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We examine the linear and nonlinear stability of a sequence of reversed shear NSTX equilibria
with the same toroidal current density and pressure profile, but with different toroidal field strength.
All equilibria have two q = 2 surfaces and have q > 1 everywhere. For this sequence, which all have
βP ∼ 0.5, as the minimum value of q decreases below about 1.4, the localized resistive interchange
criteria is strongly violated and the unstable mode with toroidal mode number n = 1 changes its
dominant poloidal mode number m from a (m,n) = (2, 1) double tearing mode to a non-resonant
(1, 1) infernal mode. This (1, 1) mode nonlinearly flattens both the current density and the pressure
near the magnetic axis. The nigher-n unstable modes are all resistive infernal modes localized
around the surface where q has a minimum and the magnetic shear vanishes. They generally
saturate nonlinearly at low amplitude, but can cause magnetic surface breakup near the axis.

I. INTRODUCTION

There remains considerable interest in tokamak dis-
charges with a non-monotonic safety factor profile (neg-
ative central shear, or NCS) in both conventional toka-
maks [1–5] and spherical tokamaks [6, 7]. This config-
uration has led to substantial improvements in energy
confinement [1, 8] and to the formation of transport bar-
riers [9–14] in most all devices in which it has been stud-
ied. NCS is considered an option for future fusion pilot
and power plants based on the tokamak [15, 16].

Many of the NCS discharges exhibit MHD activity
which can terminate the improved confinement regime,
and in some cases can terminate the discharge. The na-
ture of this MHD activity has been the subject of many
studies involving advanced 3D nonlinear MHD simula-
tion codes. They have identified localized resistive in-
terchange modes [17, 18], double tearing modes [19–23]
, and infernal modes [4, 18] as responsible for the MHD
activity.

Localized resistive interchange modes [24] can be un-
stable for moderate pressure gradients in the reversed
shear region [25], but calculations indicate that these
have relatively small growth rates and are likely to non-
linearly saturate at low amplitude [17].

Double tearing modes (DTMs) were first identified the-
oretically using linear reduced MHD in cylindrical geom-
etry at zero pressure [26]. This paper has been widely
cited and extended, but even recent papers extending
this to finite β and/or nonlinearly have predominantly
been in cylindrical or slab geometry [27–31].

Using a more realistic, toroidal, geometry brings in
essential elements such as poloidal mode coupling and
β-stabilization [32]. There is computational [17, 18, 33]
and experimental [28] evidence that β is stabilizing to
the (m,n) = (2, 1) DTM in toroidal geometry (but not in
cylindrical geometry), Here, and throughout this paper,
m is the poloidal mode number and n is the toroidal mode
number.

There have recently been a number of papers [19, 20,
34, 35] describing 3D toroidal resistive MHD simulations
of the (2, 1) DTM. However, these papers have largely
emphasized the effect of the separation of the two q = 2
crossing points and the shear at these points. They have
not discussed the importance of qmin and the stability
to the (1, 1) non-resonant mode as is the subject of the
present work.

Infernal modes can be unstable if there is a large
enough pressure gradient near the reversal point, qmin,
where the magnetic shear vanishes [4, 18]. These can be
ideal MHD modes (unstable even with zero resistivity),
but the growth rates and range of unstable configura-
tions increases greatly when resistivity is taken into ac-
count [36]. The unstable eigenfunctions for the ideal and
resistive infernal modes differ from those of the DTM.
While the (2, 1) DTM eigenmode typically occupies all
the magnetic surfaces between the two q = 2 crossings,
the ideal and resistive infernal modes tend to be more
radially localized around the qmin surface and to have
poloidal mode number m ≈ nqmin.

A recent publication [18] examined the MHD stabil-
ity of a particular NSTX [37] discharge with a non-
monotonic q-profile. In the present paper we extend
that analysis to a family of equilibria, each with two
q = 2 surfaces, but with different values of qmin. We
show that as qmin approaches unity from above, the n=1
mode changes from being dominantly a (2, 1) DTM to
becoming dominantly a non-resonant (1, 1) mode. This
mode, with a strong poloidal m=1 component, is capa-
ble of nonlinearly flattening the current and pressure near
the magnetic axis.

The remainder of this paper is organized as follows:
Section II describes how we generate the family of equi-
libria being studied and gives their linear stability proper-
ties. Section III describes nonlinear resistive MHD simu-
lations for each of the family of five equilibria and how the
nonlinear consequences of the instabilities changes dra-
matically when qmin falls below about 1.4. In Section IV
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FIG. 1: Toroidal current density,µ0RJφ for the baseline equi-
librium studied in Ref. [18]. Red curves show the computa-
tional boundary and the last closed flux surface.

FIG. 2: Safety factor (q) profile and pressure profile (µ0p) for
the baseline equilibria studied in Ref. [18].

we apply a heating source to one of the ”nonlinearly sta-
ble” equilibria and show that it remains stable even as
βP is doubled, although the surfaces become distorted.
Section V presents a summary and discussion of some of
the implications of this work.

II. EQUILIBRIUM AND LINEAR STABILITY

We start with the equilibrium studied in Ref. [18] and
shown in Figs. 1 and 2. This was obtained from an

EQDSK from NSTX shot 129169 at time 247 ms, just
before a significant MHD event occurred in the discharge.
(Note that the experimental uncertainty in qmin is diffi-
cult to quantify.)

We then generate a sequence of equilibria by applying
different Bateman scaling factors [38], fB , to this. The
Bateman scaling leaves the pressure and toroidal current
density unchanged, but increases the toroidal field at the
boundary by a factor fB , so that the safety factor (q-
profile) changes. Shown in Fig. 3 are the q-profiles cor-
responding to fB=1.4,1.2,1.0,0.95 and 0.90. (Note that
fB=1.0 is the original equilibrium.)

FIG. 3: Safety factor profiles for the present study obtained
by applying a Bateman scaling factor (fB) to the equilibrium
used in Ref. [18]. From top to bottom, the curves correspond
to fB=1.40,1.20,1.00,0.95, and 0.90.

These equilibria all have poloidal beta βP ' 0.5. This
is a convenient way of generating a sequence of equilib-
ria with the same poloidal beta and q-profile shape, but
with differing values of q, in particular, different qmin.
Figure 3 could be interpreted as a time sequence (top to
bottom) of the current penetration phase of a NCS dis-
charge with constant edge toroidal field but increasing
toroidal current.

It is seen that all five equilibria have two q = 2 surfaces,
and that as the scaling factor fB decreases from 1.4 to
0.9, the minimum value of q , qmin, decreases, however
qmin > 1 for all equilibria in the sequence.

The linear stability properties of these five equilib-
ria, as computed with the linear version of the M3D-C1

code [44], are summarized in Fig. 4 and in Table I. Shown
in the figure are the ideal MHD (with zero resistivity) and
the resistive MHD (with Spitzer resistivity) growth rates
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for the first 9 toroidal modes, n = 1 − 9, for each equi-
libria. Shown in the table, for each equilibrium, is the
minimum value of the safety factor, qmin, and the domi-
nant poloidal mode number, m, for each unstable mode
with toroidal mode number n. In all cases, when both
ideal and resistive modes are unstable, the m-number of
both modes is the same.

FIG. 4: Shown are the linear resistive (in black with connect-
ing lines) and ideal (in red) growth rates, γτA, for each of the
9 toroidal modes (n = 1 − 9) for each of the five equilibria
shown in Fig. 3, and in Table I: (a) fB = 1.4, (b) fB=1.2, (c)
fB=1.0, (d) fB=0.95, and (e) fB=0.90.

fB qmin n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9
1.4 1.645 2 4 5 7 8 10 12 13 15
1.2 1.422 2 3 5 6 7 9 10 12 13
1.0 1.203 1 3 4 5 6 7 9 10 11
0.95 1.115 1 2 3 5 6 7 8 9 10
0.90 1.095 1 2 3 4 5 7 8 9 10

TABLE I: Minimum value of the safety factor, qmin, and the
dominant poloidal mode number, m, for each of the 9 modes,
n = 1−9, for each of the five equilibria shown in Fig. 3 whose
growth rates are given in Fig. 4.

We note, from Fig 4, that the top equilibrium with
fB=1.4 and qmin = 1.645 is stable to all ideal MHD
modes, whereas all the others are unstable to at least
2 ideal MHD modes. All the equilibria are unstable to
resistive MHD modes for all n-numbers.

Consider the stability to the n = 1 mode as shown
by the left-most symbols in each of the five graphs in
Fig. 4. The top two equilibria, with fB=1.4 and fB=1.2,
are stable in the ideal limit, whereas the bottom three
entries are all unstable to ideal MHD n=1 modes. All
equilibria are unstable to the n = 1 resistive mode with
a growth rate that increases as the fB factor decreases
(qmin decreases towards 1).

But, we see from the column labeled n = 1 in Table I
that there is also a significant change in the mode struc-
ture between the top two entries, fB=1.4 and fB=1.2,
and the bottom three, fB ≤ 1.0. The poloidal mode
structure changes from dominantly m = 2 , as would be
expected for a (2, 1) DTM, to m = 1 , a non-resonant
(1, 1) infernal mode. This is illustrated in Fig. 5 where
we plot the linear eigenfunctions of the n = 1 resistive
mode for each of the five equilibria. (We note here that
Wesson [41] was likely the first to state that a (1, 1) mode
could be unstable if q had an off-axis minimum.)

It is also noted from Fig. 5 that in going from left to
right, the radial extent of the mode shrinks from the en-
tire region interior to the two q = 2 surfaces to a smaller
volume, close to the qmin surface. This is a sign that the
instability is shifting from being a classical (2, 1) double
tearing mode to a resistivity modified non-resonant (1, 1)
infernal mode [36, 39, 42, 43].

As a final observation from Table I, we note that only
three resistive modes have the property that m = 2n
as would be the case for q = 2 double tearing modes.
These are the n = 1 and n = 2 modes for fB=1.4 and
the n = 1 mode for fB=1.2. For all the other modes
the m/n resonant surface is either just above qmin for
that equilibrium, or is non-resonant (slightly below qmin
but above or equal to 1.0). These are all resistive in-
fernal modes. The unstable eigenmodes for the basline
equilibrium (with fB=1.0) is given in Fig. 3 of Ref. [18].
The eigenmodes for the other equilibria are very similar,
with well identified poloidal mode numbers and localized
about the qmin surface.

We have also investigated these equilibria for stability
to localized resistive interchange modes [24, 32] and the
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(a) (b) (c) (d) (e)

FIG. 5: Plotted are the perturbed pressure for the linearly unstable n = 1 resistive mode for each of the five equilibria listed
in Table I and with q-profiles shown in Fig. 3. The three contour lines in eqch figure correspond to the last closed flux surface
and the two q = 2 surfaces. Left to right, the equilibria correspond to (a) fB=1.4, (b) fB=1.2, (c) fB=1.0, (d) fB=0.95, and
(e) fB=0.90.

result is shown in Fig. 6. Shown is the surface-averaged
quantity DR as a function of the normalized poloidal flux
ψ. (Only the inner 40% is shown as the outer surfaces are
all stable. For more information on how DR is computed,
see Appendix C of Ref. [18].) A given surface is unstable
to localized resistive interchange modes for DR > 0. We
see a large difference between the very unstable equilibria
with fB=0.9, 0.95, and 1.0, and the marginally unstable
ones with fB=1.2 and 1.4. This again shows that as qmin
gets closer to 1.0 from above, the configuration becomes
more unstable.

III. NONLINEAR EVOLUTION

We next consider the non-linear evolution of each of the
five equilibria shown in Fig. 3 and listed in Table I. The
EQDSK equilibrium, with the appropriate Bateman scal-
ing factor, fB , applied are loaded into the 3D nonlinear
resistive MHD code M3D-C1 [44] in which the following
equations are evolved in time:

∂n

∂t
+∇ · (nV) = ∇ ·D∇n (1)

∂A

∂t
= −E−∇Φ (2)

∇⊥ ·
1

R2
∇Φ = −∇⊥ ·

1

R2
·E (3)

E + V ×B = ηJ− λH∆∗Jφ∇φ (4)

nMi

(
∂V

∂t
+ V · ∇V

)
+∇p = J×B−∇ ·Π (5)

3

2

[
∂p

∂t
+∇ · (pV)

]
= −p∇ ·V + J ·E−∇ · q + SE

(6)

The magnetic field and current density are then deter-
mined by B = ∇×A and J = ∇×B. The symbol ∇⊥

FIG. 6: Surface averaged resistive stability parameter DR
vs. normalized poloidal flux for the inner part of the equi-
libria. Curves from bottom to top correspond to fB=1.4
(qmin = 1.645), fB=1.2 (qmin = 1.422), fB=1.0 (qmin =
1.203), fB=0.95 (qmin = 1.115), and fB=0.9 (qmin = 1.095).
Equilibria become more unstable as qmin decreases towards
1.0.

in Eq. (3) refers to the gradient in the (R,Z) plane in
a (R,φ, Z) cylindrical coordinate system, and ∆∗ is the
standard toroidal elliptic operator that appears in the
Grad-Shafranov equation. Equation (3) follows from the
gauge condition on A, ∇⊥ ·R−2A = 0. The temperature
is the pressure divided by the density, T ∼ p/n. The
linear form of the code used for linear stability studies is
just the linearized form of these same equations.

The particle diffusion term D in Eq. (1) is a small
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term included to aid numerical stability. The resistivity
η in Eq. (4) is the temperature-dependent Spitzer func-
tion [45]. The term involving λH is hyper-resistivity. A
small value is used to improve numerical stability. The
stress tensor in Eq. (5) is of standard form for viscos-
ity [46], with viscosity coefficient µ. The heat flux vector,
q in Eq. (6) has both an isotropic part and a part parallel
to the magnetic field: q = −κ∇T − κ‖bb · ∇T , where
b is a unit vector in the direction of the magnetic field.
The numerical values of the transport coefficients used in
these calculations are given in Appendix A. The source
term SE given in Eq. (6) was zero for the calculations
presented here in Section III but is used in Section IV as
described in that section.

The M3D-C1 code uses finite elements in all three di-
mensions. In the (R,Z) plane these are unstructured
”Bell” triangular elements [47] that, for the baseline cal-
culation, have a typical size of 1.2 cm. There were a total
of 26130 vertices per plane. In these calculations we used
24 planes, with structured equally spaced Hermite cubic
finite elements in the toroidal (φ) direction. As seen in
Fig. 1, the computational grid extends slightly beyond
the last closed flux surface (LCFS). The region between
the LCFS and the computational boundary is treated as
a high-resistivity low pressure plasma with electron tem-
perature 25 eV. Conducting wall boundary conditions are
imposed at the computational bounary.

The nonlinear calculations were initialized by giving
the normalized velocities an incompressible random per-
turbation of order 10−8. The time histories of the mag-
netic energy in each of the lowest 9 toroidal harmonics
for each of the five nonlinear calculations are shown in
Fig. 7.

Figure (7a) corresponds to fB=1.4 which from Table I
has qmin = 1.645. It is dominated by the n = 9 resistive
infernal mode, which we see from Table I has the dom-
inant poloidal mode number of 15. Thus, the resonant
surface is at q = 15/9 = 1.66, very close to qmin. The
n = 9 mode reaches a maximum and later decreases by
an order of magnitude. The n = 1 mode, which we see
from Fig. 5 and Table I is dominantly a (2, 1) double tear-
ing mode, never grows beyond 2.×10−7. There was very
little change in the q-profile, and just a small change in
the pressure profile, reducing the pressure gradient near
the qmin surface. These changes are illustrated in Fig. 8
and in more detail in Fig. 9 (a) and (c).

It may seem surprising that the n=9 mode is domi-
nant in the nonlinear run presented in Fig. (7a) and yet
Fig. (4a) shows that the n=3 mode has the largest linear
growth rate. For very short times, (the first 20 τA), the
n=3 mode indeed grows up the fastest. However, there
are so many unstable modes at the sam physical location
that they all interfere with one another, and then even-
tually, after about 150 τA, the n=9 mode grows up out
of the noise and dominates.

The fB=1.2 nonlinear simulation, starting from the
equilibrium with qmin = 1.422, is shown in Fig. (7b). It
is very similar to the fB=1.4 result. It is dominated by

FIG. 7: Magnetic energy in each of the toroidal harmonics, for
n = 1 − 9, for the nonlinear MHD calculations starting with
each of the five equilibria shown in Fig. 3 and listed in Table I.
The Bateman scaling factors ,fB , for the five calculations are
(a) fB = 1.4, (b) fB=1.2, (c) fB=1.0, (d) fB=0.95, and (e)
fB=0.90.

a (m,n) = (13, 9) resistive infernal mode which has a
resonant surface at q = 13/9 = 1.444, also very close to
qmin for this equilibrium. The n = 1 harmonic, which is
a (2, 1) DTM, also remains small. (Further calculation
shows that it saturates at about 1. × 10−6 at t = 3500
τA.)
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FIG. 8: Plotted are the midplane profiles at the toroidal plane
φ = 0 of (a) the toroidal current density and (b) the pressure
at the end of each of the five calculations shown in Fig. 7.

However, the picture changes dramatically for the bot-
tom three plots of Fig. 7 corresponding to fB=1.0 (c),
fB= 0.95 (d) and fB=0.90 (e). Each of these has an
unstable (1, 1) ideal MHD mode which dominates the
nonlinear evolution. The growth rate and maximum am-
plitude of the mode increase as fB (and qmin) decrease.
This mode is significant as it is the only mode with a
significant m = 1 poloidal component that can extend to
the magnetic axis and modify the current density, safety
factor and pressure there.

Figure 8 shows midplane profiles of the final current
density and pressure for each of the five calculations
shown in Fig. 7. The curves for the first two calcula-
tions, with fB = 1.4 and 1.2, almost overlay in both 8
(a) and (b) and are very little changed from those at time
t=0. However, for fB = 1.0, it is seen that the central
current density starts to fill in and the central pressure
is reduced. The central current density fill in and the
central pressure reduction is even greater for the curves
coresponding to fB = 0.95 and 0.90 which also had the
largest (1, 1) mode activity.

To further illustrate the differences between the high-
est and lowese qmin cases, we plot in Fig. 9 a comparison
of the changes in the profiles for the top and bottom cal-
culations shown in Fig. 7, corresponding to fB=1.4 and
fB=0.9. Figure 9 (a) and (b) shows the changes in the
pressure profiles for the fB=1.4 and fB=0.9 calculations
at 4 times. (Note that to isolate the changes due to the
instabilities, we actually are plotting ∆p, the difference
between the 3D result and that of a companion 2D re-
sult with the same transport coefficients.) The leftmost
plot, (a), shows just a small, localized change in the pres-

FIG. 9: Plotted in (a) and (b) are the changes (from time t=0)
in the pressure profile and in (c) and (d) the changes in the
q-profile at 4 times in the first and last nonlinear calculation
shown in Fig. 3. i.e. (a) and (c) correspond to the fB=1.4
calculation, and (b) and (d) to the fB=0.9 calculation.

sure profile that reduced the pressure gradient near the
qmin surface. (The two arrows indicate the initial q=2
surfaces.) There is essentially no change in ∆p at the
magnetic axis.

In contrast, Fig. (9b) shows a large redistribution of
the pressure, with the largest decrease occurring at the
magnetic axis. This is the result of the (1, 1) mode as the
poloidal m=1 mode nonlinearly extends to the magnetic
axis.

The comparison of the changes in the two q-profiles, as
shown in Figs. 9 (c) and (d) is even more dramatic. The
fB=1.4 calculation shown in (c) has almost no change
in q, whereas the fB=0.9 calculation shown in (d) has a
large change in q at and near the axis, essentially filling
in the current near the axis so that the configuration is
no longer NCS.

IV. STABILITY AT HIGHER βP

We saw from Fig. (7a) that the configuration with
fB=1.4 (qmin = 1.645) was non-linearly stable with βP
= 0.5 (as was the case with fB=1.2). We next explore if
the configuration remains stable at higher βP .

Figures 10-12 summarize a calculation in which the
calculation shown in Fig. (7a) is extended to time 5200
τA, but with a heatng source added at time t = 2000
τA (and then removed at t = 4000 τA) so that the βp
doubles, from 0.5 to 1.0 in the time interval t=2000 τA -
4000 τA and then stays fixed as shown in Fig. (10a). The
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FIG. 10: The calculation shown in Fig. (7a) is extended for
an additional 3200 τA with a heating source applied at time
t = 2000 τA and then removed at time t = 4000 τA. (a) βP
vs time; (b) magnetic energy in the first 4 toroidal harmonics
vs time; (c) growth rates of the first 4 toroidal harmonics vs
time.

heating source had spatial dependence SE ∼ exp(−((R−
R0)2 + (Z − Z0)2)/δ2) where R0 = 1.0 m, Z0 = 0.0, and
δ = 0.4 m.

We see from Fig. (10b) that the magnetic energy in
the n = 1 harmonic in particular increases as the βP in-
creases, but levels off once βP stops increasing. We see
from Fig. (10c) that at the end of the calculation, the
growth rates for all modes, n=1-4, are negative, indicat-
ing MHD stability at that higher βP value. (Modes with
n > 4 were included in the calculation but had very small
amplitudes and are not included in the plot for clarity.)

Figure 11 (a) and (b) show contours of the toroidal
current density at the start and the end of the calcu-
lation shown in Fig. 10. It is evident that the current
density has changed very little, and that it remains hol-
low. Frames (c) and (d) show Poincaré plots at the start
and finish of the calculation. While the surfaces look very
good at the start (t = 2000 τA) , there are islands at the

(a) (b)

(c) (d)

FIG. 11: Shown in (a) and (b) are the initial (t = 2000 τA)
and final (t = 5200 τA) contours of the toroidal current den-
sity µ0RJφ at one toroidal plane for the calculation shown in
Fig. 10. Shown in (c) and (d) are the Poincaré plots at these
same two times.

final time, and the surfaces closest to the original mag-
netic axis appear to be destroyed. This destruction of the
innermost surfaces is likely due to the excitation of infer-
nal modes centered at the surface where the minimum of
q occurs, similar to what was seen in Ref. [42].

Figure 12 shows the surface averaged pressure profile at
three times for the calculation in Fig. (7a) and extended
as shown in Fig. 10. The initial pressure (at time t=0)
was taken from the Bateman scalled EQDSK as described
in Section II. It changes in time due to diffusion, heating,
and non-axisymmetric MHD activity. Also shown in the
figure, in dashed lines are the profiles at the same times
for a 2D calculation with the same transport coefficients
and heating source. The difference between the 3D and
the 2D curves is due to the effects if the non-axisymmetric
MHD activity.

V. SUMMARY AND DISCUSSION

We generated a family of five equilibria from the exper-
imentally obtained EQDSK reversed shear equilibrium
studied in Ref. [18] by applying a Bateman scaling fac-
tor, fB . These all have the same q-profile shape, but have
qmin ranging from 1.095 to 1.645. These are all linearly
unstable to resistive modes with toroidal mode number
n=1-9 and beyond.

The modes with toroidal mode number n > 2 are
all resistive infernal modes with m/n ' qmin, and are
highly localized around the qmin surface. The unstable
n=1 mode for the equilibria with the highest qmin val-
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FIG. 12: Surface averaged pressure profile vs normalized
poloidal flux at three times for the calculations shown in
Fig. (7a) continued with heating applied in Fig. 11. Also
shown, in dashed lines, are the results of a 2D (axisymmetric)
calculation witht he same transport coefficients and heating
source at those same times.

ues, 1.645 and 1.422, are classical (2, 1) DTMs, where the
perturbation fills the region between the two q = 2 sur-
faces. However, the n=1 perturbations of the equilibria
with lower qmin, 1.203, 1.115, and 1.095, are not DTMs,
but are non-resonant (1, 1) infernal modes. These three
lower qmin equilibria also strongly violate the localized
resistive interchange criteria.

Nonlinearly, we see a big difference between the two
classes of equilibria. The higher qmin cases with the (2, 1)
DTMs saturate at a low amplitude and do not substan-
tially modify the pressure or current density outside the
two q=2 surfaces, including the region near the mag-
netic axis. The lower qmin cases with the unstable non-
resonant (1, 1) infernal modes, experience an internal re-
connection event which largely fills in the initially hollow
current profiles.

It is interesting that the experimentally realized equi-
librium, which corresponds to fB = 1.0 (the center frame
of Fig. 7) is at or near the dividing line between these two
classes of equilibria. As discussed in [18], a MHD event
occurred in the discharge just after the time this equilib-
rium was reconstructed. Experimental reconstructions
indicate that the qmin was falling and the central pres-
sure was increasing just before the MHD event occurred.

A follow-on calculation applied a heating source to the
non-linearly saturated high-qmin case and doubled the
βP . The configuration non-linearly reached a new stable
state but with some degredation in the quality of the
magnetic surfaces, especially near the original magnetic
axis.

This study highlights the importance of the value of

qmin in NCS discharges. If qmin can be kept above ap-
proximately 1.3 or 1.4, perhaps by current drive, it may
be possible to maintain the NCS configuration indefi-
nitely, although it is not clear if the favorable transport
properties of this configuration would survive if the mag-
netic surfaces begin to break up.

Finally, we note that the work presented here made
use of a resistive MHD model neglecting equilibrium flow.
Other effects such as plasma diamagnetic flows [48], par-
ticle trapping, and other intrinsically kinetic effects could
affect the results given here but are outside the scope of
this study.

VI. ACKNOWLEDGEMENTS

This work was supported by the U.S. DoE Award No.
DE-AC02-09CH11466. The calculations were performed
on the Perlmutter supercomputer at the National Energy
Research Supercompuer Center (NERSC), and on the
stellar computer at Princeton University. The author ac-
knowledges essential software support from J. Chen and
the SCOREC team at RPI.

VII. DATA AVAILABILITY

The data that supports the findings of this study are
available upon reasonable request.

Appendix A: Transport Coefficients

In Table II we list the numerical values of the normal-
ized and actual transport coefficients appearing in Eq. 1-
6 that were used in the nonlinear calculations presented
in Sec. III and IV. The resistivity used was the Spitzer
resistivity [45]. The initial central value of the plasma
density was n(0) = 2 × 1019m−3 and the initial central
electron temperature was Te(0) = 2.8KeV .

variable M3D-C1 dimensionless value SI value
D denm 1.× 10−6 2.18m2s−1

κ kappat 1.× 10−6 2.18× 1020m−1s−1

κ|| kappar 1.0 2.18× 1026m−1s−1

λH hyper 1.25× 10−10 3.7× 10−20m2s
η(0) eta 4.3× 10−9 1.3× 10−18s
µ amu 1.× 10−5 43.65× 10−6Pa · s

TABLE II: Transport coefficients for the nonlinear calculation
of Sec. III . Listed are the initial central values of the resistiv-
ity, η, , which is a function of space and time, and the initial
value of the viscosity, µ which changes in time as described
in the text.

All nonlinear calculations used a constant time step of
dt = 1.0 (dimensionless) = 0.46µs (SI). In all calculations
the viscosity began at µ = 1. × 10−5 but was increased
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during the calculation if and when numerical instabilities
started to grow and cause the calculation to crash. For
fB=1.4, µ was increased to 8. × 10−5 at t=800. For
fB=1.2, µ was increased to 5. × 10−5 at t=800. For
fB=1.0,, µ was increased to 5. × 10−5 at t=700, and
then 8. × 10−5 at t=800. For fB=0.95, µ was increased
to 5.× 10−5 at t=200. For fB=0.90, µ was increased to

5.× 10−5 at t=100, and then to 8.× 10−5 at t=500. It is
our experience that changing the viscosity in this range
does not change the qualitative stability properties, but
rather only affects the instantaneous growth rates.
ORCID IDs
S.C.Jardin 0000-0001-6390-6908
end
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