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ABSTRACT

This paper extends the analysis first presented in Jardin et al. [Phys. Rev. Lett. 128, 245001 (2022)] to more thoroughly examine the stability
of spherical torus equilibrium to ideal magnetohydrodynamic (MHD) infernal modes and their nonlinear consequences. We demonstrate
that in a 3D resistive magnetohydrodynamic (MHD) simulation of a NSTX discharge, anomalous transport can occur due to these
instabilities. We generate a family of equilibrium of differing b and use this to show that these instabilities could explain the experimentally
observed flattening of the electron temperature profile at modest b. The modes studied in this paper are found to occur with poloidal mode
number m and toroidal mode number n when the ratio m/n is in the range of 1.2–1.5, when the central safety factor is in this range or
slightly lower, and when the central region has very low magnetic shear. Our analysis gives some insight as to why the unstable linear growth
rates are oscillatory functions of the toroidal mode number n. We present a simulation of an initially stable configuration that passes through
a stability boundary at a critical b as it is heated. We also show that a particular NSTX discharge is unstable to these modes over a timescale
of several hundredms. We conclude that these modes must be taken into account when performing predictive modeling. An appendix shows
that similar modes can be found in R=a ¼ 4 tokamaks for certain q-profiles and b values.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0141858

I. INTRODUCTION

A recent paper1 suggests that ideal magnetohydrodynamic
(MHD) instabilities may play a role in enhancing the effective electron
thermal conductivity in high-b discharges in NSTX2 and other spheri-
cal tokamaks. These global pressure-driven instabilities, known as
infernal modes,3 are localized around low order rational surfaces and
linearly exhibit distinct toroidal mode structure, n, and poloidal mode
structure m. They tend to be radially localized in low-magnetic shear
regions near the center of the discharge with m=n � q0, where q0 is
the central safety factor. Although the modes have radially localized
linear eigenfunctions, their nonlinear evolution can destroy magnetic
surfaces near the center of the discharge and thus severely degrade
magnetic confinement there.

The onset of these pressure-driven ideal MHD modes and the
associated surface breakup in the central region could explain why
global energy confinement times for boronized wall, H-mode plasmas
in the NSTX spherical tokamak were observed to have a near-linear
BT-scaling, stronger than typically observed in conventional aspect

ratio tokamaks.4,5 This BT scaling is also observed in other STs, such as
MAST6 and Globus-M and -M2.7,8

It has also been observed in NSTX that for moderate to high-b
discharges, the electron temperature profiles tend to be broadened, i.e.,
gradients in the outer radius steepen, while Te at the magnetic axis
remains largely unchanged as b increases.4,9,10 The present consensus
is that this core Te-flattening and change in ve cannot be explained
simply byrTe-driven drift wave mechanisms.

We note here that multiple other hypotheses have been put forth
for explaining this behavior, including high frequency global and com-
pressional Alfv�en eigenmodes (GAE/CAE)10–13 and the coupling of
CAE modes to kinetic Alfv�en waves (KAW).14 However, the estimated
magnitude of transport and/or energy coupling from these mecha-
nisms are not typically large enough to entirely explain the NSTX
observations.15

In this paper, we advance the hypothesis first presented in Ref. 1
that low-n, core, pressure-driven ideal MHD instabilities that are non-
disruptive can breakup flux surfaces, ultimately leading to enhanced
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stochastic transport that preferentially influences electron thermal
losses. This surface breakup is significant since the micro-turbulence
codes assume that good magnetic flux surfaces exist, which should be
the case in the absence of MHD instabilities and magnetic islands. The
partial destruction of the surfaces in the core region leads to another
transport mechanism and possibly explains the observed electron tem-
perature flattening and strong BT dependence of sE in STs.

This surface breakup, observed in the 3D MHD simulations, is
consistent with the recent work by Boozer,16 which shows that ideal
MHD instabilities can lead to magnetic surface breakup, even for an
arbitrary small resistivity. If the magnetic surfaces are destroyed in the
vicinity of large pressure gradients, anomalous transport will occur by
way of parallel diffusion, which is much greater than diffusion across
flux surfaces. We have investigated this mechanism by applying the
3D resistive MHD code M3D-C117 to some reconstructed NSTX
equilibrium.

The remainder of this paper is organized as follows: Sec. II
presents a brief review of internal pressure-driven ideal MHD instabil-
ities in tokamaks. In Sec. III, we discuss the linear and non-linear anal-
ysis of one particular equilibrium for NSTX shot 124 379 in detail. In
Sec. IV, we use a scaling technique to generate a family of equilibrium
with differing b from that one equilibrium. In Sec. V, we present the
results of a nonlinear calculation in which we start with a low-b stable
equilibrium and apply heating power to increase b and thus drive it
through a stability boundary. In Sec. VI, we return to NSTX shot
124 379 and show the results of stability analysis every 10ms for
200ms in the discharge. We present a summary and some conclusions
in Sec. VII. In the Appendix, we present some stability results for a
model circular R=a ¼ 4 equilibrium that extends some analysis pre-
sented in Ref. 3.

II. PRESSURE-DRIVEN IDEAL MHD INSTABILITIES

It is well known that a tokamak equilibrium is unstable to inter-
nal ideal MHD instabilities if there is a displacement field nðxÞ that
makes the energy functional dWf negative.

18 A particular form of this
functional provides physical insight as it shows that dWf can be writ-
ten as an integral with five terms, three of which are positive defi-
nite.19,20 The remaining two terms, which can be negative, involve the
pressure gradient and the parallel current, respectively. If the term
involving the pressure gradient dominates, we call these pressure-
driven modes.

There are three classes of internal pressure-driven instabilities in
tokamaks that have been identified: interchange modes, ballooning
modes, and infernal modes. Stability to interchange modes can be
evaluated by a criterion developed by Mercier21 involving an expan-
sion around the magnetic axis. In simplified geometry, this criterion
predicts stability if the central safety factor is greater than unity,
q0 > 1, and there is non-zero magnetic shear.

Ballooning modes22,23 occur in regions of high magnetic shear.
They are azimuthally localized in the low field region. The modes with
the highest toroidal mode number n are the most unstable. These
modes do not require a rational surface. In the high-n limit, each mag-
netic surface can be examined separately by solving a 1D ordinary dif-
ferential equation.

In contrast, infernal modes3 occur in regions of low magnetic
shear. They are not azimuthally localized, but have a distinct poloidal
mode number m. Modes with intermediate toroidal mode number,

n � 2, are typically the most unstable. These modes are global, but
radially localized around a rational surface. They can be unstable at
significantly lower values of b than ballooning modes. These modes
require global analysis, for example, by codes such as PEST,24

GATO,25 or M3D-C1.17 The growth rates are normally oscillatory
functions of the toroidal mode number n. These modes are not as well
known as ballooning modes. One reason for this is that they were
identified just as the classic book on Ideal MHD by Freidberg26 was
coming out and are not mentioned in that book. This paper is about
the effect of these instabilities in NSTX and other STs and tokamaks.

III. A TYPICAL CASE

Consider the equilibrium from NSTX shot 124 379 at time
640ms shown in Fig. 1 of Ref. 1. This has RBT ¼ 0:418 m-T, plasma
current Ip ¼ 990 kA, b ¼ 6:8%, bN ¼ bTð%Þ � BTðTÞ � aðmÞ=
IPðMAÞ ¼ 3:9, and central safety factor qð0Þ ¼ 1:29. Some experi-
mental details of the discharge and this time slice are given in Ref. 27.
Our analysis shows that this equilibrium is unstable to many low-n
(toroidal mode number) ideal MHDmodes as shown in Figs. 1 and 2.

We see from Fig. 2 that each unstable toroidal mode with mode
number n has a linear eigenfunction with a distinct poloidal mode num-
berm. We list in Table I the poloidal mode numbers associated with the
first 15 unstable toroidal modes shown in Fig. 1. These are seen to be
such that the ratio m/n is in the range of 1:33 � m=n � 1:42. We see
from Fig. 3 that these rational numbers align with a q value just above
q0 and in the low-shear part of the discharge.

As explained in Sec. II, pressure-driven, radially localized, ideal
MHD modes, such as these, which occur in low shear regions at
pressure-gradient values below the ideal MHD infinite-n ballooning
limit,22 and where the growth rate is an oscillatory function of the toroi-
dal mode number n, have been referred to as infernal modes.3,28–30

Table I and Fig. 3 give us some insight as to why the modes with
n¼ 2 and n¼ 4 are stable for this equilibrium. For n¼ 2, modes with
m � 2 are not resonant, and modes with m � 3 are outside the low

FIG. 1. Normalized growth rates for unstable modes with toroidal mode numbers
1–18 for NSTX shot 124 379 @640ms using temperature-dependent Spitzer resis-
tivity. Also shown (in green online) are the growth rates with the resistivity increased
by 10, indicating that these are ideal MHD instabilities. Reproduced with permission
from Jardin et al., Phys. Rev. Lett. 128, 245001 (2022). Copyright 2022 American
Physical Society.1
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shear region. Similarly, for n¼ 4, modes with m � 5 are not resonant,
and those withm � 6 are outside the low shear region.

Because this equilibrium is unstable to ideal MHD modes, it is
unlikely that this equilibrium file is a true representation of the experi-
mental equilibrium at that time. Nevertheless, we evolve this configu-
ration in time to see if it evolves into a nearby stable equilibrium state.

For simplicity, we used the single-fluid form of the 3D nonlinear
M3D-C1 code to advance the particle density n, the fluid velocity V,
the plasma pressure p, and the magnetic scalar and vector potentials U
andA according to the following partial differential equations:

@n
@t
þr � ðnVÞ ¼ r � Drn; (1)

@A
@t
¼ �E�rU; (2)

r? �
1
R2
rU ¼ �r? �

1
R2
� E; (3)

Eþ V� B ¼ gJ; (4)

nMi
@V
@t
þ V � rV

� �
þrp ¼ J� B�r �P; (5)

3
2
@p
@t
þr � ðpVÞ

� �
¼ �pr � Vþ J � E�r � qþ SE: (6)

The magnetic field and current density are then determined by
B ¼ r� A and J ¼ r� B. The symbol r? in Eq. (3) refers to the
gradient in the (R, Z) plane in a ðR;/;ZÞ cylindrical coordinate sys-
tem. Equation (3) follows from the gauge condition on A,
r? � R�2A ¼ 0. The temperature is the pressure divided by the den-
sity, T � p=n. The linear form of the code used for linear stability
studies is just the linearized form of these same equations.

The particle diffusion term D in Eq. (1) is a small term included to
aid numerical stability. The resistivity g in Eq. (4) is the temperature-
dependent Spitzer function31 with no enhancement. The stress tensor in
Eq. (5) is of standard form for viscosity,32 with viscosity coefficient l.
The heat flux vector, q, in Eq. (6) has both an isotropic part and a part
parallel to the magnetic field: q ¼ �jrT � jkbb � rT , where b is a
unit vector in the direction of the magnetic field.

The M3D-C1 code uses finite elements in all three dimensions.
In the (R, Z) plane, these are unstructured “Bell” triangular elements33

that, for most of these calculations, vary in size from h¼ 4 cm near the
separatrix to 1 cm near the axis, with a total of 10346 elements per
plane. In these calculations, we normally use 24 planes, with structured
equally spaced Hermite cubic finite elements.

In Ref. 1, we describe some convergence tests where we redid
some calculations on grids with 28 792 and 38 063 elements per plane
and with 36 and 48 planes. These tests led to the conclusion that the
calculation was adequately converged, although it was not a rigorous
convergence test. Within each 3D toroidal prism element is a polyno-
mial in ðR;/;ZÞ with 72 coefficients. The numerical error should vary
as h5 within a plane and h4 in the toroidal direction.

This evolution was for 6000 Alfv�en times, sA, corresponding to
about 2.75ms. We used very small dimensionless transport coefficients
to avoid them changing the profiles significantly by themselves, and to
avoid the need for a density and energy source. (Ohmic heating was
present but was negligible for the resistivity and time scales involved.)
The plasma current was maintained at the initial level by adjusting the

FIG. 2. Linear eigenmodes showing pressure contours for modes with n¼ 3, 9,
and 15 from Fig. 1. Other modes have similar structure, with poloidal mode number
m � ð4=3Þn. Reproduced with permission from Jardin et al., Phys. Rev. Lett. 128,
245001 (2022). Copyright 2022 American Physical Society.1

TABLE I. Poloidal mode number m for each of first 15 unstable modes shown in
Fig. 1.

n 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18
m 4 7 8 10 11 12 14 15 16 18 19 20 22 23 24

FIG. 3. Close-up of the central portion of the q-profile for NSTX shot 124 379 time
640ms plotted against the square root of the normalized poloidal flux. The m/n val-
ues from Table I are shown as horizontal lines.
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loop voltage at the boundary. In code units, the dimensionless values
were D ¼ 10�6; j ¼ 10�6, and l ¼ 10�6 (to get the values in m2/s,
divide by sA ¼ 4:58� 10�7s). In contrast, the dimensionless parallel
thermal conductivity was jk ¼ 10, 7 orders of magnitude greater than
j. In code dimensionless units, the resistivity on axis corresponding to
the Spitzer resistivity of a 916 eV plasma was initially g ¼ 2� 10�8.

The magnetic energy in the first six toroidal harmonics is shown
in Fig. 4 for the nonlinear calculation up to t¼ 6000 sA. Poincar�e plots
of the configuration at four times in the evolution can be found in Fig.
4 of Ref. 1.

The initial configuration was linearly unstable as we saw in Figs.
1 and 2. Nonlinearly, the n¼ 3 mode grows largest, and around the
time t¼ 500 sA deforms the surfaces, primarily those near q¼ 4/3
with a dominantly m¼ 4 poloidal variation. The stochastic region
near and interior to that surface causes the temperature and pressure
to drop there, restabilizing the plasma. The detailed structure of the
stochastic region rearranges itself, but at the final time, t¼ 6000 sA the

configuration is again stable with only a small dominantly n¼ 3 toroi-
dal variation.

We show in Fig. 5(a) the midplane temperature profile for the
initial state and the results at time t¼ 3200 sA (1.46ms) for the base-
line calculation. We also show in Fig. 5(b) the results at the same time
for a companion calculation that included sheared toroidal rotation
(25 kH in the center) in the initial equilibrium. This rotation, which
was present in the experiment, is seen to smooth the evolved tempera-
ture profile but not to qualitatively change the result.

It is seen that the temperature has decreased significantly in the
center, near the magnetic axis, but has actually increased at mid-
radius. Thus, the result of the ideal instabilities and associated parallel
transport on the ergodic field lines was to effectively increase the trans-
port in the center, near the original magnetic axis. This increase in the
effective thermal conductivity in the center, over that which would be
expected from microinstabilities alone, may explain similar experi-
mental observations.10

IV. A FAMILY OF EQUILIBRIUM WITH DIFFERING
b VALUES

To further study and better quantify the effect of the ideal insta-
bilities, we have generated a family of initial equilibrium states by
applying Bateman scaling34 to the initial equilibrium reconstruction.
This scaling leaves the toroidal current density, Rp0 þ R�1FF0, and
hence the poloidal flux W, unchanged but increases or decreases the
toroidal field strength by a factor FS at the separatrix. It does not
require resolving the Grad–Shafranov equation, but only integrating
the ordinary differential equation for F with a new boundary value, FS.
We generated two additional initial equilibrium states by setting this
factor to be FS ¼ 0:9 and FS ¼ 1:1. This generated additional initial
equilibrium with ðb ¼ 8:2%; qð0Þ ¼ 1:2Þ and (b ¼ 5:0%; qð0Þ
¼ 1:4Þ, respectively.

We redid the calculation with each of these initial equilibrium
states and plot the midplane electron temperature at t¼ 1200 sA for
these and the original configuration in Fig. 6(b).

FIG. 4. Magnetic energy in the first six toroidal harmonics for the 6000 sA nonlinear
simulation (AU). n¼ 0 energy not shown.

FIG. 5. Midplane temperature profiles for
the initial state and for the results of the
calculation at t¼ 3200 sA (a) for the base-
line calculation and (b) for a companion
calculation in which sheared toroidal rota-
tion was included with 25 kH in the center.
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The profile labeled bN ¼ 3:5 in Fig. 6(b) corresponds to an equi-
librium configuration with FS ¼ 1:1 that was MHD stable and so it
retained good nested magnetic surfaces and the central temperature
changed little from its initial value. The curve labeled bN ¼ 3:9 was
taken from the equilibrium used in Fig. 5, with FS ¼ 1:0. The destruc-
tion of the magnetic surfaces in the center led to a central flattening of
the temperature profile. The curve labeled bN ¼ 4:3 corresponds to
an equilibrium with FS ¼ 0:9 that was initially even more unstable
than that of the original equilibrium and that increased instability led
to a larger region in the center with destroyed surfaces and flattened
temperature profile.

Each of the two unstable equilibria were linearly unstable to
many modes, but the dominant nonlinear mode in the FS ¼ 0:9 case
was the (5, 4) (poloidal, toroidal) mode, whereas for the FS ¼ 1:0 case,
it was the (4, 3) mode. This shift was due to the change in the q-profile
and associated rational surfaces due to the change in the toroidal field.
In Fig. 7, we show the linear eigenfunctions of the two modes that
become dominant non-linearly for the two equilibriums.

In Fig. 6(a), we plot three experimentally measured midplane
electron temperature profiles taken from the shots analyzed in Refs. 10
and 35. While not meant to be an exact comparison, we see the same
qualitative behavior between the experimental profiles (a) and the sim-
ulation profiles in (b). At low enough bN, the profiles are most peaked.
As bN increases, the profiles flatten near the axis, but steepen at

mid-radius. The simulations seem to have reproduced the most domi-
nant experimental characteristic.

V. APPLY HEATING TO A STABLE EQUILIBRIUM

The scan in Sec. IV was somewhat unphysical because the scaled
equilibrium with FS ¼ 1:0 and FS ¼ 0:9 was unstable and so unlikely to
have occurred in an experiment. In an attempt to make a more physical
calculation, we begin with the stable equilibrium with FS ¼ 1:1, apply a
heating source, and run for 6000 sA, or about 2.8ms. The heating source
had spatial dependence SE � expð�ððR� R0Þ2 þ ðZ � Z0Þ2Þ=d2Þ,
where R0 ¼ 1:0 m, Z0 ¼ 0:0, and d ¼ 0:4 m. To shorten the calcula-
tion, we applied an unrealistically large heating source of 32MW. The
results are presented in Figs. 8–13.

We perform this calculation in both 2D (with no toroidal varia-
tion) and 3D to highlight the effect of the 3D instabilities by compar-
ing the two. Figure 8(a) shows the plasma b as a function of time for
both 2D and 3D calculations, the two curves essentially overlaying.
Figure 8(b) shows the maximum electron temperature as a function of
time. It is seen that the curves overlay until about t¼ 3500 sA, at which
time the temperature in the 2D calculation continues to increase,
whereas it starts decreasing in the 3D calculation.

We paused the 2D calculation at t¼ 3000 sA, just as the 3D cal-
culation was starting to exhibit instabilities, to see which modes were
linearly unstable. This is illustrated in Fig. 9 and Table II.

Table II shows that the linearly unstable modes at this time had
rational values ofm/n ranging from about 1.45 to 1.50. These unstable
resonances are illustrated in Fig. 10 along with a blow-up of the q-
profile near the origin. Comparing Figs. 3 and 10, we see that the
Bateman scaling increased the value of q0 by about 10%, leading to a
different set of rational surfaces lying in the low-shear region.

FIG. 6. (a) Experimental midplane electron temperature for the three equilibria con-
sidered in Refs. 10 and 35. (b) M3D-C1 midplane electron temperature at time
t¼ 1200 sA starting from the three Bateman scaled equilibria corresponding to
FS ¼ 1:1, FS ¼ 1:0 (the original), and FS ¼ 0:9. Reproduced with permission
from Jardin et al., Phys. Rev. Lett. 128, 245001 (2022). Copyright 2022 American
Physical Society.1

FIG. 7. (a) (4,3) mode located near the q¼ 1.33 surface for the original equilibrium
with FS ¼ 1:0. (b) (5,4) mode located near the q¼ 1.25 surface for the Bateman
scaled equilibrium with FS ¼ 0:9.
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We can gain some understanding of why the growth rate shown
in Fig. 9 is an oscillatory function of the toroidal mode number n by
looking at the first few n values and where their resonances occur in
Fig. 10. The first unstable mode, n¼ 2, has a resonance with m¼ 3 at
the edge of the low-shear region at q¼ 1.5. For the next few even n’s,
n ¼ 4; 6; 8…, there is a m value that gives them a resonance at the
same location. However, for the first few odd modes, there is no such
resonance. For n¼ 3, modes with m � 4 have no resonance, and
modes with m � 5 have their resonance outside the low shear regime.
Similarly, for n¼ 5, modes with m � 7 have no resonance, whereas
those with m � 8 have resonance outside the low shear regime. This

difference in the possible resonant locations of the odd and even toroi-
dal mode numbers give rise to the oscillation with n shown in Fig. 9.

Figure 8(c) shows the magnetic energy in the different toroidal
harmonics in the 3D calculation as a function of time. There is a slight
blip in the n¼ 4 energy at t¼ 2000 sA, which did not noticeably affect
the peak electron temperature. However, at about t¼ 3500 sA, a large
n¼ 2 disturbance grows up, saturates, and restabilizes. This n¼ 2
mode is seen to nonlinearly drive n¼ 4 and n¼ 6 disturbances and is
seen to coincide with the drop of the central electron temperature.

Figure 11 shows Poincar�e plots of the magnetic field at four times
in the 3D calculation presented in Fig. 8. At time 0, good smooth sur-
faces exist. At time t¼ 3000 sA, the surfaces first distort as the unstable
modes start to grow. By time t¼ 3500 sA, the surfaces have broken up
in the center. They remain broken until the end of the calculation, at
t¼ 6000 sA, although the outer surfaces are intact.

The midplane temperature profiles for the 2D and 3D calcula-
tions at the initial and three additional times are shown in Fig. 12.
Comparing the 2D and 3D profiles from Fig. 12, we see that the first
two time slices are essentially identical. However, at some time
between t¼ 2000 sA and t¼ 4000 sA, the primary effect of the heating
was to broaden the 3D calculation temperature profile, not uniformly
increase it as in the 2D calculation. This broadening of the temperature
profile as b increases is qualitatively similar to the NSTX experimental
result presented in Ref. 10 and shown in Fig. 6(a).

Because the b vs time plots for the 2D and 3D calculations were
the same, we can plot the maximum temperature as a function of b for
the 2D and 3D calculations. This is done in Fig. 13, making clear that
a critical b exists at which time surface breakup occurs and the central
electron temperature no longer monotonically increases with b in 3D.

VI. MORE ON NSTX SHOT 124 379

Figure 14 gives a time history of some of the parameters calcu-
lated from equilibrium reconstructions of NSTX shot 124 379 and
their MHD stability properties for toroidal modes 1–9 as calculated

FIG. 8. (a) Percent b vs time for the 2D and 3D calculations. (b) Maximum electron
temperature vs time for the 2D and 3D calculations. (c) Magnetic energy in the dif-
ferent toroidal harmonics for the 3D calculation as a function of time.

FIG. 9. Normalized growth rates for unstable modes with toroidal mode numbers
1–18 for initially stable 2D calculation with heating applied at time t¼ 3000 sA using
temperature-dependent Spitzer resistivity.

FIG. 10. Close-up of the central portion of the q-profile for Bateman scaled, initially
stable, equilibrium plotted against the squareroot of the normalized poloidal flux.
The m/n values from Table II are shown as horizontal lines.
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every 10ms from 500 to 700ms. There is obviously a lot of scatter in
these results, and we do not have meaningful error bars, but we think
that the overall trends are relevant.

All MHD modes are stable before t¼ 550ms. From t¼ 500ms
to about t ¼ 650ms, there is a general trend for the b to be increas-
ing and for the central safety factor, q0 to be decreasing. At about
t¼ 560ms, calculations show the toroidal mode numbers n¼ 3, 5, 7,
and 8 suddenly become unstable. Although the poloidal mode num-
ber is generally not a good quantum number in a torus, we see from
Fig. 2 and from our other calculations that the poloidal mode

number can be easily identified for these modes, which are (4,3),
(7,5), (10,7), and (11,8). At this time, q0 � 1:3, so that each of these
(m,n) modes has a m–nq resonance where the mode locates, very
near the center.

This largely remains the case for the next 100ms. Although the
exact modes that are unstable change during this time, the majority of
the unstable modes are such that they have a resonance very near the
center, at values of m/n varying from 1.2 to 1.44. The non-resonant
(1,1) mode is the exception, as are a few (barely) non-resonant (5,4)
modes. We, thus, expect mode activity, surface breakup, and

FIG. 11. Poincar�e plots of the magnetic field at four times during the calculation of Fig. 8.

FIG. 12. Midplane electron temperature at the initial and three additional times for
the 3D calculation (right) and for a 2D calculation (left) with the same transport coef-
ficients and heat source (left).

FIG. 13. Graph of the central temperature vs b for the sequence shown in Fig. 8.
In the 2D calculation, the temperature increases linearly with b. In the 3D calcula-
tion, the temperature sharply decreases at about b ¼ 6.4%.

TABLE II. Poloidal mode number m for each of first seven unstable modes shown in
Fig. 9.

n 2 4 6 8 10 11 13
m 3 6 9 12 15 16 19

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 30, 042507 (2023); doi: 10.1063/5.0141858 30, 042507-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


temperature flattening during this entire time, which is consistent with
what was observed for this discharge.

VII. SUMMARY AND DISCUSSION

In summary, we have demonstrated a new mechanism that could
limit the central temperature and peakedness of the pressure profile in
a ST. There are indications that this also occurs in MAST.36 The details
and significance of this mechanism clearly depend on the form of the
pressure and current profiles and need to be further explored for a
range of discharges. However, it is clear that the possible destruction
of surfaces by ideal MHD instabilities should be taken into account
when performing data analysis and when projecting ST parameters for
future devices.

The unstable modes that we have identified have values of m/n
ranging from 1.2 to 1.5 in equilibria with q0 in the same range, or
slightly lower, and with low central shear. It may be that this is a
“danger zone,” which, if avoided, would lead to better confinement.
This conclusion is the result of numerical exploration and remains
to be definitively determined by analytical work and experimental
data.

We have gained some insight as to why the linear growth rates of
the modes shown in Figs. 1 and 9 are oscillatory functions of the toroi-
dal mode number n. Figures 3 and 10 illustrate that for these profiles,

there is a narrow range of q that exists in a sufficiently low shear
region, above q0, and there must be a poloidal mode number m that
puts m/n in that narrow low shear region. The existence of such a m
is certainly different for different n, particularly for odd and even
values.

We note here that there are also reports of confinement degrada-
tion in high-b operation of conventional aspect ratio tokamaks as well
when infernal modes are observed. This has likely occurred in
JET,37,38 TFTR,39 JT60-U,40 DIII-D,41 and JT60-SA.42 Model R=a ¼ 4
equilibria that exhibit infernal modes are discussed in Ref. 3 and fur-
ther in the Appendix. Future studies will help clarify what role the
aspect ratio and plasma shaping plays in this mechanism and how best
to minimize its effects.

These studies use a fixed ratio of parallel to isotropic thermal
conductivity of jk=j ¼ 107, which was somewhat artificial and arbi-
trary. We have found that the final results depend only weekly on this
ratio since for sufficiently high values, the process is self-regulating as
the large parallel transport reduces the local pressure gradient and
thus removes the drive, returning the configuration to a stable state.
Anticipated future work will include kinetic extensions of the MHD
model to better understand the relative effect of these instabilities on
the ions and electrons and if wave-particle resonances are important.

It is also worth noting that the M3D-C1 code has a “reduced
MHD” option that advances only the poloidal flux, the vorticity, and
the pressure.17 The infernal modes shown in Figs. 1 and 2 were not
found with that option, and so future analysis studies should use the
full MHDmodel as was done here.
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APPENDIX: STABILITY OF MODEL EQUILIBRIUM

Here, we describe a parameter scan of the stability of a class of
circular, aspect ratio R=a ¼ 4:0 equilibrium that extends the study
published in Ref. 3. The pressure and safety factor profiles are given
by

qðwÞ ¼ q0 þ q1w
aq ; (A1)

pðwÞ ¼ p0 1� wa2ð Þa1 : (A2)

Following Ref. 3, we set the profile factors to aq ¼ 4:0; a1
¼ 4:0; a2 ¼ 1:5. Although Ref. 3 considered only q0 ¼ 1:05, we
varied q0 from 1.05 to 2.05 in steps of 0.1 and set q1 ¼ 3:10� q0,
thus fixing the value at the limiter to 3.10.

In Fig. 15, we plot the unstable mode growth rates as a func-
tion of toroidal mode number for a family of equilibrium, all with
b ¼ 1:2% (normalized bN ¼ 2:6). These low-n modes are seen to
be unstable if there exists an integer m such that the ratio m/n is
very close to q0. The unstable modes can be both resonant, with
m=n � q0, and non-resonant,43 with m=n � q0. Equilibrium in this
series with 1:55 < q0 < 2:05 was all found to be stable for this b
value and these toroidal mode numbers. Lowering the b to 1% left
only the n¼ 1 unstable for q0 ¼ 1:05, the n¼ 6 unstable for
q0 ¼ 1:15, and the n¼ 2 unstable for q0 ¼ 1:45. Lowering b further
to 0.8% resulted in all modes being stable for all q0.
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