects are
seen to be stabilizing in M3D-C1 simulations. These refined
models are subject to future publication. In the ideal limit
M3D-C1 and ELITE consistently show that NSTX discharge
132543 is located in the region where PB modes are stable
and thus should not exhibit ELMs. However, when Spitzer
resistivity is considered, the discharge lies on the unstable
side within the region of resistive instability. While the ELITE

results are reasonably well converged in most of the domain
it is possible with certain parameter to obtain instability
for large values of α and j [41]. This does not affect the
interpretation that the discharge is located inside the stable
domain.

We now benchmark our model with previously established
ELITE results from DIII-D discharge 147105 at 3750 ms [38],
a point where the plasma exhibits type-I ELMs. In this con-
text we demonstrate that unlike in low-aspect ratio resistivity
affects the stability boundary only weakly in large aspect ratio
discharges. The stability boundary calculated with these differ-
ent models is shown in figure 5. Consistent with the observa-
tion of ELMs in the experiment the ideal-MHD ELITE model
predicts that the discharge is located in the unstable domain.
This result is recovered with the M3D-C1 simulations in which
the resistivity has been reduced below the Spitzer value by a
factor of 10 in order to approach the ideal limit. The stability
boundary is shifted slightly towards larger values of α and j.
In previous linear simulations of simplified equilibria M3D-
C1 has shown very good agreement with ELITE [42], when
the initial conditions in M3D-C1 are adjusted to match those
of ELITE. However, the presented cases are based on recon-
structions of diverted experimental equilibria and for such con-
figurations weak differences between ELITE and M3D-C1
are expected, even in the limit where the plasma resistivity
goes to zero in M3D-C1. Due to the coordinate singularity
arising from the x-point in a diverted configuration, ELITE
places the plasma-vacuum interface slightly inside the sepa-
ratrix. In contrast, in M3D-C1 the separatrix and private flux
region are included in the computational domain and the den-
sity and temperature profiles vary smoothly across the separa-
trix. While the cutoff close to the separatrix results in slightly
lower growth rates in ELITE, M3D-C1 simulates the presence
of the vessel wall and uses nonuniform density and temper-
ature profiles, which in turn have stabilizing effects on the
plasma. For more details we refer to reference [42]. Now, when
a more physically realistic resistivity is considered the stabil-
ity boundary remains almost unaffected as seen in figure 5(c).
These results indicate—together with the successful applica-
tion of ELITE to a number of conventional aspect-ratio toka-
maks—that in large aspect ratio discharges the stability bound-
ary is almost unaffected by resistivity, thus justifying the use
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Figure 5. PB stability boundary of DIII-D discharge 147105 calculated with (a) ELITE. (b) M3D-C1 in the ideal limit. (c) M3D-C1 using
Spitzer resistivity. The bold solid lines represent the stability boundary and the cross shows the location of the discharge. In all models the
discharge is consistently located on the unstable side. Note that the axis limits do not extend to α = j = 0, the origin of the stable region.

of ideal-MHD, while in low-aspect ratio NSTX discharges a
resistive PB stability boundary is met well before the ideal
stability boundary is reached.

In summary, we have shown for the first time that plasma
resistivity can have a significant effect on the PB stability
threshold, especially for current-driven modes (modes at the
peeling-side of parameter space) in ST configurations. When
a resistive single-fluid MHD model is considered the stability
boundary shifts to much lower values of pedestal pressure gra-
dient and current density relative to ideal-MHD models, and
correctly locates ELMing discharges on the unstable side. This
model can be applied in future studies to determine the sta-
bility boundaries in various operation scenarios in STs. Our
results suggest that the inclusion of plasma resistivity can pro-
vide an explanation for the onset of ELMs in STs and is cru-
cial in the modeling of PB modes in these machines, while
ideal-MHD models are sufficient for conventional aspect ratio
machines. This finding constitutes a basis for the development
of a pedestal model to allow the prediction of ELMs in NSTX
and other STs, i.e. an EPED-like model that calculates the
limiting pedestal width and height in STs.
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