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We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is
possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the
discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting
the central loop voltage through a dynamo action. This could explain the physical mechanism for
maintaining stationary nonsawtoothing “hybrid” discharges, often referred to as “flux pumping.”
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Typical high-performance modes of tokamak operation
undergo “sawtooth" cycles, in which the peaking of the
central current density triggers a periodic core instability
which redistributes the current density. However, certain
modes of operation are known, such as the “hybrid” mode
in DIII-D [1] and other tokamaks [2–7], which do not
experience this cycle of instability. Empirically, it is
observed that these modes maintain a nonaxisymmetric
equilibrium which somehow limits the peaking of the
toroidal current density. The physical mechanism respon-
sible for this has not previously been understood, but has
been referred to as “flux pumping,” in which poloidal flux
is anomalously redistributed and the toroidal current
broadened in order to maintain the central safety factor
(ratio of times a given magnetic field line travels around the
torus the long way to the short way) greater than unity,
q0 > 1 [1]. Here we show that in simulations of inductively
driven tokamak plasmas, a steady-state nonaxisymmetric
magnetic equilibrium may be obtained in which q0 > 1 is
maintained by a nonlinear dynamo action driven by a
stationary marginal core interchange mode.
An inductively driven tokamak plasma is said to be in a

stationary state if the magnetic field, temperatures, and
densities (and hence pressure) do not change in time. If this
state is achieved, it is normally reached late in the discharge
after the plasma current is constant in time and has fully
penetrated. Since the magnetic field is not changing in time,
it follows from Maxwell’s induction equation that the
electric field is the gradient of a single valued potential
plus a constant times the gradient of the toroidal angle:

∂B
∂t ¼ −∇ ×E ¼ 0 ⇒ E ¼ −∇Φþ VL

2π
∇φ: ð1Þ

Here, B and E are the magnetic and electric fields, Φ is a
single valued potential, ðR;φ; ZÞ are the usual cylindrical
coordinates, and VL is a spatial constant that represents the
voltage the long way around the torus, created by external
induction coils. In the resistive magnetohydrodynamic

(MHD) description of a plasma, the generalized Ohm’s
law, Eþ V ×B ¼ ηJ, combined with Eq. (1), gives the
condition

−V ×Bþ ηJ ¼ −∇Φþ VL

2π
∇φ: ð2Þ

Here, η is the resistivity, V is the fluid velocity, and J ¼
μ−10 ∇ ×B is the plasma current density in the low fre-
quency (MHD) limit. Two projections of the vector Eq. (2)
are of particular interest. The toroidal projection is given by

φ̂ · ½−V ×Bþ∇Φ� ¼ −ηJφ þ
VL

2πR
: ð3Þ

Here, the toroidal current density is represented as
Jφ ≡ φ̂ · J. If we take the inner product of Eq. (2) with
the magnetic field vector B we obtain

ηJ ·B ¼ −B · ∇Φþ VL

2π
B ·∇φ: ð4Þ

If magnetic surfaces exist everywhere, we can perform a
surface average of Eq. (4) to obtain the well-known
condition for tokamak stationary states:

hJ ·Bi
hB ·∇φi ¼

VL

2πη
: ð5Þ

Here, h� � �i is the standard surface average operator that
annihilates B · ∇ [8]. The plasma resistivity is a strong
function of the plasma temperature: η ¼ η0T−3=2 which is
constant on the magnetic surfaces. From Eq. (5) we see that
where the temperature is largest (typically in the center of
the discharge due to central heating and geometrical
effects) the surface averaged parallel current density will
also be largest. This large current will lead to a large Ohmic
heating term in the temperature equation which tends to
increase the central temperature even more, thus requiring
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the plasma current to peak even more in order to sat-
isfy Eq. (5).
The conventional explanation [9] for why this thermal

instability doesn’t continue to peak the current to very large
values is the “sawtooth” cycle. The safety factor at the
plasma center is inversely proportional to the current
density at the center: q0 ≃ 2BT=μ0J0R0, where BT is the
toroidal field strength and R0 is the major radius. As the
current continues to peak, eventually the central safety
factor falls below unity and the configuration becomes
unstable to an internal resistive-kink mode [10] with
approximate angular dependence, cos ðθ − φÞ where θ is
the angle the short way around the torus (in the R; Z plane).
We call this a ðm; nÞ ¼ ð1; 1Þ mode referring to the
multipliers of the two angles. This causes a reconnection
event to occur that tends to flatten both the current and the
temperature profiles so that q0 suddenly increases to above
unity, and the process then repeats cyclically so that the
configuration is not strictly stationary on all time scales.
We report here on a different mechanism for preventing

the current and temperature profiles from peaking in a truly
stationary state tokamak. For certain global parameters,
regardless of the initial state, the plasma profiles will evolve
into a self-organized state with the central safety factor
slightly above unity and constant in a central volume. We
illustrate such a configuration in Fig. 1. The solid curves in
Fig. 1(a) show the steady state pressure and safety factor
profiles along the outer major radius for a 3D simulation
(red), and for an identical 2D (axisymmetric) calculation
(black) with the same transport model and parameters. It is
seen that the toroidally averaged 3D and 2D profiles differ
in the center. Figure 1(b) is a Poincaré plot of the final 3D
magnetic configuration showing some island structure. The
central shear-free region, omitted from the Poincaré plot,
has q≃ 1 and is uniform.

Such a large shear-free region with q just above unity is
known to be linearly unstable to interchange modes driven
by any nonzero pressure gradient [11–14]. Unlike an
unstable configuration with a q ¼ 1 resonant surface in
the plasma, the unstable linear eigenfunction for an ultra-
low shear configuration with q just above 1 throughout a
volume is distributed out to the region where the shear
begins (about the q ¼ 1.01 surface) and the instability
drives a strong (1,1) helical flow. The unstable linear
eigenfunction found in Ref. [13] is given in terms of the
velocity stream function U by

U ¼ U0r½1 − ðr=r1Þ2� sin ðθ − φÞ: ð6Þ

Here the minor radius is r ¼ jR − R0j and r1 is the minor
radius where the shear becomes nonzero. The steady-state
condition, Eq. (4), does not explicitly contain the velocity.
However, the driven flow creates a (1,1) component of the
electrostatic potential Φ and of the magnetic field B that
combine to create a (0,0) spatially varying “dynamo”
voltage that prevents the current density from peaking in
the center and hence maintains q slightly above unity and
shear-free in the central region. We note here that the role of
the electrostatic potential in maintaining near-stationary
single helicity states in the reversed field pinch has been
emphasized previously [15].
The flow field also acts nonlinearly to partially flatten the

temperature and hence resistivity profile in the center, thus
reducing the tendency for the current to peak [16].
However, as will be shown in Figs. 3 and 4, this effect
is normally secondary to the generation of the spatially
varying dynamo voltage. The self-consistent calculations
presented here illustrating the formation of the dynamo
voltage were performed with the M3D-C1 [17] toroidal 3D
MHD code, and could possibly explain nonsawtoothing
discharges with q0 ≃ 1 such as hybrid modes in DIII-D [1],
ASDEX-U [2], JT-60U [3], and JET [4,5], and long-lived
modes in NSTX [6] and MAST [7]. Stationary nonsaw-
toothing behavior has been observed in other 3D tokamak
MHD simulations [18–20] but an explanation of how these
configurations maintain themselves over resistive time
scales has not appeared.
The poloidal velocity in M3D-C1 is represented as

V ¼ R2∇U ×∇φþ R−2∇⊥χ, a form of a Hodge decom-
position. Here ∇⊥ indicates the gradient perpendicular to
the toroidal direction. In all the results presented here the
kinetic energy in the χ field is less than 1% of the energy in
the U field (which does not compress the strong toroidal
magnetic field) and can thus be ignored in the analysis.
Inserting this into Eq. (3) and rearranging

−RB ·∇U þ φ̂ · ½F∇U þ∇Φ� ¼ −ηJφ þ
VL

2πR
: ð7Þ

FIG. 1 (color). (a) Comparison of the q profile and toroidally
averaged pressure for a stationary state 3D run and 2D run with
exactly the same transport coefficients. (b) Poincaré plot of the
magnetic field in the final state with (2,1) and (3,1) islands
present. Center volume has q ¼ 1.
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We made use of the M3D-C1 form of the magnetic field

B ¼ ∇ψ ×∇φ −∇⊥∂f=∂φþ F∇φ; ð8Þ
and F≡ F0 þ∇2⊥f, with F0 a constant. We find that the
two terms in the bracket cancel to a high degree,
∇Φ≃ −F∇U, so that Eq. (7) becomes

ηJφ ¼ RB · ∇U þ VL

2πR
: ð9Þ

This is seen to be very similar in form to Eq. (4). Both
Eq. (9) and Eq. (4) have a nonlinear term of the form B ·
∇Φ≃ −FB ·∇U as well as a nonlinear term in involving
the resistivity η and the current density.
In the illustrative simulations presented here, we solve

the single fluid 3D (or 2D) resistive MHD equations with
source terms as described in Ref. [17]. To illustrate the self-
organized voltage clamping mechanism, we present results
from five long time simulations. We chose a tokamak
plasma with a generic shape for the last closed flux surface:
R¼R0þacosðθþδsinθÞ;Z¼bsinðθÞ, with R0 ¼ 3.2 m,
a ¼ 1.0 m, b ¼ 1.3 m, and δ ¼ 0.2. The toroidal field on
axis was B0 ¼ F=R0 ¼ 1 T and the plasma current was
μ0IT ¼ 0.8 Tm so that the edge safety factor was
qedge ≃ 4.5. The runs were largely identical with central
resistivity in SI units η0 ¼ 10−6ðμ0=τAÞ m2, where,
τA ¼ a

ffiffiffiffiffiffiffi

μ0ρ
p

=B0, and plasma beta β≡ 2μ0hpi=B2
0 ¼ 2%.

The four fully 3D simulations differed in that a multiplier
was applied to both the isotropic thermal conductivity and
the heating sources so that they would balance and keep
β ¼ 2%. The 4 values used were κ0 ¼ C × η0=μ0 with
C ¼ 18, 36, 72, 144. The thermal conductivity varied with
the plasma temperature as κ ¼ κ0ðT=T0Þ−1=2.
The calculations in this Letter all have β ¼ 2%. The

stationary behavior obtained is fundamentally different
from that in simulations at lower values of β. In particular,
we have performed a similar sequence of calculations with
β ¼ 0.06 and these all exhibit periodic sawteeth oscilla-
tions. The presence of a β threshold for the existance of
stationary states is consistent with earlier computational
studies [18].
A large constant parallel thermal conductivity of κ∥ ¼

ð10=τAÞ m2 was used in all simulations. A loop voltage was
applied at the plasma boundary with a feedback loop to
keep the total toroidal current constant in time, as is
normally done in experiments. Each simulation was also
run in a 2D (axisymmetric) mode in which all toroidal
derivatives were set to zero, for comparison. The simu-
lations were run to long times: T ¼ 105τA such that
everything became time-independent. A typical stationary
self-organized state for the 3D C ¼ 144 case is shown in
Figs. 1 and 2. The right side of Fig. 2 shows contours of the
M3D-C1 poloidal velocity stream function interior to the
q ¼ 1.01 surface at 4 toroidal angles, and the line plot on
the left shows a comparison of the computed stream

function and the linear unstable eigenfunction as given
by Eq. (6) with U0 ¼ 3.12 × 102 m=s and r1 ¼ 0.3 m.
Consider now Eq. (4). In Fig. 3 we show the difference of

the mid-plane value of the toroidally averaged voltage drop
along the magnetic field that is present in the four 3D runs
from that in the corresponding 2D runs. This fundamentally
3D dynamo voltage is obtained by plotting the difference of
the toroidally averaged first term on the right side of Eq. (4)
for each of the four 3D runs from that in its corresponding
2D run:

B
2πR

Vdyn¼
1

2π

Z

2π

0

½−B ·∇Φ�3Ddφ− ½−B ·∇Φ�2D ð10Þ

Here, Vdyn is the axisymmetric ðn ¼ 0Þ voltage that is
present in the 3D runs that is not present in the 2D run and
is therefore due to the 3D dynamo effect driven by the
interchange instability. This voltage is exactly that needed
to reduce the central current density so as to keep q in the
center just above 1 and shear-free as can be seen in the q
profiles for the four runs in Fig. 3(b).

FIG. 2 (color). The right side shows contours of M3D-C1
velocity stream function U interior to the q ¼ 1.01 surface at four
toroidal angles. Curves on the left side compare midplane values
at φ ¼ 180° with linear eigenfunction found in Ref. [13] and
given by Eq. (6).

FIG. 3 (color). (a) Effective mid-plane toroidal voltage increase
in four different 3D stationary states over that in the equivalent
2D case. This voltage is due to dynamo action. (b) Final safety
factor profile in the four 3D runs (solid colors) and in the
equivalent 2D runs (dashed).
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The required dynamo voltages for each of the four runs
are different because of the differing temperature and hence
resistivity flattening for the four runs as shown in Fig. 4(a).
The runs with the lowest thermal conductivity and energy
source terms are most affected (flattened) by the inter-
change instability and so need the least dynamo voltage to
maintain q ¼ 1 in the center.
We next examine the three individual terms in B · ∇Φ

that correspond to the three magnetic field components in
Eq. (8) for the two extreme cases to help clarify the
mechanism that generates the dynamo voltage. As shown
in Fig. 4(b),the case with the smallest κ and source term,
C ¼ 18, develops the largest (1,1) perturbation in the
pressure, δp. From force balance, this perturbed pressure
will cause a (1,1) perturbation in the toroidal magnetic field
function F in Eq. (8), δF≃ −δpμ0R2=F. But this perturbed
field component does not contribute to the toroidal average
of B ·∇Φ in the central region because δF is out of phase
with ∂Φ=∂φ.
However, the poloidal component needed to keep the

spatially varying toroidal field divergence free, i.e., the
second term in Eq. (8), −∇⊥∂f=∂φ, is in phase with ∇⊥Φ
and thus does contribute to the dynamo voltage. The
remaining term, ∇ψ ×∇φ · ∇Φ, is able to adjust to main-
tain the total dynamo voltage as required since the two
perturbed fields ψ and Φ have the correct phase relation. To
illustrate, we plot in Fig. 5 each of the three components of

the axisymmetric ðn ¼ 0Þ component of B ·∇Φ (minus its
value in the companion 2D run) for the two extreme cases
C ¼ 18 and C ¼ 144. This clearly illustrates that there is a
self-organized “feedback” mechanism involving the (1,1)
component of both the poloidal flux function ψ and the
electrical potential Φ maintaining this stationary state.
Other theories for the sustainment of the hybrid dis-

charges have appeared involving ad hoc hyper-resistivity
[21], a rotating island driving current through drift effects
[22], and postulating a critical condition involving the
poloidal current density [23]. However, none of these have
been demonstrated to be self-consistent by way of a
comprehensive three-dimensional time-dependent simula-
tion as is done here.
Several experimental papers on hybrid discharges have

appeared alongwith analysis that confirms that 2D evolution
codes such as TRANSPor ASTRAwouldpredict that the central
safety factor with measured Te profiles should fall to 0.8 or
below whereas in reality it stays at 1.0. These sawtooth-free
discharges have been correlated with a 3=2 tearing mode
interacting with edge localized modes (ELMs) [1] and
alternatively with the presence of fishbone modes
[2,24,25]. However, a theory for how these MHD modes
maintain the current profile had previously been lacking. In
fact, it is stated in Ref. [1] “…we offer no conjecture as to
how the coupling between the ELM and m=n ¼ 3=2 NTM
can broaden the current profile density…” Here we are
suggesting that the nonlinear (1,1) dynamo mechanism is
responsible for maintaining the broad current profile, and
that the tearing modes and fishbones are possibly a conse-
quence of having a stationary (1,1) mode with an ultraflat
q profile. The experimental observation [26] that onDIII-D a
n > 1 tearing mode, usually a 3=2, is a necessary ingredient
of the hybrid discharge is not fully explained in this Letter,
but it may be a by-product of the (1,1) mode byway ofmode
coupling as seen in Fig. 1.
Similar MHD dynamos as discussed here have been

shown to play a role in laminar reversed field pinch (RFP)
regimes, although with a higher toroidal mode number n
[15,27]. It has also been recognized that dynamo-type
effects could occur in tokamaks (see Eq. (40) of Ref. [28]),
and helical core equilibrium states in tokamaks have been
found in 3D equilibrium calculations [29] but the (1,1)
nonlinear dynamo mechanism for sustaining these equi-
libria on a long (resistive) time scale as described in this
Letter has not previously been explicitly called out. Future
studies will be concerned with better identifying in which
parameter regimes this is expected to occur when diamag-
netic terms are present, what is the effect of sheared
rotation, what is the role of the (2,1), and possibly other
islands such as the (3,2) in supplying the dynamo voltage,
and in making closer comparison to experimental results,
particularly in NSTX, DIII-D and ASDEX-U.
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