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ABSTRACT

We use the 3D magnetohydrodynamic (MHD) code M3D-C1 [Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)] to examine the MHD
stability and subsequent evolution of NSTX shot 129169. This discharge had a period with a non-monotonic safety factor profile, q (reversed
shear), which was terminated by a MHD event that abruptly lowered the central safety factor, q0, and greatly reduced the peakedness of the
pressure profile. We show that the equilibrium just before the MHD event occurred was linearly unstable to many pressure-driven infernal
modes. Modes with toroidal mode number n � 3 all had rational surfaces very close to the minimum value of q. However, a non-resonant
pressure-driven (1, 1) mode was also present, and this dominated the nonlinear evolution. The final state in the simulation, after the MHD
activity subsided, had a reduced and flattened pressure profile and a nearly monotonic q-profile, in qualitative agreement with experimental
results. The initial state was also unstable to the resistive interchange criteria in the reversed-shear region, but the final state was stable every-
where. The “double tearing mode” (DTM) does not appear to play a role in the MHD activity of this discharge. In Appendix A, we show that
in a torus, the DTM is strongly stabilized by pressure, but it is destabilized in cylindrical geometry (which has been the most extensively ana-
lyzed in the literature).

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0191934

I. INTRODUCTION

Recent and present-day spherical tokamaks such as NSTX,1

MAST,2 NSTX-U,3 MAST-U,4 and Globus-M5 tend to have relatively
short pulses, where external heating power is applied before the cur-
rent profile is fully penetrated and relatively stationary. This makes
them potentially susceptible to a class of pressure-driven magnetohy-
drodynamic (MHD) instabilities that can occur when the central safety
factor is above unity, q0 > 1.

Several recent papers have examined the MHD stability of NSTX
discharges with monotonic q-profiles in which neutral-beam heating
power was applied early in the discharge when the central safety factor
was well above unity.6–8 It was found that both non-resonant and reso-
nant (infernal mode) MHD instabilities could be excited, in some cases
destroying the innermost flux surfaces, leading to a flattening of the
electron temperature profile.

Here, we extend this analysis to examine early-time NSTX dis-
charges in which the q-profile is non-monotonic (i.e., reversed shear).
These can arise when early central heating is applied and often are
associated with a “transport barrier” leading to elevated electron and

ion temperatures. However, these discharges are often accompanied by
a “MHD event,” which affects the improved confinement.9,11

Several authors have used 3DMHD codes to study the MHD sta-
bility properties of reversed-shear discharges in conventional aspect
ratio tokamaks, including DIII-D,12 TFTR,13–15 Tore-Supra,16,17

JET,18,19 JT-60SA,20 and some generic configurations.21,22 These and
other calculations have highlighted the role of resistive interchange
modes,12 the (2,1) double tearing mode (DTM),15,23,24 the (3,1)
DTM,25,26 and ballooning, infernal, and resonant modes.20 These
unstable modes can lead to localized pressure crashes,15,24 explosive
bursts,21–23,26 reconnection,19,25 and/or confinement degradation.18,20

In Sec. II, we summarize the experimentally observed MHD
properties of NSTX reversed-shear discharge 129169. In Sec. III, we
examine the linear stability properties of this discharge at a time just
before a MHD event was observed to occur in the experimental dis-
charge. Section IV presents the results of a 3D nonlinear MHD simula-
tion starting from this time in which both a minor and a semi-major
MHD event occur (not a DTM). The first MHD event affects the pres-
sure profile, and the second alters both the current and pressure

Phys. Plasmas 31, 032503 (2024); doi: 10.1063/5.0191934 31, 032503-1

Published under an exclusive license by AIP Publishing

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

 05 M
arch 2024 18:36:58

https://doi.org/10.1063/5.0191934
https://doi.org/10.1063/5.0191934
https://doi.org/10.1063/5.0191934
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0191934
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0191934&domain=pdf&date_stamp=2024-03-05
https://orcid.org/0000-0001-6390-6908
https://orcid.org/0000-0003-1465-0971
https://orcid.org/0000-0002-6348-7827
https://orcid.org/0000-0002-2514-1163
https://orcid.org/0000-0002-5800-8027
https://orcid.org/0000-0003-3232-1581
mailto:jardin@pppl.gov
https://doi.org/10.1063/5.0191934
pubs.aip.org/aip/php


profiles sufficiently so that the discharge becomes completely MHD
stable and the flux surfaces re-form. This stable final state is discussed
in Sec. V. In Sec. VI, we provide a summary with some discussion. We
also include Appendix A in which we discuss the stability to DTMs of
a model equilibrium with reversed shear in both cylindrical and toroi-
dal geometry. It is shown that pressure is strongly stabilizing to DTMs
in toroidal geometry, while it is strongly destabilizing in cylindrical
geometry.

II. A TYPICAL CASE

Consider NSTX shot 129169, which had central reversed shear
early in the discharge and was of interest because of the transport bar-
riers associated with the reversed-shear region.9 The reconstructed
safety factor and surface averaged pressure profiles for several times
are shown in Fig. 1, and magnetic fluctuation data are shown in Fig. 2.
The equilibria were reconstructed with the LRDFIT code10 using mag-
netics, motional Stark effect (MSE), temperature isotherms, and rota-
tion constraints.

This discharge had a toroidal field of 0.55T and a flattop current
of 1 MA. It was an L-mode discharge, heated by neutral beam injection
(NBI) and high harmonic fast wave (HHFW). We examine the linear
and nonlinear stability properties of this discharge at time t¼ 247ms
in Secs. III and IV. The central electron temperature was about 2.8 keV
at this time.

It is clear from Fig. 2 that some MHD activity began just before
270ms. From the top graph in Fig. 2, it is seen that there was first a
strong rapid onset toroidal mode number n¼ 1 signal, starting at
about 270ms and lasting only a ms or less. This is followed by a more
slowly growing n¼ 1 mode that grows for about 20ms and then disap-
pears. From Fig. 1, it is seen that both the pressure and q-profiles
changed significantly during this period between 267 and 277ms, pre-
sumably due to the MHD activity.

Also seen from Fig. 1 is that there is a broadening of the pressure
profile that occurs between 247 and 267ms. Figure 2 does not show
any obvious MHD activity during this time, but it could be associated
with a purely internal MHD mode that did not register a signal on the
external dB probe.

III. LINEAR STABILITY PROPERTIES

In this section, we first present the results of a linear stability anal-
ysis of the equilibrium of interest using the linearized version of the
M3D-C1 code. The equations being solved are the linearized form of
those given in Sec. V. We also compute the linear stability of the same
configuration but with the resistivity and pressure varied to better
understand the nature of the unstable modes. We also evaluate the
equilibrium with regard to a local criteria for resistive interchange
modes.

The equilibrium at time t¼ 247ms is unstable to many MHD
modes, the eigenfunctions of the first 8 are shown in Fig. 3. We show
in Fig. 4 the computed growth rates of the first 18 unstable modes
ðn ¼ 1� 18Þ using the actual Spitzer resistivity. Also shown in the fig-
ure (dashed lines) are the growth rates when the resistivity is increased
everywhere by a factor of 10. The fact that these differ by only a few
percent for modes with n> 2 indicates that these are ideal MHD
modes.

As a further check on this, we repeated the stability calculations
with zero resistivity. The growth rates were reduced by less than 1%,
except for the n¼ 2 mode, for which we could not get a convergent
result at zero resistivity.

To better understand the drive for these instabilities, we generated
a series of equilibrium with the same q-profile but reduced pressure
profiles. Also shown in Fig. 4 are the stability results for an equilibrium
so generated with b reduced by 5%, but the central value of pressure is
reduced by 12% (slightly broadened pressure profile). The fact that the
growth rates are greatly reduced (or made stable) indicates that these
are pressure-driven modes.

For each n, the eigenfunction develops a distinct poloidal mode
number m, as shown in Fig. 3. These are listed in Table I. We see that
the ratio of m/n in the table for n> 2 ranges from 1.20 to 1.33. The
minimum value of q in this equilibrium is 1.203, so these modes
mostly have resonances wherem� nq ¼ 0 very close to the minimum
value of q, though several are slightly non-resonant (with
m=n < 1:203). These are infernal modes, similar to those found in
studies with monotonic q-profiles.6,7,27

The n¼ 1 linear instability is predominantly a non-resonant
m¼ 1 mode. It is somewhat less localized to a particular surface than

FIG. 1. Experimentally reconstructed profiles for the safety factor and surface aver-
aged pressure from NSTX shot 129169 at four times.

FIG. 2. Magnitude and frequencies of MHD activity during the period 215–310ms.
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the higher-n modes. It is also predominately an ideal MHD mode as
its growth rate changes very little as the resistivity is increased by a fac-
tor of 10.

It has been known since the 1960s that confinement configura-
tions that are stabilized against ideal interchange instabilities28 primar-
ily by magnetic shear can be subject to resistive interchange
instabilities in the presence of resistivity.29 In the 1970s, a general local
criterion for stability to resistive interchange instabilities was

derived.30,31 It was shown that if the surface quantity, DR (see
Appendix C), was positive, a resistive interchange instability could
occur with a growth rate proportional to the 1=3rd power of the resis-
tivity. Several authors have noted that reversed shear discharges with
peaked pressures can be unstable to resistive interchange
modes.10,12,32,33

The equilibrium reconstructed at time t¼ 247ms had DR positive
in the region interior to the minimum value of q, indicating instability
to the resistive interchange mode in this region. We return to this in
Sec. V. However, this is apparently not the dominant instability for all
n except possibly n¼ 2, which has a relatively small growth rate that
does increase when the resistivity is increased.

As noted earlier, these modes are all pressure driven. It is likely
that the actual experimental profiles were at or near marginal stability
at the time of this equilibrium as the error in the equilibrium recon-
struction has not been taken into account. Also, kinetic effects and
sheared rotation, not included in our calculation, could be stabilizing
these modes near the marginal point.

We note here that although there are many unstable modes, they
are all localized near the same rational surface. We call them different
modes because they have different n and m values, but they largely
overlap in the poloidal flux coordinate.

IV. A NONLINEAR SIMULATION

We show in Figs. 5–9, the results of a 3D nonlinear simulation,
starting from the equilibrium considered in Sec. III. (To clarify the
essential 3D effects, we also have performed a 2D axisymmetric calcu-
lation using the same transport coefficients.) For these calculations, we
used the single fluid option of the nonlinear M3D-C1 code34 in which
the following equations are evolved in time:

@n
@t

þr � ðnVÞ ¼ r � Drn; (1)

@A
@t

¼ �E�rU; (2)

r? � 1
R2

rU ¼ �r? � 1
R2

� E; (3)

Eþ V� B ¼ gJ� kHD
�J/r/; (4)

nMi
@V
@t

þ V � rV

� �
þrp ¼ J� B�r �P; (5)

FIG. 3. The first eight linear eigenfunctions showing the perturbed pressure for the reconstructed equilibrium from NSTX shot 129169 at 247 ms. Also shown in each frame are
the 2 q¼ 2 contours, the plasma/vacuum boundary, and the computational boundary.

FIG. 4. Growth rates for the first 18 linearly unstable modes for the reconstructed
equilibrium from NSTX shot 129169 at 247 ms using Spitzer resistivity (black solid)
and ten times Spitzer resistivity (black dashed). Also shown are the growth rates
when the b is reduced by 5% (peak central pressure by 12%).

TABLE I. Poloidal mode number m for each of first 18 unstable modes shown in
Fig. 4.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
m 1 3 4 5 6 7 9 10 11 12 13 15 16 17 18 20 21 22
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3
2

@p
@t

þr � ðpVÞ
� �

¼ �pr � Vþ J � E�r � qþ SE: (6)

The magnetic field and current density are then determined by
B ¼ r� A and J ¼ r� B, respectively. The symbol r? in Eq. (3)
refers to the gradient in the (R, Z) plane in a ðR;/;ZÞ cylindrical coor-
dinate system, and D� is the standard toroidal elliptic operator that
appears in the Grad–Shafranov equation. Equation (3) follows from
the gauge condition on A, r? � R�2A ¼ 0. The temperature is the
pressure divided by the density, T � p=n. The linear form of the code
used for linear stability studies is just the linearized form of these same
equations.

The particle diffusion term D in Eq. (1) is a small term included
to aid numerical stability. The resistivity g in Eq. (4) is the

temperature-dependent Spitzer function35 with possible enhancement
as described in Appendix B. The term involving kH is hyper-resistivity.
A small value is used to improve numerical stability as discussed in
Appendix B.

The stress tensor in Eq. (5) is of standard form for viscosity,36

with viscosity coefficient l. The heat flux vector, q, in Eq. (6) has both
an isotropic part and a part parallel to the magnetic field:
q ¼ �jrT � jkbb � rT , where b is a unit vector in the direction of
the magnetic field. The numerical values of the transport coefficients
used in the calculation are given in Appendix B.

Note that the source term SE given in Eq. (6) was zero for these
calculations. An energy source is not needed to sustain the profiles for
a calculation spanning such short times with such small transport
coefficients.

The M3D-C1 code uses finite elements in all three dimensions. In
the (R, Z) plane, these are unstructured “Bell” triangular elements37

that, for the baseline calculation, have a typical size of 1.2 cm, with a
total of 26130 vertices per plane. In these calculations, we used 24
planes, with structured equally spaced Hermite cubic finite elements.

FIG. 5. The magnetic energy in the different toroidal harmonics vs time for the nonlinear M3D-C1 simulation. Energies for n ¼ 5� 8 and n � 9 are included in the calculation
but are negligible for all times plotted. Note: 1 sA¼ 0.000 46ms.

FIG. 6. Contours of the difference in the pressure at time 300 sA from that at time 0
in the simulation. Also shown are the two contours of the q¼ 2 surfaces, the LCFS,
and the computational boundary. (2D contour plot is at the / ¼ 0 plane.)

FIG. 7. Shown in solid are the q-profile and surface averaged pressure profile at
the end of the nonlinear calculation. Also shown, in dashed lines, are the q and p
profiles for a companion 2D calculation with the same transport coefficients.
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As seen in Fig. 6, the computational grid extends slightly beyond the
last closed flux surface (LCFS). The region between the LCFS and the
computational boundary is treated as a high-resistivity low pressure
plasma.

In Fig. 5, we plot the magnetic energy in the dominant toroidal
harmonics as a function of time for the 3D nonlinear calculation. It is
seen from the figure that there are two seemingly disconnected events
occurring in the time interval 0–2500 sA (about 1.0ms) after the start
at time 247ms. The first event, peaking at about 125 sA, involves pri-
marily a n¼ 9 mode, which, we see from Fig. 4, had one of the highest
linear growth rates. The second, higher amplitude and longer lasting
event peaks at about 1100 sA. It predominantly involves modes with
n ¼ 1; 2; 3; and4.

To see the effect of the first event, we show in Fig. 6 contours of
the difference in the pressure at time 300 sA from that at time 0 in the

simulation. Also shown are the two contours of the q¼ 2 surfaces, the
LCFS, and the computational boundary. It is seen that the effect of
the first instability event was to slightly redistribute the pressure in the
region interior to the 2 q¼ 2 surfaces.

We plot in Fig. 7 the q and pressure profiles at the end of the 3D
nonlinear calculation. Also shown are the same profiles at the end of
the companion 2D (axisymmetric) calculation with the same transport
coefficients. We see that the effect of the 3D instabilities was to lower
both the central safety factor and the central pressure.

We note here the central role of the n¼ 1 mode in modifying the
central p and q profiles. This is an ideal, non-resonant, pressure-driven
mode. It is the only mode with a substantial m¼ 1 component, which
is needed to affect the profiles near the magnetic axis.

The 3D MHD calculation presented here was performed on the
Perlmutter supercomputer at NERSC. It utilized 1152 processors and
required a wall-clock time of over 200 h.

V. A FINAL STABLE STATE

The final state of the 3D nonlinear MHD calculation presented in
Sec. IV is nearly axisymmetric and apparently completely MHD stable.
A blow-up of the magnetic energy vs time plot of Fig. 5 shows that the
energy in all the diagnosed toroidal harmonics, up to n¼ 12, has mag-
nitudes that are decreasing in time at t¼ 2500 sA. Figure 8(f) shows
that the surfaces have largely reformed with only a few small island
chains, most notably a (3, 1) island near the q¼ 3 surface.

We see from Fig. 7 that the central safety factor, q0, has dropped
from near 6 to just above 2, greatly reducing the region of reversed
shear and its magnitude. In Fig. 9, we plot the resistive interchange sta-
bility parameter DR at the initial and final time of the nonlinear calcu-
lation. We see that at the final time, it is negative everywhere,
indicating stability to resistive interchange modes. This is due to both
the reduction in the magnitude of the reversed shear region and the
reduction of the pressure gradient in this region as seen in Fig. 7.

In this calculation, the plasma b was reduced from 3% to 2.3%,
while the central pressure declined from l0p ¼ 0:035 to l0p ¼ 0:018.
To better understand if it was the drop in q0 or the decrease in the
pressure that most influenced the stability to the resistive interchange
modes, we produced another equilibrium with the same q-profile as in
the initial state but with a reduced pressure with a b ¼ 1:9% and a
central value of l0p ¼ 0:020. This equilibrium still had a positive DR

FIG. 8. Poincare plots at times (a) 300 sA, (b) 500 sA, (c) 700 sA, (d) 900 sA, (e) 1400 sA, and (f) 2500 sA.

FIG. 9. The resistive interchange (RI) stability parameter, DR,
31 as a function of the

square root of the normalized poloidal flux for the nonlinear calculation described in
Sec. IV and depicted in Figs. 5 and 8. Plasma is unstable to RI if DR > 0.
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in the reversed-shear region, although at lower values than the original.
This indicates that the reversed shear is critical for producing instabil-
ity to the resistive interchange mode.

VI. SUMMARY AND DISCUSSION

The nonlinear 3D MHD calculation presented in Sec. IV pro-
duced qualitatively similar results as the experimental diagnostic mea-
surements and the equilibrium reconstructions shown in Figs. 1 and 2.
The rearrangement of the q and pressure profiles in these non-
monotonic q discharges were not due to double tearing modes, as often
has been speculated.15,16,19,20,26,32,33 Rather, it was likely due to nearly
ideal MHDmodes, as shown in Fig. 5.

The unstable modes with n � 3 as shown in Fig. 3 are ideal infer-
nal modes, similar to those found for monotonic q-profile discharges
with q0 > 1.6,7 These modes have their resonance, the surface with q
value that satisfies m� nq ¼ 0, very close to the minimum in q where
the magnetic shear is low. As seen in the figure, these modes are all
localized in a narrow band between the two q¼ 2 surfaces. Nonlinearly,
these modes will tend to reduce the pressure gradient where they are
localized, as seen in Fig. 6. Even though they are basically ideal MHD
pressure-driven modes, they can also break magnetic surfaces in their
vicinity, even in the limit of vanishingly small resistivity.38

It is very likely that these higher-n modes were responsible for
the relatively small decrease in the pressure profile shown in the exper-
imental Fig. 1 between 247 and 267ms. In the monotonic shear cases,
we have examined previously6,7 these modes could also destroy the
interior magnetic surfaces, leading to temperature flattening. In the
present, reversed shear case, the magnetic shear is low only near qmin,
and so the interior surfaces are not as susceptible to breakup.

To nonlinearly change the q and pressure profiles in these equi-
libria requires a mode with a substantial m¼ 1 component. This is
accomplished by the predominantly n¼ 1 harmonic that peaks in
Fig. 5 at about t¼ 1000 sA after the start of the simulation. We see
from the first frame of Fig. 3 that it is a pressure driven non-resonant
(1, 1) mode that is likely responsible for the large change in the central
q and pressure values. We speculate that this mode could also be
responsible for the internal reconnection events (IREs) observed in
MAST-U discharges with rapid current ramp-up rates.39

In comparing the computational results from Fig. 5 with the
experimental MHD signals from Fig. 2, it is clear that the agreement is
not exact. The upper graph in Fig. 2 shows a n¼ 1 mode with a large
amplitude millisecond blip at about t¼ 270ms. This has a very rapid
onset and decay, and we believe it is the (1, 1) mode calculated in
Fig. 5. The experimental n¼ 1 mode in Fig. 2 then starts slowly grow-
ing again over the next 20ms. We speculate that this is a NTM that
grows from the perturbation but eventually stabilizes as the pressure
decreases sufficiently. This NTM does not occur in the nonlinear simu-
lation as the required neoclassical physics equations are not being
solved. Also, the close fitting computational boundary used here tends
to stabilize these modes.

The (1, 1) event in the simulation occurs at an earlier time (247þ
ms) than in the experiment (270ms). We think that the onset of this
mode is sensitive to the value of qmin and the details of the pressure
profile and our equilibrium reconstruction have error bars that are dif-
ficult to quantify so that we may not be able to predict the exact time
of the (1, 1) mode onset. Also, as mentioned previously, kinetic effects
and sheared toroidal rotation, not included in our nonlinear simula-
tion, may play a role in determining the exact onset time. However, it

is clear that both in the simulation and in the experiment, there is a
MHD event that drastically lowers the value of q0 and the central pres-
sure, and that after this event, the discharge is stable to MHD modes,
albeit at a lower value of b.

Finally, we comment on the implications of the q0 > 1 instabil-
ities found here and in previous studies6,7 for the next generation of
STs, which will presumably be of larger size with stronger magnetic
fields. These instabilities can, in principle, be avoided by lengthening
the current ramp-up time and avoiding early auxiliary heating. Or, it
may be deemed beneficial to “grow” the plasma during the current
ramp-up to quicken the current penetration by layering, as has been
proposed for ITER.40
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APPENDIX A: STABILITY OF MODEL EQUILIBRIUM

Here, we describe the stability of model equilibrium with circu-
lar cross sections, both in toroidal and cylindrical (or slab) geome-
try. Consider a toroidal equilibrium with major radius R ¼ 3:2m,
minor radius a ¼ 1:0m, and toroidal field on axis B0 ¼ 1 T. We
take the pressure and safety factor profiles to be the following func-
tions of the normalized poloidal flux, w:15

pðwÞ ¼ p0 1:0� wbp
� �ap

; (A1)

qðwÞ ¼ q0 � 1þ w
r20

� �k
" #1

k

� 1þ Aexp
�w

d2

� �� �
= 1þ Að Þ: (A2)

Here, we used bp ¼ 1:0; ap ¼ 2:0; q0 ¼ 4:5; r0 ¼ 0:612, k ¼ 6:48,
A¼ 1.64, and d ¼ 0:23. These profiles are shown in Fig. 10.
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At zero pressure, p0 ¼ 0, both the toroidal and cylindrical
equilibria are unstable to both n¼ 1 and n¼ 2 double tearing
modes. In M3D-C1, the fluid velocity is represented as V ¼ R2rU
�r/þ xR2r/þ R�2r?v. Here, R is the major radius in the
torus and a constant in the cylinder. Similarly, / is the toroidal
angle in the torus but the symmetry direction in the cylinder. The
operator r? is the gradient in the (R, Z) plane (orthogonal to r/).

The eigenfunctions for the velocity stream function, U, are shown in
Fig. 11 for a calculation with a dimensionless resistivity of
g ¼ 1:� 10�6.

As we increase the pressure, the growth rates for the n¼ 1 and
n¼ 2 modes in the torus first decrease and then stabilize. In the
cylindrical geometry, just the opposite occurs, as the growth rates
increase with b. These dependencies are shown in Fig. 12. These lin-
ear calculations used a uniform resistivity with a dimensionless
value of g ¼ 1:� 10�6 as was used in the calculation shown in
Fig. 11. Note that the strong stabilizing effect of b in toroidal geom-
etry is consistent with what was found in Ref. 12.

To determine the scaling of the linear growth rates with resis-
tivity, we repeated the zero-b calculation shown in Fig. 12 with two
other values of resistivity: g ¼ 0:5� 10�6 and g ¼ 2:0� 10�6. The
results are shown in Fig. 13. The dashed lines connecting the n¼ 1
results in the cylinder and the torus are what was predicted in Ref.
41 for the n¼ 1 double tearing mode in a cylinder using reduced
MHD.

Note that the results presented in this section are not meant to
be general and apply only to the geometry and profiles used here.
However, they do confirm that the stability results of a reversed
shear configuration can be very different in cylindrical and toroidal
geometry, as was observed in Ref. 12.

APPENDIX B: TRANSPORT COEFFICIENTS IN
NONLINEAR CALCULATION

In Table II, we list the numerical values of the normalized
transport coefficients appearing in Eqs. (1)–(6) that were used in
the nonlinear calculation presented in Sec. IV. The resistivity used

FIG. 10. Profiles for the q and pressure as defined in Eqs. (A1) and (A2).

FIG. 11. Velocity stream function, U, for (a) the n¼ 1 mode in a torus, (b) the
n¼ 2 mode in a torus, (c) the n¼ 1 mode in a cylinder, and (d) the n¼ 2 mode in
a cylinder. The lines next to the non-zero areas are the contours of q¼ 2.

FIG. 12. In the torus, the growth rates for both the n¼ 1 and n¼ 2 double tearing
modes decrease with b, eventually stabilizing. In contrast, in the cylinder, the growth
rates for both modes increase with b.
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was the Spitzer resistivity35 multiplied by a uniform factor, fg, so
that g ¼ fg � gSpitzerðTeÞ. In the code’s dimensionless units, the ini-
tial value of the resistivity at the magnetic axis was g ¼ 4� 10�9.
Note that some of the values were changed partway through the cal-
culation to overcome numerical stability issues.

As one of our convergence tests, the nonlinear calculation was
repeated with half the value for kH. The result for the q-profile at
the final time was very similar to that presented in Fig. 7.

APPENDIX C: EXPRESSION FOR DR

For an axisymmetric configuration, the M3D-C1 representa-
tion for the magnetic field reduces to

B ¼ r/�rwþ FðwÞr/: (C1)

In terms of these variables, the plasma pressure p and the volume
enclosed by a flux surface with label w, VðwÞ, the resistive inter-
change parameter DR can be computed as follows:31

E ¼ � p0V 0

q02ð2pÞ2
B2

jrwj2
� 	

Fq0

B2h i þ
V 00

ð2pÞ2
" #

; (C2)

F ¼ p0V 0

ð2pÞ2q0

 !2

F2 B2

jrwj2
� 	

1

B2jrwj2
� 	

� 1

jrwj2
� 	2

 !"

þ B2

jrwj2
� 	

1
B2

� 	�
; (C3)

H ¼ �Fp0V 0

ð2pÞ2q0
1

jrwj2
� 	

� B2

jrwj2
� 	

1
B2h i

 !
; (C4)

DR ¼ E þ F þ H2: (C5)

Here, hai is the standard flux surface average operator that makes
B � ra vanish. The plasma is locally unstable to resistive inter-
change modes if DR > 0.
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