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ABSTRACT

The ubiquitous sawtooth phenomena in tokamaks are so named because the central temperature rises slowly and falls rapidly, similar to the
blades of a saw. First discovered in 1974, it has so far eluded a theoretical explanation that is widely accepted and consistent with
experimental observations. We propose here a new theory for the sawtooth phenomena in auxiliary heated tokamaks, which is motivated by
our recent understanding of “magnetic flux pumping.” In this theory, the role of the ðm; nÞ ¼ ð1; 1Þ mode is to generate a dynamo voltage,
which keeps the central safety factor, q0, just above 1.0 with low central magnetic shear. When central heating is present, the temperature on
axis will increase until at some point, and the configuration abruptly becomes unstable to ideal MHD interchange modes with equal poloidal
and toroidal mode numbers, m ¼ n > 1. It is these higher order modes and the localized magnetic stochasticity they produce that cause the
sudden crash of the temperature profile, not magnetic reconnection. Long time 3D MHD simulations demonstrate these phenomena, which
appear to be consistent with many experimental observations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5140968

I. INTRODUCTION

Typical tokamak discharges undergo “sawtooth” cycles in which
the central temperature periodically peaks until a rapid onset instability
causes the temperature near the center to suddenly flatten, and then
this process repeats. This phenomenon was first observed in 19741 and
has since been regularly observed in all tokamaks on many diagnostics
including soft x-ray, temperature, and density measurements.

Forty-five years after its discovery, there is still no widely accepted
theory for the sawtooth phenomenon, which is consistent with experi-
mental observations. Such theories are needed to construct accurate
numerical models, which predict such things as transport near the
magnetic axis in whole-device-modeling codes,2 excitation of neoclas-
sical tearing modes,3 and central accumulation of heavy metal impuri-
ties in future tokamaks.4

The two leading existing theories, described in Sec. II, are
incomplete and are at odds with many experimental measurements. In
this paper, we describe a new theory for sawtooth oscillations that may
occur in some discharges. The mechanism for these oscillations was
determined by performing many long-time 3D extended magnetohy-
drodynamic (XMHD) simulations with the M3D-C1 code.5 The

advantage of a simulation over an experiment is that it can be diag-
nosed to arbitrary precision. The disadvantage, of course, is that the
equations being solved are an incomplete description of reality.
Therefore, we present this as a “new theory” and not an absolute proof
of the mechanism behind this phenomenon. We hope that this new
theory will be considered as an alternative possibility when interpret-
ing experimental results.

In Sec. II, we discuss the two leading existing theories for the saw-
tooth oscillation, namely, the Kadomtsev model and the Wesson
model, and why they are incomplete and/or inconsistent with many
experimental results. Section III describes the main features of the new
model being proposed here and how it relates to the Wesson model. In
Sec. IV, we present the results from a long-time M3D-C1 simulation in
which sawteeth are observed. Section V presents a simple model that
illustrates what the motional Stark effect (MSE) magnetic signature of
the new model of the sawtooth would look like. In Sec. VI, we review
some of the literature on experimental measurements of the central
safety factor before and after the sawtooth crash. This is the major dis-
criminator between different models. We also make recommendations
for future work. Finally, we present our conclusions in Sec. VII.
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II. LEADING THEORETICAL MODELS

There are two leading models of the sawtooth in tokamaks, which
we will call the Kadomtsev model and the Wesson model. The
Kadomtsev model involves magnetic reconnection, but the Wesson
model does not. We briefly describe these and some of their confirma-
tions and limitations.

A. The Kadomtsev model

The interpretation of sawtooth oscillations has been strongly
affected by a seminal paper by Kadomtsev in 1975.6 In his model, the
central safety factor, q0, continues to drop from value 1 due to current
peaking in a discharge with centrally peaked temperature and Spitzer-
like resistivity. At some point, when q0 is low enough, a ðm; nÞ ¼
ð1; 1Þ (where m and n are poloidal and toroidal mode numbers) resis-
tive reconnection event occurs, flattening the temperature and density
profiles interior to the q¼ 1 surface and returning q0 to 1. This process
has been shown to occur in 3D resistive MHD and 2-fluid MHD sim-
ulations5,7–12 for tokamaks with sufficiently low values of pressure or
b ¼ 2l0hpi=B2: b� 1 and/or sufficiently low values of the Lundquist
number S ¼ sR=sA < 105, where sR and sA are the resistive diffusion
time and Alfv�en transit time, respectively. However, these low-b, low
temperature simulations do not exhibit the fast, ideal MHD time scale,
temperature drops during the sawtooth cycle, which are observed
experimentally.13 We also note that some of these calculations
included unphysical current sources, and some are now thought to be
inadequately resolved in the toroidal direction.14

Influenced by the Kadomtsev model, the fast temperature drops
observed in many experiments have almost universally been assumed
to be caused by fast magnetic reconnection, and a number of numerical
studies have been published reporting to observe this fast reconnection
in the simulation of a sawtooth event caused either by anomalous elec-
tron viscosity,15 two-fluid effects,16–18 high-n ballooning modes,19

plasmoids,20 or plasma compressibility.21 However, a common feature
of these studies is that they only simulate a single sawtooth event, and
the initial conditions are such that the central safety factor is much less
than unity so that the configuration is strongly unstable from the
beginning of the simulation. An obvious question is, “How did the
plasma get into this unstable state, which was used to initialize the
calculation?”

In our resistive MHD simulations, we only observe Kadomtsev
reconnection events at low values of the Lundquist number, S, and at
low b, such as that existed in the ST tokamak in which sawtooth oscil-
lations were originally observed. It is well known that a collisional
tokamak plasma is unstable to a (1,1) resistive kink MHD instability
whenever q0 < 1. The growth rate of this instability scales as a frac-
tional power of the resistivity, c � g1=3 � S�1=3,22 whereas the rate
that q0 decreases due to resistive diffusion is much slower,
s�1R � g � S�1.23 Although in reality this mode will be modified by
FLR and other kinetic effects,24 the scaling csR � g�2=3 � S2=3 makes
it unlikely that q0 could ever be substantially below 1, at least in a self-
consistent resistive MHD simulation at high S.

B. The Wesson model

An alternative to the Kadomtsev model is the pressure driven
interchange model first put forth by Wesson25,26 in cylindrical geome-
try and soon afterward extended to toroidal geometry.27,28 Wesson

noted that if the central safety factor was above but very close to unity
in a region near the magnetic axis, j1� qj � 1, the configuration
could become unstable to an ideal MHD (1, 1) interchange instability
that could flatten the temperature profiles on an ideal MHD time scale
without substantially changing the magnetic field. The fact that the sta-
bility of this very low shear configuration is strongly affected by small
changes in the q-profile can potentially explain the sudden onset of the
crash. The Wesson model, which does not involve magnetic reconnec-
tion, did much to explain the fast crash times, but it was incomplete in
that it did not explain why the central q-profile remained close to 1
over an extended region in the presence of resistive diffusion, and it
did not explicitly state what caused the onset of the crash.

III. THE NEW MODEL

The new sawtooth model being proposed here is really an exten-
sion of the Wesson model and builds on his insight. We propose that
the q-profiles is very near, and slightly above, 1 in a region near the
magnetic axis of the tokamak, and that it does not appreciably change
during the sawtooth cycle. This is in agreement with the Wesson
model. However, in our model, the (1, 1) mode is not responsible for
the crash phase of the sawtooth. Rather, it nonlinearly saturates at a
low amplitude and produces a central loop voltage through the
dynamo effect that keeps q0 from falling below 1. The crash occurs
when other ideal MHD interchange modes (m, n) with m ¼ n > 1
become unstable causing a localized stochastic region to form near the
magnetic axis. We next discuss each of these phenomena separately.

A. The saturated (1, 1) mode

Recent papers by us11,29 reported on long time self-consistent
simulations where we demonstrated that a pressure driven (1, 1) inter-
change mode will be unstable in a tokamak with q0 just above 1 with
low central shear, much as predicted by Wesson and others. However,
we found that the mode saturates nonlinearly at a fairly small ampli-
tude. In those papers, we focused on how “magnetic flux pumping”
could explain sawtooth-free “hybrid” discharges30–34 and “long lived
modes.”35–37 The basic mechanism is that for a sufficiently low central
magnetic shear discharge with q0 � 1, any pressure gradient will cause
a ðn;mÞ ¼ ð1; 1Þ interchange instability to develop. This (1, 1) inter-
change mode nonlinearly produces a central (0, 0) dynamo loop volt-
age that acts to raise q0. If the pressure gradient exceeds a critical
value, the resulting dynamo loop voltage will be strong enough to keep
q0 � 1. Since, as shown in the Appendix, the growth rate for this (1, 1)
mode, which creates the dynamo voltage, is a maximum at q0 ¼ 1 and
decreases as q0 increases further,

27,28 this serves to regulate the process
and keeps q0 � 1.

B. The (n,n) modes with n > 1

However, what if sufficient central heating is applied to keep
peaking the temperature and density profiles despite the (1, 1) velocity
field from the interchange mode acting to flatten them? The profiles
will then continue to peak until some other instability sets in. We find
that there is a critical pressure gradient, or peaking, for which many
high-n modes with m¼ n abruptly become unstable, causing a sto-
chastic region to form near the magnetic axis, locally flattening the
profiles in the center. This process does not involve magnetic recon-
nection as the q-profile remains slightly above unity and nearly
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shear-free, and the modes are non-resonant. In this picture, the role of
the (1, 1) mode is to regulate the q-profile, and it is the (m, n) modes
with m ¼ n > 1, which are responsible for the crash phase. This is
consistent with ideal MHD analysis by Kirby38 of cylindrical equilibria
with a flat central q-profile with q0 just slightly above unity: the higher
n modes with n¼m can have higher growth rates than the (1, 1)
mode, although their instability region in (q0;bp1) space is smaller.

We have extended Kirby’s numerical results to toroidal geometry
and find qualitatively similar results, which were also found analyti-
cally.27,28 Figure 1 shows linear stability boundaries for the first eight
toroidal modes for a set of model toroidal equilibria with a circular
cross section, aspect ratio R=a ¼ 3:2, pressure, and safety factor
profiles given by

p ¼ p0 � ð1� ~wÞ2; (1)

q ¼ q0 if ~w � w1

q0 þ q1ð~w � w1Þ
2 if ~w > w1:

(
(2)

Here, ~w is the normalized poloidal flux, w1 ¼ 0:2; q1 ¼ 3:5322. The

horizontal axis in Fig. 1 is given by bp1 � l0

Ð w1

0 ½pðwÞ � p1�dV=Ð w1

0
1
2B

2
pdV , where p1 is the value of p at w1. Figure 2 gives the linear

growth rates vs q0 along the dotted line in Fig. 1 with bp1 ¼ 0:531.
Figure 3 shows the mode structure for a typical (4, 4) mode as an illus-
tration. It is seen that the mode is confined to the inner magnetic
shear-free region of the cross section.

The equilibria in the upper left corner of Fig. 1 are stable to all
ideal MHD modes. As q0 is lowered toward 1 and/or the pressure is
increased so that bp1 increases, we move down and/or to the right in
the diagram. When the black line is crossed, the (1, 1) mode sets in,
which causes the dynamo voltage described in the Appendix to
develop and stop the decrease in q0. If the pressure is further increased
and the green line is crossed, an ideal MHD (2, 2) mode will become
unstable. This will likely destabilize (3, 3), (4, 4), etc. modes through

nonlinear mode coupling, causing the center region to become
stochastic and hence the sawtooth crash.

IV. M3D-C1 SIMULATION RESULTS

Here, we report on a 3D MHD simulation of multiple sawteeth
occurring in a tokamak plasma with moderate b. We employ a mod-
ern, massively parallel, implicit 3D MHD code, which uses high-order
finite elements in all three dimensions.5 These features enable
high-resolution and long timescale calculations of MHD activity in a
tokamak. Unlike the papers cited in Sec. IIA, we do not start the

FIG. 1. Typical sawtooth cycle in q0;bp1 space. (a) Crash occurs when entering
the (n, n) unstable regime with n> 1. (b) Crash causes bp1 to drop, but q0 is largely
unchanged. q0 then begins to drop due to resistive diffusion as bp1 increases due
to external heating. (c) Crossing the (1, 1) stability boundary causes q0 to increase
due to dynamo voltage as bp1 continues to rise until the n> 1 stability boundary is
crossed.

FIG. 2. Growth rates for modes (n, n) for n ¼ 1� 8 along the dotted line in Fig. 1
with bp1 ¼ 0:531.

FIG. 3. Velocity stream function for the (4, 4) mode with ðq0; bpqÞ ¼ ð1:005; 0:531Þ
for the profiles given in Eqs. (1) and (2). Also shown is the q¼ 1.01 surface. Note
that the mode is confined to the shear-free region. The mode structure for the other
modes is very similar but with differing periodicity.
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configuration in an unstable state and watch its transition into a stable
state. Rather, we define particle and energy sources and transport
coefficients and run for 1000s of 10000s of Alfv�en times and look for a
repeating cycle.

A. Sawtoothing simulation

We show the results in Figs. 4–6 of a M3D-C1 simulation of a
canonical tokamak discharge with aspect ratio R=a ¼ 3:2, ellipticity
j ¼ 1:3, triangularity d ¼ 0:2, b � 2%, and edge safety factor
qa ¼ 4:3. Figure 4 shows that the simulation develops quasi-periodic
oscillations in which the central temperature slowly rises and abruptly
crashes, as is the case in sawtooth oscillations. Consistent with the new
model described above, in this simulation, q0 never falls below unity,
and the oscillations and fast crashes are not primarily due to the (1, 1)
mode. At the start of each temperature crash, a large number of local-
ized (m, n) modes withm ¼ n > 1 grow up and cause only the central
region to become stochastic.

Shown in Fig. 5(left) is the midplane temperature profile just
before and just after a crash at the times indicated by the vertical lines
in Fig. 4. The central electron temperature is seen to have decreased by
about 25% during the crash. Not shown is that the central density also
decreased but only slightly, presumably because it is originally less
peaked than the temperature due to the lack of central fueling and
because the density equation does not contain a large parallel diffusion
term. Shown on the right are the q-profiles at the same two times,
which are seen to stay essentially unchanged. Also shown in the two
graphs, in dashed lines, are the results we obtained in a 2D axisymmet-
ric calculation with the same transport coefficients and heating
sources. Of course, there is no (1, 1) mode activity and no crashes in
2D, and the central temperatures are higher and the q-profile is lower
because of this.

We show Poincar�e plots at the same two time slices in Fig. 6. It is
seen that before the crash, the magnetic surfaces are mostly good
everywhere, with some small islands at rational surfaces. Just after the
crash, most of the surfaces are still good, but those near the center
have been destroyed. Both the E�B convective velocities from the
many unstable modes and parallel transport in the stochastic region
contribute to the temperature flattening.

Figure 7 is a closeup of one of the “crash” periods, delineated
with dashed vertical lines in Fig. 4. The top frame shows the maximum
electron temperature, Te, as a function of time. The bottom curve
shows the kinetic energy in each of the first eight (8) toroidal harmon-
ics during this time period. It is seen that as multiple modes become
unstable and their kinetic energy peaks, the maximum Te begins to
decrease. For the event shown, the n¼ 4 mode reaches the largest
amplitude, and n¼ 2 persists, seemingly in a state of marginal stability.
This is also the case for other crashes in this sequence and may be a
consequence of the elongation.

The nonlinear calculations shown here were performed with the
M3D-C1 code.5,39 A time and space varying Spitzer resistivity profile
was used, g � T�3=2e , but the resistivity was uniformly enhanced so
that the central Lundquist number was S ¼ 106. It used a uniform

FIG. 4. Maximum electron temperature vs time in a long-time M3D-C1 simulation of
an auxiliary heated tokamak plasma. In normalized units, this simulation ran for
500,000 sA.

FIG. 5. (left) Temperatures along the midplane and (right) safety factor profile just before and just after sawtooth crash in Fig. 4. Also shown are the steady state results for a
2D (axisymmetric) calculation with the same heating and transport profiles.
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viscosity with a value 10 times the central resistivity (dimensionless
code units). The perpendicular thermal conductivity varied, increasing
radially from 18 (center) to 36 (edge) times the central resistivity. The
parallel thermal conductivity was 106 times greater than the perpen-
dicular one. Sufficient beam heating was applied to maintain b at
about 2:5%. The neutral beam model also drove a centrally peaked
sheared toroidal velocity, which never exceeded 10% of the Alfv�en
velocity. A loop voltage was applied at the boundary in a feedback
loop to keep the total toroidal current constant in time. The code uses
a 3D finite element mesh. This calculation had 32 Hermite cubic
finite elements in the toroidal direction and an unstructured mesh
in the poloidal plane with 4th order Bell elements40 of typical
linear size 6 cm. This was a single-fluid simulation in which the
temperature, density, and all components of the magnetic field
were advanced. The calculation ran for 5� 105sA requiring 	106

processor-hours of computer time using 2.4 GHz Xeon processors
with Infiniband interconnect.

Also shown in Fig. 1 is a schematic trajectory in the ðq0;bp1Þ
space of a sawtooth oscillation as calculated and depicted in Figs. 4–6.
At location (A), the instability threshold for several (m, n) modes with
m ¼ n > 1 is exceeded. As these modes grow, they locally increase the
pressure gradient and excite other (m, n) modes with m ¼ n > 1.
These many interchange modes destroy the surfaces in the center as
shown on the right in Fig. 6, collapsing the central pressure without
changing the q-profile as shown in Fig. 5. Once the central pressure is
flattened (B), these modes become stable and the magnetic surfaces re-
form. As central heating is applied, the central pressure will again
increase and q0 will initially decrease due to resistive diffusion. Once
the (1, 1) stability boundary is crossed (C), the associated central dynamo
voltage will act to raise q0 and stabilize its drop.When the increasing cen-
tral pressure causes the stability threshold for several (m, n) modes with
m ¼ n > 1 to be crossed again, the process will repeat.

Note that Fig. 1 is an idealized calculation of the linear stability
with model q-profile and p-profile, circular cross-sectional axisymmet-
ric plasmas. The actual nonlinear calculation depicted in Figs. 4–7 is
more complex because it is non-circular geometry and because each of
the unstable modes will deform the plasma column, affecting the linear
stability of the other modes. We believe that the trajectory shown is
qualitatively correct but not quantitatively. In addition, the stabilizing
effect of sheared toroidal rotation present in the simulations and
normally in the experiments was not taken into account.

B. The relation to stationary states

Both the stationary state simulations presented in Refs. 11 and 29
and the sawtooth simulation in the present paper had q0 slightly above
1 with low central shear. The primary differences were in the b values
and in the sheared rotation velocities. The stationary run in Ref. 29
had b ’ 2:0% and central rotation velocity Vð0Þ ’ 0:001VA, decreas-
ing to 0 at the edge. The sawtoothing run in this paper had slightly
higher b ’ 2:5% and central rotation velocity Vð0Þ ’ 0:01VA, about
ten times larger. Clearly, many more runs need to be made in the
future to determine the sensitivity to these and other parameters.

V. MSE MAGNETIC SIGNATURE

Here, we illustrate what the magnetic signature of such interchange
modes that flatten the pressure profile but leaves the q-profile unchanged
might look like according to a motional Stark effect (MSE) diagnostic.
We start with a toroidal equilibrium with a circular cross section, aspect
ratio R=a ¼ 3:2, minor radius a¼ 1 m, and a pressure profile and a
q-profile given by Eqs. (1) and (2). Here, ~w is the normalized poloidal
magnetic flux, l0p0 ¼ 0:02 (SI units), w1 ¼ 0:2; q0 ¼ 1:008;
q1 ¼ 3:5322.With a vacuum toroidal field at R¼ 3.2 m of 1T, this equi-
librium has b ¼ 2hpi=hB2i ¼ 0:9675%. We designate this equilibrium
as “before.” We postulate that the final state is equilibrium with the same
q-profile but with a pressure profile now given by

p ¼ p1 if ~w � w1

p0 � ð1� ~wÞ2 if ~w > w2:

(
(3)

Here, w2 ¼ 0:3. In the interval w1 <
~w < w2, a cubic spline fit is used,

which makes both p and dp=d~w continuous. The value p1 ¼ 0:0155
makes b for this “after” equilibrium the same as the “before”

FIG. 6. Poincar�e plots for the two times referred to in Fig. 5 for the calculation
shown in Fig. 4.

FIG. 7. Top: Close-up of maximum electron temperature (Max Te) in the region
between dotted lines in Fig. 4. Bottom: Kinetic energy in the first 8 toroidal harmon-
ics for the same time period. Note that the Max Te begins to decrease once the
kinetic energy in several toroidal harmonics has peaked, creating a central stochas-
tic region as shown in the right in Fig. 6.
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equilibrium. These profiles are illustrated in Fig. 8. These high-
accuracy equilibria were computed with the QSOLVER41 inverse equi-
librium code and verified with the M3D-C1 equilibrium option.

This second equilibrium is accessible since it has the same q-pro-
file and stored energy as the first, although the pressure (and entropy)
profiles have changed as a result of the interchange instability. This
change led to a substantial change in the toroidal current profile as
shown in Fig. 9.

Figure 10 shows a closeup of the flux surfaces in the central por-
tion of the two equilibria. The magnetic axis has shifted from
R¼ 3.369 4 m to R¼ 3.353 8 m. Also shown are vertical lines at 2 cm
intervals in R, along which the ratio tan c ¼ BZ=BT is evaluated and
plotted in Fig. 11. It is evident that despite the fact that the q-profile
and b values are identical for the two equilibria, the magnetic field at
given R, Z locations has changed substantially near the center of the
discharge.

A commonly used formula for the safety factor at the magnetic
axis, RMA, is given by42,43

q0 ¼
j

RMA

@

@R
tan c

� ��1
R¼RMA

: (4)

We compute the slopes of the 2 lines in Fig. 12 as 0.302 (before) and
0.306 (after). Using the boundary ellipticity of j ¼ 1 and evaluating
Eq. (4) at the magnetic axis locations give q0 ¼ 0:983 (before) and
q0 ¼ 0:974 (after). Comparing these with the true value, q0 ¼ 1:008,
from the high-accuracy equilibrium code, we see that the before value
is accurate to 2.4%, and the after value is off by about 3.3%.

In summary, in measuring the change (or lack of change) in q0
during a sawtooth event with q0 � 1, it is clear from Fig. 11 that one

cannot rely on the change in tan c ¼ BZ=BT at a single radial position,
which can be substantial. However, even with the exact value at multi-
ple locations near the axis, the measurement uncertainty can easily be
2%� 3% or greater. This is in addition to the other known sources of
error such as compensating for the radial electric field and subtraction

FIG. 8. (Left) Safety-factor (q) and (right) pressure (l0p) profiles used in the two equilibria.

FIG. 9. Midplane current profiles, l0RJ/, for the two equilibria shown in Fig. 4.
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of the background. The incorporation of an equilibrium reconstruc-
tion code such as EFIT44 and/or a current diffusion calculation
between sawteeth based on neo-classical resistivity45 could help us to
reduce this error, but they are subject to their own set of assumptions,
which would need to be verified.

VI. DISCUSSION

People have been performing computational studies of sawteeth
for over 40 years.7 Why has not this effect been observed before?
Likely essential features for the computational model include (1) fully
3D MHD with many helical modes present, (2) full MHD equations
(not reduced MHD), (3) toroidal geometry, (4) implicit time advance
for long time simulations covering multiple sawtooth periods, and (5)

high resolution, especially in the toroidal directions.14 These features
have only fairly recently been computationally feasible.

A. Experimental results

The experimental measurement of the q-profile near the mag-
netic axis of a tokamak by the motional Stark effect (MSE) and other
diagnostics is notoriously difficult. The value of q0 is proportional to
the flux surface average of the ratio of the toroidal magnetic field to
the poloidal magnetic field in the limit as the latter vanishes at the axis.
The intrinsic electric field due to ambipolar diffusion in the core must
be taken into account, as must ellipticity in the core. Many teams have
published the results of measuring the q-profile just before and after a
sawtooth event with apparently conflicting results.

Early results byWest46 measured q0 ¼ 0:76 0:05, which increases
as the edge q increases on TEXT using the laser-induced fluorescence of
an injected neutral Li beam. Soltwisch47 measured an 8% change from
0.77 on TEXTOR (Ohmic with FIR). On PBX-M, q0 was measured to
be 0:636:03 (MSE), 0.76 0.2 (x-ray pinhole), and 0.86 0.14 (fast ion
diagnostic).42 These early results of q0 staying well below 1 in smaller
tokamaks were also confirmed on JET and TFTR. Wolf48 applied both
FIR and MSE to JET and found that q0 is in the range of 0:7� 0:85
throughout the sawtooth cycle. Yamada et al.49 found that q0 changed
from 0.7 to 0.8 on TFTR. These measurements seemingly contradicted
all prevailing theories, including the one presented here.

However, early measurements by Goldston analyzing fast ion
orbits found q0 to be clamped at 1 in ATC.50 Wesson26 quotes
McCormick, on his experience on using Zeeman splitting of a lithium
beam on ASDEX, as saying “it is found that when q0 is lowered to
unity, it shows a resistance to going below unity.” The TEXT measure-
ment referenced above was apparently contradicted by Wroblewski
et al.51 and Huang et al.52 who quote a value very near unity for several
discharges with differing edge-q, inferring a low shear central region,
especially at low edge-q. Weisen et al.53 used resonant Alfv�en waves to
deduce that TCA had a time-averaged q-profile with a flat central

FIG. 10. Close-up of the change in central flux surfaces before and after the insta-
bility. The six vertical lines are at R¼ 3.31 m, 3.33 m, 3.35 m, 3.37 m, 3.39 m, and
3.41 m. Red curves denote “before equilibrium,” and black curves denote “after.”

FIG. 11. Value of tan c ¼ BZ=BT along the six vertical lines shown in Fig. 10 for
the two equilibria. Solid curves denote “before equilibrium,” and dashed curves
denote “after equilibrium.”

FIG. 12. Midplane values of the field ratio tan c ¼ BZ=BT as a function of the major
radius for the “before” and “after” equilibrium.
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region with q0 close to unity. The JET result quoted above was seem-
ingly at odds with Gill et al.,54 analyzing x-ray emission when an
injected pellet crosses the q¼ 1 surface, and found that the magnetic
shear interior to the q¼ 1 surface was very low, making it difficult to
reconcile with Ref. 48 Wroblewski55 reported that q0 in DIII-D is close
to unity and the increase during the sawtooth crash is of order of the
measurement error, 0.05. The analysis of BAE modes during a saw-
tooth crash on TORE SUPRA56 implies that q0 is normally slightly
above unity before the sawtooth crash, typically�1:006, and decreases
to unity after the crash. A recent study on KSTAR57 supported by very
high accuracy MSE measurements and supplemental MHD analysis
concluded that q0 was �1 in sawtoothing discharges with a relative
accuracy of 60.03 and with compelling evidence that it is slightly
above 1 after the crash. These measurements of q0 � 1 before and after
the crash are consistent with the model presented here.

There is also experimental soft x-ray evidence of a non-resonant
(2, 2) mode appearing just before a sawtooth crash when a (1, 1) mode
is also present in EAST.58 In HT-7,59 the tomography of high-
resolution soft-x-ray emission led to the statement “that a purely fast
reconnection of the m¼ 1 magnetic island is not responsible for the
crash,” and it emphasizes the importance of higher m modes, espe-
cially (2, 2). The analysis of SXR signals on ASDEX-U60 led to the con-
clusion that “…the sawtooth oscillations cannot be fully described by
a single (1, 1) helicity. One has to include at least the second (2, 2)
component before and after the crash. The small third component
(3, 3) is also seen before the crash.” These measurements of higher
mode numbers during the crash appear to be consistent with the
model presented here. Also, the present model has many features in
common with the stochastic model of the sawtooth crash put forward
by the ASDEX team.61

B. Future work

The calculations presented here and in our previous work11,29

were performed with a resistive MHD fluid model of the plasma,5

which should be adequate to describe resistive diffusion and resistive
and ideal MHD stability phenomena. The nonlinear calculations
were also restricted to a configuration with a particular cross section
shape as described in Sec. IV. It remains to be seen if the model
presented here can be extended to describe such things as “monster
sawteeth”62,63 and the control of the sawtooth period by RF64 and neu-
tral beams.64,65 Also, we have yet to demonstrate the dependence of
the sawtooth period on the plasma shape66 and other parameters.
These studies and more detailed experimental validation, including
the presence or absence of precursor and/or postcursor oscillations,
will be the subject of future work.

VII. CONCLUSIONS

In summary, our simulations indicate that sawtooth oscillations
in tokamaks could be explained as follows: For sufficiently low-b and
low-S discharges, the Kadomtsev model will apply. The temperature
profile and current will peak, causing q0 to fall below 1. A resistive
(1, 1) mode will grow, flattening the temperature and density profiles
interior to the q¼ 1 surface. However, above a critical value of b and
at sufficiently high S, a stationary (1, 1) interchange mode will
grow and saturate, producing a dynamo voltage that keeps the central
q-profile very close to 1 and flat due to a self-organizing feedback
mechanism as described previously by us.11,29 The saturated

interchange instability will also cause central flows that act to decrease
the central pressure gradient through convection.

However, if the central heating is strong enough, the pressure in
the low shear central region will continue to increase until higher-n ideal
modes, primarily with m¼ n, suddenly become unstable causing the
central region to become turbulent and stochastic and the temperature
and density to flatten. In this higher-b centrally peaked heating regime,
the role of the (1, 1) mode is to maintain the central q-profile very near 1
and the central region nearly shear-free. It is the higher (m, n) ideal
modes with m ¼ n > 1 that cause the fast crash. We note here that
since the temperature rise phase of the sawtooth period is due to heating
and transport but the temperature crash phase is due to ideal MHD
instabilities and parallel transport in stochastic fields, we expect the time
separation between these two events to be even wider (and the crashes to
be faster) as S increases, and more realistic values of jjj are used.

The central features of our model are that in moderate-to-high b
tokamaks, (1) the q-profile remains just above unity with low central
shear during the sawtooth and (2) higher-n modes are present during
the crash. These are consistent with many experimental measure-
ments, but they are in apparent conflict with others. More work clearly
needs to be done to resolve these discrepancies.
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APPENDIX: ORIGIN OF THE DYNAMO VOLTAGE

The magnetic field in M3D-C1 is represented in the form

B ¼ rw�ru�r?@f =@uþ Fru; (A1)

where F � F0 þr2
?f , with F0 a constant. The poloidal velocity is

represented as V ¼ R2rU �ruþ R�2r?v, a form of a Hodge
decomposition. Here, r? indicates the gradient perpendicular to
the toroidal direction. In all the results presented here, the kinetic
energy in the v field is less than 1% of the energy in the U field
(which does not compress the strong toroidal magnetic field) and
can thus be ignored in the analysis.

To the lowest order, the equation to advance the poloidal flux
is given by67

@w
@t
¼ R2 U ;w½ � � @U

@u
þ gD
w: (A2)

Here, ðR;u;ZÞ are cylindrical coordinates, U is the scalar electrical
potential, and the Poisson bracket is defined in the normal way:
½a; b� ¼ ra�rb � ru.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 032509 (2020); doi: 10.1063/1.5140968 27, 032509-8

Published under license by AIP Publishing

https://scitation.org/journal/php


As in Ref. 29 we note that a good fit to the (1, 1) component of
the stream function is given by the unstable linear eigenfunction
found in Ref. 27. For r < r1,

U ¼ U0r 1� r
r1

� �2
" #

sin h� uð Þ: (A3)

Here, r is the minor radius, r ¼ jR� R0j, r1 is the minor radius
where the shear becomes non-zero, and h is such that ðr; hÞ form a
local polar coordinate system. Using the fact that to high order,
rU ¼ �FrU , we can calculate the perturbed _w field to the first
two orders. To first order, _w just has a (1, 1) component. Inserting
Eq. (A3) into Eq. (A2) and just taking the (1, 1) component give,
for r < r1,

_w
ð1Þ ¼ 1

2
R2U0Ju0ð1� q0Þr 1� r

r1

� �2
" #

cos h� uð Þ: (A4)

Here, we defined the toroidal current density on axis as Ju0 and
used the approximate identity q0 ¼ 2F=ðR2Ju0Þ. Inserting
Eq. (A4) into Eq. (A2) gives for the second order contribution,
for r < r1,

_w
ð2Þ ¼ 1

2
R2U2

0 Ju0ðq0 � 1Þ 1� 3
r
r1

� �2
" #

1� r
r1

� �2
" #

� gRJu0:

(A5)

Note that this second order (nonlinear) term is axisymmetric. It has
the units of a voltage. Near the magnetic axis (r¼ 0), the first term
is positive for q0 > 1, while the second term, with the resistivity, is
negative. The resistive term normally acts to lower the q0 value,
while the first term coming from the interchange instability acts to
raise it. Since for a fixed pressure profile, the interchange growth
rate and hence the magnitude of U0 decrease quadratically with
ðq0 � 1Þ (see Fig. 2 of Ref. 27) a natural feedback mechanism is in
place to keep q0 slightly above 1.
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