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Abstract.  A new approach for solving the 3D MHD equations in a strongly magnetized toroidal 
plasma is presented which uses high-order 2D finite elements with C1 continuity.   The vector 
fields use a physics-based decomposition.  An efficient implicit time advance separates the 
velocity and field advance.  ITAPS (SCOREC) adaptivity software and TOPS solvers are used. 

1. Introduction 
The two-fluid MHD equations for a magnetized fusion-grade plasma are a high-order system of 8 
scalar variables that are characterized by a wide range of space and timescales and by extreme 
anisotropy.  The M3D code [1] has proven itself to be an invaluable tool for the simulation and 
understanding of global nonlinear phenomena in magnetic fusion confinement devices.  However, 
the structure of M3D is not optimal for computing in regimes where two-fluid (2F) effects 
dominate, or for times that are very long compared to the Alfven transit time.  We have built upon 
many of the favorable features of the M3D approach to construct the M3D-C1 code [2], which is 
based on high-order, compact finite elements with C1 continuity on an unstructured adaptive 
triangle-based grid.  The efficient split-implicit time advance is closely related to the ideal MHD 
energy principle, and allows time steps several orders of magnitude in excess of the Courant 
condition based on the Alfven or whistler waves.  Previous papers have described this technique 
applied to the 2F equations in 2D slab geometry. [2,3]  In this paper, we discuss a subset of the 
full method as it is applied to the linearized single fluid MHD equations in 3D toroidal geometry. 

2. Numerical method and definitions 
We restrict consideration here to solutions linearized about an initial equilibrium with zero 
velocity, V0 = 0.  The full 2F nonlinear solution, to be presented elsewhere, builds on the method 
presented here.  The split linearized time advance [4,5] can be written as follows.  First, 
introducing the implicit parameter (0 1) , the velocity is advanced to the new time level 
(n+1) using the magnetic field at the half-time level (n+1/2): 

1/2
2 2 1 2 2

0

1( ) ( ) ( )
n

n nt L t L t pV V B B           (1) 

Here is the plasma density, p is the pressure, and is the linear ideal MHD operator [6]: L

0 0

1 1L pV V B B B V B V p V     (2) 

Next, the pressures, density, and magnetic field are advanced from time level (n+1/2) to (n+3/2) 
using the velocity at time (n+1).  Defining 1m , we have: 
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This is unconditionally stable for all t  for implicit parameter 1 / 2 .  We use a physics-
motivated decomposition of the vector fields in toroidal geometry. Using a cylindrical coordinate 
system ( , , )R Z with 1 / R , we define the 2D gradient and 2D divergence operators 

as ,ˆ ˆa ZR Za a R 1 ˆ ( ˆ )( )R ZR R R ZA A A .  Subscripts denote partial differentiation 
with respect to R and Z.  The velocity field is represented in terms of the three scalar variables 
( , ,U )  as follows: 2 2R U R R 2V

( , )f
. The magnetic vector potential is 

given in terms of the two scalar variables  and the constant F0 (proportional to the current 
in the toroidal field magnets) as: 2

0 ln ˆR fA
2R A

F RZ
2R

.    Note that the gauge 
condition implied by this form is:   = 0.    The magnetic field and current density are 
calculated in terms of the vector potential variables as: f FB A
and * 2 *F R

f 0*F F f F f2 2R
J B

2
0 RF F

.  Here we have defined auxiliary variables 

, , and the operator: * 2 2R R
Primes denote differentiation with respect to the angle .  Note that B and J are manifestly 
divergence free. 

3. The scalar equations 
Each of the scalar fields is divided into a 2D equilibrium part and a 3D perturbed part. Thus, for 
example: 0 1, , , , , , ,R Z t R Z R Z t

( , )i

.  In the work described here, the velocity 
variables do not have an equilibrium part.  All the equilibrium and perturbed variables are 
expanded in 2D basis functions for the Q18 triangular finite element with C1 continuity [7], which 
we denote R Z .  To get scalar forms for the momentum equation, we take the weak form of 
the three following projections of (1) and perform integration by parts as indicated in (5): 

2 2 2 2

2 2 2 2

2 2 2 2

(1) (1)

(1) (1)

(1) (1)

i i

i i

i i

d R R d R R

d R R d R R

d R R d R R

                                  (5) 

These projections, combined with the form of the velocity field described above, lead to energy 
conserving subsets of the full equations [8,9], and a partial decoupling of the part of the velocity 
field that does not compress the strong toroidal field. [10] The resulting scalar integrands can be 
written compactly in terms of the inner and Poisson brackets. For any two scalar variables a and b,
we define: , R R Za b a b a b a bZ and 1, Z R R Za b a b R a b a b .  The 
partial perturbed energies ( , )ijW a b [6] are defined in the Appendix.  Thus, for (1) we have: 
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Similarly, taking appropriate projections of (4) gives the time advance integrands for the 
magnetic field variables: 
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4. Linearization and solution: 
In the benchmarking results presented here, we eliminated the  dependence by taking all the 
linearized variables to be complex and varying as exp[i n ], where n is the toroidal mode number.  
This allows comparison with ideal MHD stability codes such as PEST [11] in the appropriate 
limit.  We form a single matrix to solve for the velocity variables (6abc), and then subsequently 
form another to solve for the magnetic variables (7ab).  For the linearized solution, we use 
SuperLU_dist [12] to factor the matrices into LU and then perform the backsolves each timestep. 

5. Interfaces to support unstructured mesh 
ITAPS and SCOREC have coordinated with CEMM and PPPL to support the use of ITAPS mesh 
adaptivity technologies in M3D-C1. Four components have been added for applying parallel 
scalable adaptive simulations as part of these efforts. They are:  (1) Input mesh and geometry 
information using FMDB [13], a flexible distributed mesh database developed in SCOREC.   (2) 
Localization of the ordering of degree-of-freedom (DOFs), distributed vector and matrix objects 
and operations so as to allow M3D-C1 to perform all operations needed by the matrix solvers 
locally, thus hiding the complexity of parallel operations.  (3) Access to the distributed matrix 
storage data structure to assemble matrices for PETSc solvers to effectively apply the PETSc 
scalability and preconditioning technologies developed by TOPS.  (4) Anisotropic size-driven 
mesh adaptation including solution field transfer during local mesh modifications. 

6. Adaptive Meshing 
The M3D-C1 simulations often exhibit high gradients in localized areas of the domain.  Using 
uniform meshes with small mesh size over the entire domain will over-refine the regions beyond 
the critical local domains with high gradients which can lead to infeasible simulations.  Size-
driven mesh adaptation [14] based on error indicators is an effective means to resolve this issue 
by structuring the mesh domains with elements concentrated in the domains needed to improve 
computational efficiency and accuracy. ITAPS and SCOREC have successfully introduced the 
size-driven mesh adaptation procedure in M3D-C1 to account for anisotropic solution 
characteristics. Interpolation-based error indicators [15] have been employed to compute the 
mesh size field needed by the mesh adaptation. Anisotropic adaptivity is quite effective in further 
reducing the number of elements needed for a given level of solution accuracy where the solution 
gradients are stronger in specific directions as is commonly the case in contained plasma fields. 

7. Results of a linear stability application 
As part of our verification process, we are computing linear unstable eigenmodes of a fairly 
simple toroidal configuration that can be evaluated by other codes in the appropriate limits.  
Using the parameterization described in [7], we defined a near circular cross section toroidal 
plasma of minor radius 1.0 and major radius 3.0, centered inside a conducting vacuum vessel of 
dimension 3x3.  Defining an equilibrium toroidal field RBT = 2.25, we calculated an equilibrium 
with plasma current 0IP = 0.7, central safety factor q0=1, central pressure and derivative p0=.030,
p1 = -0.5.  The resistivity varied as p-3/2, going from 2.5 10-6 in the center to 0.415 at the edge and 
in the region outside the plasma.  We show the perturbed values of  in Figure 1.  These had 
corresponding growth rates 0.078, 0.1060, and 0.1180, obtained by solving the time-dependent 
equations for 100 cycles with a time step 2.0t .  The mesh used is shown in Figure 1d, 
superimposed upon colors showing the resistivity contours.  It is seen to be fine in the plasma 
region, continuously varying to coarse in the ‘vacuum’ region.  The growth rates obtained were 
the same to 3 digits when a uniform mesh was used with the same fineness as used here only in 
the plasma region, but this required 14,400 vertices as opposed to the 6,245 vertices used here.  
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8. Summary 
The M3D-C1 code has been extended to 3D in toroidal geometry.  This paper describes a subset 
of the full code that is single fluid MHD linearized about an equilibrium without flow.  Future 
publications will build on the structure and algorithm described here to extend it to a full 
nonlinear 3D solution of the 2F MHD equations.  The implicit time advance splits into two parts: 
the velocity advance described by (6abc), and the field advance described by (7ab).  The 
magnetic field is manifestly divergence free.  Energy conserving subsets of the full equations 
(reduced MHD) are obtained by solving only (6a) and (7a), or only (6ab) and (7ab).  The 
SCOREC adaptivity software is shown to greatly increase the efficiency of the calculation. 

Figure 1:  The M3D-C1 code is being benchmarked by computing unstable modes in a circular cross 
section toroidal plasma.  Shown are eigenmodes of  for modes with toroidal mode # (a) n=1, (b) n=2, 
and (c) n=3.  In (d) is the unstructured mesh superimposed on the equilibrium resistivity contours. 
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Appendix
The partial energy terms, ( , )kj k jW a b  are obtained by taking the integral of the inner product of 
the kth velocity component with the operator L operating on the jth  velocity component.   For 
example: 2R U L 2

13 ( , )W U R .  In implementing the Galerkin method, each 

finite element basis function is used in place of the first variable and the second variable is 
expanded in basis functions.  Integration by parts are done so that no more than two derivatives 
appear on any scalar, consistent with restrictions on C1 elements.  The 9 integrands are as follows: 
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