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Abstract

We describe a new method for solving the time-dependent two-fluid magnetohydrodynamic (2F-MHD) equations in
two dimensions that has significant advantages over other methods. The stream-function/potential representation of the
velocity and magnetic field vectors, while fully general, allows accurate description of nearly incompressible fluid motions
and manifestly satisfies the divergence condition on the magnetic field. Through analytic manipulation, the split semi-
implicit method breaks the full matrix time advance into four sequential time advances, each involving smaller matrices.
The use of a high-order triangular element with continuous first derivatives (C1 continuity) allows the Galerkin method to
be applied without introduction of new auxiliary variables (such as the vorticity or the current density). These features,
along with the manifestly compact nature of the fully node-based C1 finite elements, lead to minimum size matrices for
an unconditionally stable method with order of accuracy h4. The resulting matrices are compatible with direct factorization
using SuperLU_dist. We demonstrate the accuracy of the method by presenting examples of two-fluid linear wave prop-
agation, two-fluid linear eigenmodes of a tilting cylinder, and of a challenging nonlinear problem in two-fluid magnetic
reconnection.
� 2007 Elsevier Inc. All rights reserved.
1. Introduction

It is well known that the ‘‘two-fluid’’ magnetohydrodynamic (2F-MHD) equations for a magnetized plasma
present many numerical challenges. Even in the simpler ideal MHD model, a symmetric hyperbolic system
which is a subset of the 2F-MHD equations, there are three distinct wave types with a wide separation of prop-
agation speeds and with complex polarizations when applied to magnetized plasma conditions typical of
fusion plasmas. When discretized on a finite difference or finite element mesh, these alone lead to a range
of timescales and accuracy requirements that are a challenge to address with a single simulation [1].
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.07.003

* Corresponding author. Tel.: +1 609 243 2635; fax: +1 609 243 2662.
E-mail address: jardin@pppl.gov (S.C. Jardin).

mailto:jardin@pppl.gov


S.C. Jardin et al. / Journal of Computational Physics 226 (2007) 2146–2174 2147
The full 2F-MHD equations compound this difficulty by introducing new terms which add dissipative phe-
nomena and wave dispersion into the system [2]. Fully explicit solution techniques for 2F-MHD are generally
not practical for magnetic fusion applications except for simulating the fastest timescale phenomena, which is
of limited interest. To address the slower timescales, an implicit method is required, and the multiple-time-
scales and differing polarizations then manifest themselves as one or more poorly conditioned matrix equa-
tions that need to be solved to advance the solution from one timestep to the next. These matrices are
either calculated analytically [3–5] (as in this paper) or are formed numerically as part of a nonlinear Newton
method [6–8].

It has been shown that in two dimensions (2D), a particular 18 degree-of-freedom polynomial triangular
finite element with C1 continuity, sometimes called the ‘‘reduced quintic’’ or Q18, offers some unique advan-
tages over other representations [9–11]. This element represents each scalar field in each triangular element as a
quintic polynomial, which would normally require 21 coefficients. Of these, 18 are determined by the data (six
values at each node: the value of the function and its first and second derivatives) and the other three by the
requirement that the normal derivative along each edge be a cubic polynomial in the edge length, from which
the C1 property follows. The resulting representation contains a complete quartic polynomial, and thus has
leading error of order h5. It is also fully bivariate, and thus free of the directional bias that a tensor product
representation would introduce.

The Q18 element has the fewest number of degrees-of-freedom (DOF) compared to other finite elements
representations with the same asymptotic error, and thus leads to implicit matrix equations of minimum rank
[3]. This follows from the fact that all the DOF are defined at the nodes, and are thus shared by all the sur-
rounding triangular elements. Also, the C1 continuity property allows these elements to be applied directly to
equations with spatial derivatives of up to fourth-order by using the Galerkin method and shifting two of the
derivatives to the trial function by integration by parts. This makes feasible the numerical solution of the 2F-
MHD equations in their stream function/potential form, which has many advantages over solving the prim-
itive form of the equations, especially when a strong background magnetic field is present.

The work presented here is a continuation and generalization of Appendix D of Ref. [3]. In that work, a
method was presented for the 2-field reduced MHD equations in 2D slab geometry. This has subsequently
been generalized to the 4-field Fitzpatrick-Porcelli equations [4]. In the present work, we generalize these equa-
tions to the ‘‘complete’’ 8-field two-fluid model, but continue to restrict the geometry to 2D slab geometry.
One feature of this formulation is that the previous 2-field and four-field models will be seen to be non-trivial
subsets of the more complete model presented here. This allows direct comparison with and evaluation of the
assumptions made in developing the reduced models.
2. The equations

Consider the set of 2F-MHD equations [20] for the evolution of the plasma number density, the mass-flow
velocity, the ion pressure, the electron pressure and the magnetic field, and the definitions of the electric field
and the electrical current density (in SI units):
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Here, the random heat flux vectors for the ions and electrons are denoted~qi and~qe, the equipartition term is
denoted QD � 3meðp � 2peÞ=ðMiseÞ, and we have introduced the ratio of specific heats, c, which has the clas-
sical value of c = 5/3. The electron–ion momentum transfer term is taken here to have the simplified form pro-
portional to the plasma current; ~R ¼ gne~J although future studies will use the more correct form
~R ¼ gne ~J þ 3e

5T e
~qe

� �
. A gravitational force ~g � �gŷ has been included, where g is a constant. The last two

equations imply that the total fluid pressure, denoted by p � pe þ pi, obeys the equation:
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These equations have the energy integral:
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This implies conservation of energy if the gravitational potential is absent and the flux terms on the right van-
ish everywhere on the computational boundary.

The ion viscous stress term is taken to have the form:
P
$

i ¼ �l½r~V þr~V y� � 2ðlC � lÞ r � ~V
� �

I
$
þP
$

GV
i

r �P
$

i ¼ �lr2~V � ð2lC � lÞrðr � ~V Þ þ r �P
$

GV
i

ð2:4Þ
Here l and lC are the incompressible and compressible coefficients of viscosity that satisfy the positivity con-
straints l > 0 and lC > (2/3)l [12]. In the present work, we are not including the gyroviscous contribution (the
rightmost term) in Eq. (2.4) in either the formulation or the examples. The inclusion of this term is discussed in
[13].

We take the electron stress tensor to have the form of a hyper-resistivity, with coefficient k:
P
$

e ¼ kgner~J ð2:5Þ
The heat flux terms are expressed in terms of the isotropic and parallel heat flux coefficients je; j; je
k; and jk .

They have the following form:
~q ¼ �jrT � jkrkT
~qe ¼ �jerT e � je

krkT e
ð2:6Þ
The incorporation of the parallel heat flux terms is discussed in [3] and for that reason will not be repeated in
the formulation presented here. The temperatures are defined in terms of the pressures and densities as
T e ¼
pe

kBn
; T ¼ p

kBn
; ð2:7Þ
In the remainder of the paper we adopt the normalized form of the equations. The normalization amounts to
adopting a standard density and magnetic field strength n0 and B0. All lengths, velocities, and pressures are
then scaled to the ion skin depth, the Alfven velocity, and the magnetic pressure in the usual way:
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Other scaled quantities can be derived from these using dimensional relations. For example the time is scaled
to t0 ¼ l0=V 0, etc.

3. The numerical representation

In 2D (x, y plane), without loss of generality, we represent the fluid velocity and magnetic field in terms of
the five scalar variables Uðx; y; tÞ; vðx; y; tÞ; V zðx; y; tÞ;wðx; y; tÞ; Iðx; y; tÞ as follows:
~V ¼ rU � ẑþrvþ V zẑ;

~B ¼ rw� ẑþ I ẑ
ð3:1Þ
This representation, which is the Cartesian limit of that used in the M3D code [14], effectively separates incom-
pressible and compressible motions in order to minimize spectral pollution [1]. Also, the form for the magnetic
field is intrinsically divergence-free and involves only two scalar variables.

Each of the scalar variables is expanded in a set of polynomial triangular finite elements. At each node,
there are 6 degrees-of-freedom (DOF) for each scalar, corresponding to the value of the function and its 2 first
and 3 second derivatives at that node. Basis functions mi (x, y) are chosen that are piecewise quintic with the
property that the function and its first derivative are continuous across element boundaries. Each basis func-
tion has the value of unity for one of the six DOF for that function at one node, with the property that the
basis function and its two first and three second derivatives vanish at all the surrounding nodes as described in
[3].

Within each triangular finite element, the solution is expressed as the sum of the product of the 18 time-
independent spatial basis functions for that element, mj (x, y), (six from each of the three nodes) times the
time-dependent amplitudes. Thus, for example, at time t ¼ tn, the velocity stream function in a particular tri-
angular element is represented as
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X18
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In a similar way, the other seven scalar fields v; V z;w; I ; n; p; pe at time tn are represented by the amplitudes:
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ej. To derive the discrete form of the velocity advance equations, we first operate on

the momentum equation (2.1b) with the three annihilation operators
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These have the effect of removing the compressible motion from the first equation, and the incompressible mo-
tion from the third. To form the weak form of the equations as required by the Galerkin method, each equa-
tion is then multiplied by each basis function mi (x, y) (six for each node) and then integrated over the domain.
Integration by parts converts the three annihilation operators in (3.3) to the vector projections:
ẑ � rmi�
miẑ�
� rmi�

ð3:30Þ
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The integration by parts that was performed here and in the following introduces boundary terms. Each of
these boundary terms will contain mi and/or its normal derivative. We use the property of the basis functions,
described previously, that only one basis function for each scalar variable is non-zero at a given boundary
point, and only one other has a non-zero normal derivative. We apply homogeneous Dirichlet and/or Neu-
mann boundary conditions by replacing the row in the matrix that corresponds to multiplying by these basis
functions by a row with all zeros except a one on the diagonal, and by a zero on the right side of the equals
sign. This effectively removes these basis functions from the representation at the boundary, in effect creating
an essential boundary condition there, and thus the corresponding boundary term vanishes.

Straightforward manipulation, neglecting terms involving spatial derivatives of the viscosities and of the
density multiplying the viscosities, and using Stokes and Gauss’s theorems to convert total derivatives to
boundary terms that vanish, yields the following integral equations for the weak form of the three scalar
momentum equations. For each test function mi (x, y), we have
Z Z �nðmi; _UÞ þ n½mi; _v� � nr2U ½mi;U � þ 1
2
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Here and elsewhere we use the notation that for any two scalar quantities a and b, we define the Poisson brack-
et: ½a; b� � ẑ � ra�rb ¼ axby � aybx, and the inner product of the gradients: ða; bÞ � ra � rb ¼ axbx þ ayby ,
where subscripts here denote partial differentiation. Also, time derivatives have been denoted with a dot:
i.e. _U � oU=ot.

Next consider the field equations. Substitution of Eq. (3.1) into Eqs. (2.1a), (2.1d), and (2.2) yields
_nþ ½n;U � þ ðn; vÞ þ nr2v ¼ 0 ð3:7Þ
_pe þ ½pe;U � þ ðpe; vÞ þ cper2v ¼ Spe ð3:8Þ
_p þ ½p;U � þ ðp; vÞ þ cpr2v ¼ Sj þ SP ð3:9Þ
The magnetic field evolution equation (2.1e), together with the Generalized Ohm’s law (2.1f) yield, upon
substitution:
_wþ ½w;U � þ ðw; vÞ ¼ Sw ð3:10Þ
_I þ ½I ;U � þ ðI ; vÞ þ Ir2vþ ½w; V z� ¼ SI ð3:11Þ
Here, we have defined the effective source terms:
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Sw � gðr2w� kr4wÞ þ din�1½w; I � ð3:14Þ
SI � gðr2I � kr4IÞ þ din�1½r2w;w� þ dir2w½n�1;w� þ diI ½n�1; I � þ di½n�1; pe� ð3:15Þ
Note that we have neglected (assumed small) terms proportional to the gradients of g, l, lC, and of k, and
have introduced the inverse equi-partition time: a � 3me=ðMiseÞ. The parameter di that appears in the source
terms (3.14) and (3.15) is equal to unity for the standard normalization given in Eq. (2.8), but is included so
that we can easily change the ion skin depth without changing other problem parameters or dimensions. When
present, the scale length is l0 � c=ðdixpiÞ:

4. The implicit time advance equations for the velocity variables

The implicit time advance we use is similar to that described in [5,21]. For illustration, it is applied to a
simple wave equation in Appendix C. It is based on the fact that the ideal MHD wave characteristics are con-
tained in both the velocity advance and the field advance equations. In order to combine these into a single,
higher order equation for efficient implicit solution, we introduce the implicitness parameter 0 < h < 1 and use
this to evaluate the velocity variables in the field evolution equations (3.7) and (3.9)–(3.11) at an advanced time
for substitution into the momentum equations. Thus, Taylor expanding the velocity variables in these equa-
tions about the present time tn to evaluate at time tn þ hdt yields
_nþ ½n;U þ hdt _U � þ ðn; vþ hdt _vÞ þ nr2ðvþ hdt _vÞ ¼ 0 ð4:1Þ
_p þ ½p;U þ hdt _U � þ ðp; vþ hdt _vÞ þ cpr2ðvþ hdt _vÞ ¼ Sj þ Sp ð4:2Þ
_wþ ½w;U þ hdt _U � þ ðw; vþ hdt _vÞ ¼ Sw ð4:3Þ
_I þ ½I ;U þ hdt _U � þ ðI ; vþ hdt _vÞ þ Iðr2vþ hdtr2 _vÞ þ ½w; V z þ hdt _V z� ¼ SI ð4:4Þ
Consider now the weak form of the first momentum equation (3.4). Similarly Taylor expanding the velocity
and field variables in time, again using the implicitness parameter h, and substituting in from the field equa-
tions (4.1)–(4.4) for the time derivatives of the field variables that appear, gives the implicit form of the first
velocity equation that we use. Thus for each test function mi (x, y), we have the integral equation:
Z Z

I idxdy ¼ 0 ð4:5aÞ
Where the integrand is given by
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Note that since the purpose of this was to make implicit the convective terms and the wave motion, the density
needed to be expanded only when it multiplied the gravitational term. As explained in Appendix C, the result-
ing velocity equations are in a form that will lead to a method that is second-order accurate in time (for h = 1/
2), and can be time advanced to the new time level without further coupling to the field variables. We next note
that the terms in Eq. (4.5) that involve the field source terms Sw are small for fusion applications and can be
omitted in the velocity advance equations (although they are retained in the field equation advance). This
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formally leads to an error of order dt, but with a very small coefficient. We find that omitting these terms im-
proves the nonlinear stability of the method without a noticeable effect on the accuracy.

We observe that the time derivatives of two of the velocity variables, _U and _v, appear in many places at this
stage. Next, expanding all the scalar variables as in Eq. (3.2) and integrating over the domain, we make use of
the definitions in Appendix A to rewrite Eq. (4.5) as the system of discrete equations:
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Summation over repeated indices is implied. We next multiply by the time step, dt, and finite difference in time,
centering the time derivatives about time t ¼ ðnþ 1=2Þdt, so that dt _U j ¼ ½U nþ1

j � U n
j �, etc. In order to enable

strictly linear calculations, we express all state variables as the sum of a time independent equilibrium part and
a time varying perturbed part; i.e. Un
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j , etc. (Note that this is just done to enable the possibility of
linear calculations about an equilibrium state and this split does not affect the nonlinear calculations.) We can
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Here, the block matrix elements are defined as
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2
U k þ U 0

k

� �� �
V 5

i;j;k;l þ V 6
i;j;k;l

� �
hðX k þ X 0

kÞ � 1
2
X k þ X 0

k

� �� �
0
@

1
A

þhðh� 1Þdt2½C3
i;j;k;lðWl þW0

l ÞðWk þW0
kÞ þ gX 2

i;j;kNk�

8>>><
>>>:

9>>>=
>>>;

X n
j

Rv
11W

n ¼
dt 1

2
Wk þW0

k

� �
ðGi;j;k þ Gi;k;jÞ

�hdt2½ðC3
i;k;l;j þ C3

i;k;j;lÞX 0
k þ ðC1

i;k;j;l þ C1
i;k;l;jÞU 0

k � 1
2
Wl þW0

l

� �
( )

Wn
j

Rv
12In ¼ 0

Rv
13P n ¼ 0

Ov
1 ¼ dtgX 0

i;jNj
A similar procedure is applied to the second and third momentum equation. We make use of the definitions in
Appendix A to define the additional block matrix elements:
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Sv
21Unþ1 ¼ hdtNlV 8

i;j;k;lðV n
zk þ V 0

zkÞ � ðhdtÞ2C5
i;j;k;lðWk þW0

kÞðIl þ I0
l Þ

n o
U nþ1

j

Sv
22V nþ1

z ¼
N kK1

i;j;k þ hdt �lðAi;j � hBi;jÞ þ NlV 7
i;j;k;lðU k þ U 0

kÞ þ V 9
i;j;k;lN lðX k þ X 0

kÞ
h i

�h2dt2C9
i;j;k;lðWk þW0

kÞðWl þW0
l Þ

8<
:

9=
;V nþ1

zj

Sv
23X nþ1 ¼ fhdtNlV 10

i;j;k;lðV n
zk þ V 0

zkÞ � ðhdtÞ2C7
i;j;k;lðWk þW0

kÞðIl þ I0
l ÞgX nþ1

j

Dv
21U n ¼ dtV 8

i;j;k;lN l hðV n
zk þ V 0

zkÞ � 1
2
V n

zk þ V 0
zk

� �� �
� hðh� 1Þdt2C5

i;j;k;lðWk þW0
kÞðIl þ I0

l Þ
n o

U n
j

Dv
22V n

z ¼
K1

i;j;kNk þ dt
ð1� hÞlðAi;j � hBi;jÞ þ N lV 7

i;j;k;l hðU k þ U 0
kÞ � 1

2
U k þ U 0

k

� �� �
þN lV 9

i;j;k;l hðX k þ X 0
kÞ � 1

2
X k þ X 0

k

� �� �
 !

�hðh� 1Þdt2C9
i;j;k;lðWk þW0

kÞðWl þW0
l Þ

8>><
>>:

9>>=
>>;V n

zj

Dv
23Xn ¼ dtV 10

i;j;k;lN l hðV n
zk þ V 0

zkÞ � 1
2
V n

zk þ V 0
zk

� �� �
� hðh� 1Þdt2C7

i;j;k;lðWk þW0
kÞðIl þ I0

l Þ
n o

X n
j

Rv
21w

n ¼ �dtKi;j;k
1
2
Ik þ I0

k

� �
þ hdt2

ðC5
i;k;j;lU

0
k þ C7

i;k;j;lX
0
kÞ 1

2
Il þ I0

l

� �
ðC9

i;k;j;l þ C9
i;k;l;jÞ 1

2
Wl þW0

l

� �
V 0

k

" #( )
Wj

Rv
22In ¼ �dtKi;k;jð12 Wk þW0

kÞ þ hdt2 ðC5
i;l;k;jU

0
l þ C7

i;l;k;jX
0
l Þ 1

2
Wk þW0

k

� �h in o
Ij

Rv
23P n ¼ 0

Ov
2 ¼ hdt2C9

i;j;k;lW
0
l W

0
kV 0

j

Sv
31Unþ1 ¼

�Ki;j;kN k þ hdtNl½V 12
i;j;k;lðX k þ X 0

kÞ þ ðV 16
i;j;k;l þ V 15

i;j;k;lÞðU k þ U 0
kÞ�

þðhdtÞ2
C11

i;j;k;lðWk þW0
kÞðWl þW0

l Þ þ C15
i;j;k;lðIk þ I0

kÞðIl þ I0
l Þ

�G7
i;j;kðP k þ P 0

kÞ � gY 1
i;j;kN k

" #
8>><
>>:

9>>=
>>;U nþ1

j

Sv
32V nþ1

z ¼ ðhdtÞ2C15
i;j;k;lðWk þW0

kÞðIl þ I0
l ÞV nþ1

j

Sv
33Xnþ1 ¼

G2
i;j;kNk þ hdt½�2lCBi;j þ NlV 11

i;j;k;lðU k þ U 0
kÞ þ N lðV 13

i;j;k;l þ V 14
i;j;k;lÞðX k þ X 0

kÞ�

þðhdtÞ2
C13

i;j;k;lðWk þW0
kÞðWl þW0

l Þ þ C17
i;j;k;lðIk þ I0

kÞðIl þ I0
l Þ

�ðG6A
i;j;k þ cG6B

i;j;kÞðP k þ P 0
kÞ � gY 2

i;j;kN k þ C17
i;j;k;lI

0SI
l I0SI

k

" #
8>><
>>:

9>>=
>>;X nþ1

j

Dv
31U n ¼

�Ki;j;kNk þ dtNl

V 12
i;j;k;l½hðX k þ X 0

kÞ � 1
2
X k þ X 0

k

� �
þðV 15

i;j;k;l þ V 16
i;j;k;lÞ hðU k þ U 0

kÞ � 1
2
U k þ U 0

k

� �� �
" #

þhðh� 1Þdt2
C11

i;j;k;lðWk þW0
kÞðWl þW0

l Þ þ C15
i;j;k;lðIk þ I0

kÞðIl þ I0
l Þ

�G7
i;j;kðP k þ P 0

kÞ � gY 1
i;j;kNk

" #
8>>>>><
>>>>>:

9>>>>>=
>>>>>;

U n
j

Dv
32V n

z ¼ hðh� 1Þdt2C15
i;j;k;lðWk þW0

kÞðIl þ I0
l ÞV n

j

Dv
33X n ¼

G2
i;j;kNk þ dt

ð1� hÞ2lCBi;j þ N lV 11
i;j;k;l½hðUk þ U 0

kÞ � 1
2
U k þ U 0

k

� �
þNlðV 13

i;j;k;l þ V 14
i;j;k;lÞ hðX k þ X 0

kÞ � 1
2
X k þ X 0

k

� �� �
" #

þhðh� 1Þdt2
C13

i;j;k;lðWk þW0
kÞðWl þW0

l Þ þ C17
i;j;k;lðIk þ I0

kÞðIl þ I0
l Þ

�ðG6A
i;j;k þ cG6B

i;j;kÞðP k þ P 0
kÞ � gY 2

i;j;kN k

" #

þðhdtÞ2C17
i;j;k;lI

0SI
k I0SI

l

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

X n
j

Rv
31W

n ¼
dt½G4

i;k;j þ G4
i;j;k � 1

2
Wk þW0

k

� �
�hdt2

ð½C11
i;k;j;l þ C11

i;k;l;j�U 0
k þ ½C13

i;k;j;l þ C13
i;k;l;j�X 0

kÞ 1
2
Wl þW0

l

� �
þC15

i;k;j;lV
0
k

1
2
Il þ I0

l

� �
" #

8>><
>>:

9>>=
>>;Wj

Rv
32In ¼

dt G5
i;k;j þ G5

i;j;k

h i
ð1

2
Ik þ I0

kÞ

�hdt2
ð½C15

i;k;j;l þ C15
i;k;l;j�U 0

k þ ½C17
i;k;j;l þ C17

i;k;l;j�X 0
kÞ 1

2
Il þ I0

l

� �
þC15

i;l;k;jV
0
l ð12 Wk þW0

kÞ

" #
8>>><
>>>:

9>>>=
>>>;

Ij

Rv
33P n ¼ f�dtAi;j þ hdt2½G7

i;k;jU
0
k þ G6

i;k;jX
0
k �gP j

O3
v ¼ �hdt2C15

i;j;k;lV
0
j W

0
k I0

l � dtgY 0
i;jNj
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Here we have introduced a variable for the reciprocal of the density: 1=n ¼
P18

j¼1mjEj.
With these definitions, the three momentum equations are combined into the single block matrix equation:
Sv
11 Sv

12 Sv
13

Sv
21 Sv

22 Sv
23

Sv
31 Sv

32 Sv
33

2
64

3
75 �

U

V z

X

2
64

3
75

nþ1

¼
Dv

11 Dv
12 Dv

13

Dv
21 Dv

22 Dv
23

Dv
31 Dv

32 Dv
33

2
64

3
75 �

U

V z

X

2
64

3
75

n

þ
Rv

11 Rv
12 Rv

13

Rv
21 Rv

22 Rv
23

Rv
31 Rv

32 Rv
33

2
64

3
75

w

I

P

2
64

3
75

n

þ
Ov

1

Ov
2

Ov
3

2
64

3
75 ð4:15Þ
It is one of the major features of this method that only the old time values of the field variables appear in Eq.
(4.15), so that the implicit coupling is only between the velocity variables. Thus, the analytic manipulation has
led to a compact implicit equation which contains within it all of the MHD wave characteristics. By factoring
the matrix on the left and solving this system, we are able to take time steps that are not limited by the Courant
condition based on the MHD waves in the system or by any diffusive phenomena. We note here that Eq. (4.15)
has two important sub-systems that can be solved in a fraction of the run time of the full system. Keeping only
the terms in the upper left corners in the three matrices gives the two-field reduced MHD system considered in
[3]. Keeping only the upper left 2 · 2 sub-blocks gives the four-field system discussed in [4]. These reduced sys-
tems are valuable for both debugging the full system, and for better understanding the incremental physical
effects that the full system introduces.
5. The implicit field equations

Once the velocity variables are updated to the new time, the density equation can be updated independent
of the other field equations. Again, using the implicitness parameter h to evaluate quantities at the advanced
time, we define the matrix elements:
Sn
11Nnþ1

j ¼ fDi;j þ hdt½Ki;j;kðUk þ U 0
kÞ þ G2

i;k;jðX k þ X 0
kÞ�gNnþ1

j

Dn
11N n

j ¼
Di;j þ dtKi;j;k½hðUk þ U 0

kÞ � ð12 U n
k þ U 0

kÞ�
þdtG2

i;k;j½hðX k þ X 0
kÞ � ð12 X n

k þ X 0
kÞ�

( )
N n

j

Rn
11U nþ1

j ¼ �hdtKi;k;jðN k þ N 0
kÞU nþ1

j

Rn
12 ¼ 0

Rn
13X nþ1

j ¼ �hdtG2
i;j;kðNk þ N 0

kÞX nþ1
j

Qn
11U n

j ¼ �dtKi;k;j
1
2
N n

k þ N 0
k

� �
� hðN k þ N 0

kÞ
� �

U n
j

Qn
12 ¼ 0

Qn
13X n

j ¼ �dtG2
i;j;k

1
2
Nk þ N 0

k

� �
� hðNk þ N 0

kÞ
� �

X n
j

These allow us to write the implicit density advance as a block matrix equation:
Sn
11 � Nnþ1 ¼ Dn

11 � N n þ ½Rn
11 Rn

12 Rn
13 � �

U

V z

X

2
64

3
75

nþ1

þ ½Qn
11 Qn

12 Qn
13 � �

U

V z

X

2
64

3
75

n

ð5:1Þ
In a similar way, for the pressure advance we define the block matrix elements:
Sp
11P nþ1

j ¼
Di;j þ hdtKi;j;kðUk þ U 0

kÞ
�hdtðc� 1ÞjðGi;j;k þ Gi;k;jÞEk

þhdt½G2
i;k;j � ðc� 1ÞK2

i;k;j�ðX k þ X 0
kÞ

8><
>:

9>=
>;P nþ1

j
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Dp
11P n

j ¼
Di;j þ dtKi;j;k hðUk þ U 0

kÞ � 1
2
U n

k þ U 0
k

� �� �
þð1� hÞdtðc� 1ÞjðGi;j;k þ Gi;k;jÞEk

þdt½G2
i;k;j � ðc� 1ÞK2

i;k;j� hðX k þ X 0
kÞ � 1

2
X n

k þ X 0
k

� �� �
8><
>:

9>=
>;P n

j

Rp
11U nþ1

j ¼ �hdtKi;k;jðP k þ P 0
kÞU nþ1

j

Rp
12 ¼ 0

Rp
13X nþ1

j ¼ �hdt½G2
i;j;k � ðc� 1ÞK2

i;j;k�ðP k þ P 0
kÞX nþ1

j

Qp
11Un

j ¼ �dtKi;k;j½ð12 P n
k þ P 0

kÞ � hðP k þ P 0
kÞ�U n

j

Qp
12 ¼ 0

Qp
13X n

j ¼ �dt½G2
i;j;k � ðc� 1ÞK2

i;j;k� 1
2
P k þ P 0

k

� �
� hðP k þ P 0

kÞ
� �

X n
j

Op
1 ¼ dt½Di;jSpj þ ðc� 1ÞjðG2

i;k;j þ G2
i;j;k � hpG13

i;k;jÞEkP 0
j �
Using these, the pressure equation can be written as
Sp
11 � P nþ1 ¼ Dp

11 � P n þ ½Rp
11 Rp

12 Rp
13 � �

U

V z

X

2
64

3
75

nþ1

þ ½Qp
11 Qp

12 Qp
13 � �

U

V z

X

2
64

3
75

n

þ Op
1

ð5:2Þ
Next, consider the remaining field equations for the two components of the magnetic field and for the electron
pressure. These are solved simultaneously in order to capture the coupling that leads to the Whistler and ki-
netic Alfven modifications to the MHD waves. Thus, in a similar manner, we form a set of implicit equations
for the field and electron pressure variables by Taylor expanding all variables in time and keeping the terms
linear in dt. Applying the Galerkin method and making use of the definitions in Appendix A yields the follow-
ing block matrix form for these remaining time advance equations:
Sb
11 Sb

12 Sb
13

Sb
21 Sb

22 Sb
23

Sb
31 Sb

32 Sb
33

2
64

3
75 �

w

I

P e

2
64

3
75

nþ1

¼
Db

11 Db
12 Db

13

Db
21 Db

22 Db
23

Db
31 Db

32 Db
33

2
64

3
75 �

w

I

P e

2
64

3
75

n

þ
Rb

11 Rb
12 Rb

13

Rb
21 Rb

22 Rb
23

Rb
31 Rb

32 Rb
33

2
64

3
75 �

U

V z

X

2
64

3
75

nþ1

þ
Qb

11 Qb
12 Qb

13

Qb
21 Qb

22 Qb
23

Qb
31 Qb

32 Qb
33

2
64

3
75 �

U

V z

X

2
64

3
75

n

þ
O1

O2

O3

2
64

3
75 ð5:3Þ
The matrix elements are defined as follows:
Sb
11W

nþ1
j ¼ Di;j þ hdt

Ki;j;kðUk þ U 0
kÞ � gðAi;j � kBi;jÞ

�G2
j;k;iðX k þ X 0

kÞ � diU 3
i;j;k;lElðIk þ I0

kÞ

" #( )
Wnþ1

j

Sb
12Inþ1

j ¼ �hdtdiU 4
i;j;k;lElðWk þW0

kÞInþ1
j

Sb
13 ¼ 0

Db
11W

n
j ¼

Di;j þ dtKi;j;k hðU k þ U 0
kÞ � 1

2
Uk þ U 0

k

� �� �
þ ðh� 1ÞdtgðAi;j � kBi;jÞ

�dtG2
j;k;i hðX k þ X 0

kÞ � 1
2
X k þ X 0

k

� �� �
� dtdiU 3

i;j;k;lEl hðIk þ I0
kÞ � 1

2
Ik þ I0

k

� �� �
( )

Wn
j

Db
12Ij ¼ � dtdiU 4

i;j;k;lEl hðWk þW0
kÞ � ð12 Wk þW0

kÞ
� �n o

I j

Db
13 ¼ 0

Rb
11U nþ1

j ¼ �hdtKi;k;jðWk þW0
kÞUnþ1

j

Rb
12 ¼ 0
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Rb
13X nþ1

j ¼ hdtG2
k;j;iðWk þW0

kÞX nþ1
j

O1 ¼ dt½gðAi;j � kBi;jÞW0
j þ diU 3

i;j;k;lElW
0
j I0

k �
Qb

11U n
j ¼ dtKi;k;j hðWk þW0

kÞ � 1
2
Wk þW0

k

� �� �
Un

j

Qb
12 ¼ 0

Qb
13X n

j ¼ �dtG2
k;j;i hðWk þW0

kÞ � 1
2
Wk þW0

k

� �� �
X n

j

Sb
21W

nþ1
j ¼ hdt Ki;j;kðV zk þ V 0

zkÞ � diðU 1
i;j;k;l þ U 2

i;j;k;lÞElðWk þW0
kÞ

n o
Wnþ1

j

Sb
22Inþ1

j ¼ Di;j þ hdt
�gðAi;j � kBi;jÞ þ Ki;j;kðU k þ U 0

kÞ
þG2

i;k;jðX k þ X 0
kÞ � diðU 5

i;j;k;l þ U 6
i;j;k;lÞðIk þ I0

kÞEl

 !" #
Inþ1

j

Sb
23P nþ1

ej ¼ �hdtdiKi;k;jEkP nþ1
ej

Db
21W

n
j ¼ dt Ki;j;k hðV zk þ V 0

zkÞ � ð12 V zk þ V 0
zkÞ

� �
� diðU 1

i;j;k;l þ U 2
i;j;k;lÞEl hðWk þW0

kÞ � 1
2
Wk þW0

k

� �� �n o
Wn

j

Db
22In

j ¼
Di;j � ðh� 1Þdtg Ai;jgk � kBi;j

� �
þ dtKi;j;k hðU k þ U 0

kÞ � 1
2
Uk þ U 0

k

� �� �
þdtG2

i;k;j hðX k þ X 0
kÞ � 1

2
X k þ X 0

k

� �� �
� dtdiðU 5

i;j;k;l þ U 6
i;j;k;lÞEl hðIk þ I0

kÞ � 1
2
Ik þ I0

k

� �� �
( )

In
j

Db
23P n

ej ¼ ð1� hÞdtdiKi;k;jEkP n
ej

Rb
21Unþ1

j ¼ �hdtKi;k;jðIk þ I0
kÞUnþ1

j

Rb
22V nþ1

zj ¼ �hdtKi;k;jðWk þW0
kÞV nþ1

zj

Rb
23X nþ1

j ¼ �hdtG2
i;j;kðIk þ I0

kÞX nþ1
j

Qb
21U n

j ¼ dtKi;k;j hðIk þ I0
kÞ � 1

2
Ik þ I0

k

� �� �
Un

j

Qb
22V n

zj ¼ dtKi;k;j hðWk þW0
kÞ � 1

2
Wk þW0

k

� �� �
V n

zj

Qb
23X n

j ¼ dtG2
i;j;k hðIk þ I0

kÞ � 1
2
Ik þ I0

k

� �� �
X n

j

O2 ¼ dt
gðAi;j � kBi;jÞI0

j � Ki;j;kW
0
j V 0

k

þdiðU 1
i;j;k;lElW

0
j W

0
k þ U 3

i;j;k;lEjI0
l I0

k þ K0
i;j;kEjP 0

ekÞ

" #

Sb
31 ¼ 0

Sb
32Inþ1

j ¼ �hdtdiðV 8
i;j;k;l þ cU 6

i;j;k;lÞðP ek þ P 0
ekÞElInþ1

j

Sb
33P nþ1

ej ¼
Di;j½1þ 2dthðc� 1Þa� þ hdtKi;j;kðUk þ U 0

kÞ
�hdtdiðV 7

i;j;k;l þ cU 5
i;j;k;lÞElðIk þ I0

kÞ þ hdt½G2
i;k;j � ðc� 1ÞK2

i;k;j�ðX k þ X 0
kÞ

�ðc� 1Þhdtj½G2
i;k;j þ G2

i;j;k � hpG13
i;k;j�Nk

8><
>:

9>=
>;P nþ1

ej

Db
31 ¼ 0

Db
32In

j ¼ �dtdiðV 8
i;j;k;l þ cU 6

i;j;k;lÞEl hðP ek þ P 0
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Qb
32 ¼ 0

Qb
33X n

j ¼ þdt G2
i;j;k � ðc� 1ÞK2

i;j;k

h i
hðP ek þ P 0

ekÞ � 1
2
P ek þ P 0

ek

� �� �
X n

j

O3 ¼ dtðc� 1Þj½G2
i;k;j þ G2

i;j;k � hpG13
i;k;j�EkP 0

j þ dtðV 7
i;j;k;l þ cU 5

i;j;k;lÞElI0
kP 0

ej

þ dtðc� 1Þg½ðK1
i;j;k � kG2

k;j;iÞðJ k þ J 0
kÞðJ j þ J 0

j Þ þ ð�G2
k;j;i þ kG12

i;j;kÞðIk þ I0
kÞðIj þ I0

j Þ�
þ dtðc� 1ÞaDi;jP j
6. Smoothing of velocity fields, a semi-implicit operator, and well posedness

Here we describe three modifications to the previously described algorithm that serve to increase the robust-
ness and nonlinear stability of the overall scheme.

The first is that we find it useful to incorporate a small ‘‘hyper-viscosity’’ term in the two momentum
equations (3.4) and (3.6) in order to damp sub-element scale oscillations that might otherwise develop [22].
Since these terms would involve sixth-order derivatives of the U and v fields, they cannot be straightfor-
wardly incorporated into the time advance using elements with only C1 continuity unless we introduce
additional variables. We therefore introduce a time splitting where the scalar functions U and v are first
advanced without these terms, and then a ‘‘smoothing’’ step is applied where these operators are applied.
Consider the split time advance for the vorticity. Let the time advance values at time level (n + 1) but
without these higher derivative operators applied be denoted by (*). The advance from level (*) to the
new level (n + 1) is given by
w� ¼ r2U �

r2U nþ1 ¼ w� � dtvH ½hr4wnþ1 þ ð1� hÞr4w��
wnþ1 ¼ r2U nþ1

ð6:1Þ
Multiply through by each trial function mi, and this is equivalent to the two equations:
Di;jW �
j ¼ Ai;jU �j ð6:2aÞ
and
Di;j �Ai;j

dtvHhBi;j Ai;j

� �
W

U

� �nþ1

j

¼
0

½Di;j � dtvH ð1� hÞBi;j�W �
j

" #
ð6:2bÞ
Since these matrices on the left do not change during the simulation (if the timestep and element geometry are
constant), they can be factored at the initial time and the equations are then solved each timestep by an effi-
cient back-substitution. In the examples in this paper, a hyper-viscosity was used with the value mH ¼ h2l,
where h is a typical triangle dimension and l is the viscosity. Rerunning several cases with half this value
had essentially no noticeable effect on the computed results.

A second modification is that it is sometimes useful to add a semi-implicit term to help stabilize the X equa-
tion. This is particularly true if the total magnetic field vanishes somewhere or is small at a point. To this end,
we introduce an artificial ‘‘semi-implicit’’ magnetic field I0SI

k and modify the matrix elements as follows:
Sv
33 ! Sv

33 þ ðhdtÞ2C17
i;j;k;lðI0SI

k ÞðI0SI
l Þ

Dv
33 ! Dv

33 þ ðhdtÞ2C17
i;j;k;lðI0SI

k ÞðI0SI
l Þ

ð6:3Þ
This modification was not used in the examples presented in this paper.
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A third technique has to do with the solubility condition on Eq. (3.6). Before being multiplied by the trial
function and integrated by parts, this equation for the time derivative of the divergence of the velocity had the
form:
r � nr _v ¼ r in the interior

o _v
on
¼ 0 on the boundary

ð6:4Þ
It is well known that equations of this type have a solubility constraint that may not be exactly satisfied
numerically, and are indeterminate in that if v is a solution, then v + c is also a solution for any constant
c. To address both of these, we shift the spectrum by replacing the first of the equations in (6.4) with
ðr � nr� eÞ _v ¼ r ð6:5Þ

where e is some small number typically 10�7 [15]. This is equivalent to adding a small positive definite term
proportional to ev2 to the variational statement of Eq. (6.4) which will automatically seek the solution that
minimizes ev2 as well as satisfies the differential equation.
7. Summary of the time advance

Here we summarize and discuss the time advance equations given in Section 6. Let us introduce the vectors
Vn, Nn, Pn, and Wn that represent all the unknown degrees-of-freedom (DOF) that we are solving for. The
velocity vector Vn contains the six DOF for each of the three scalar velocity variables (U, v, Vz) at each grid
point, the density vector Nn and the pressure vector Pn each contain 6 DOF at each grid point, and the field
vector Wn contains six DOF for each of the three scalar field variables (w, I, Pe) at each grid point. By defining
the appropriate vector and matrix quantities, we can rewrite Eqs. (4.15), (5.1), (5.2) and (5.3) in the compact
form:
SV � Vnþ1 ¼ DV � Vn þ RV �Wn þOV ð7:1Þ
SN �Nnþ1 ¼ DN �Nn þ ½RN �y � Vnþ1 þ ½QN �y � Vn þON ð7:2Þ
SP � Pnþ1 ¼ DP � Pn þ ½RP �y � Vnþ1 þ ½QP �y � Vn þOP ð7:3Þ
SB �Wnþ1 ¼ DB �Wn þ RB � Vnþ1 þQB � Vn þOB ð7:4Þ
The matrices all contain the unknowns only at the old time level. Thru analytic manipulation, the split semi-
implicit method has broken up the full implicit equations to these four separate smaller systems of
equations.

The main computational work is in solving these matrix equations. If we have a grid system with M node
points, then the matrices SV and SB are both sparse matrices of rank 18M, and the matrices SN and SP are
sparse matrices of rank 6M. We use the parallel direct sparse solver, SuperLU_dist [19], and so the most com-
putationally intensive part of the time advance is to factor these matrices. We note that the four matrices could
be factored concurrently as there are no dependences (although this was not done in our examples). A typical
run in Section 10 of 400 time-steps for the full eight-field system on a 121 · 121 grid point mesh required 13.2 h
using two nodes (each with eight processors) on the NERSC IBM p575 Power 5 system (Bassi). We note that
the timing is independent of the size of the time step since there are no iterations involved.

A model system that was amenable to stability analysis, but which has the essential features of (7.1) and
(7.4), was shown to lead to an unconditionally stable numerical method for implicitness parameter h > 1/2
in [4]. We postulate that the full system presented here is also unconditionally stable for h > 1/2, and have
observed this over a wide region in parameter space where we have used time steps dt many times the Courant
condition based on any of the waves, and, of course, many times the explicit time step restriction associated
with the diffusive terms. We choose the time step based on accuracy considerations alone.

What constitutes consistent and stable boundary conditions for a computational study of a two-fluid
MHD plasma is still a subject of research. To circumvent this difficulty, we introduce a transition region where
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the ion skin depth parameter di gets multiplied by a factor f that is unity in the interior and vanishes at the
wall. Thus, if the computational domain extends from 0 < x < Lx and 0 < y < Ly, we multiply di by the mask-
ing factor:
f ¼ 1

2
f1þ tanh½�aðr � r0Þ�g
In the examples presented in this paper a ¼ 12; r0 ¼ 1:75, and the normalized coordinate r is defined as
follows:
r2 ¼ ½ðx� Lx=2Þ2 þ ðy � Ly=2Þ2� 16

LxLy
ðnon-periodic problemÞ

r ¼ jy � Ly=2j 4

Ly
ðfor problem periodic in xÞ
The boundary conditions in the applications presented in the next three sections are thus appropriate for a
di = 0 (resistive MHD) plasma. They are of two types: periodic or conducting-wall. Let n̂ be a unit vector nor-
mal to the wall and t̂ � n̂� ẑ be a unit vector in the tangential direction. Dirichlet boundary conditions for all
the perturbed field quantities are applied at the wall. For example, for the poloidal flux: w ¼ wt ¼ wtt ¼ 0. The
same is true for I ; n; pe; p; and for the z-component of the velocity, Vz. For the other velocity variables, we
have for the stream function: U ¼ Ut ¼ Utt ¼ U nn ¼ 0, and for the potential: vn ¼ vnt ¼ vnn þ vtt ¼ 0.
8. Plane wave propagation

As a first test we examine the ability to calculate small amplitude wave propagation parallel to the poloidal
field. Taking the density to be uniform and the electron pressure to vanish, we linearize about an equilibrium
with I ¼ I0;w ¼ dy; p ¼ p0; where I0 ¼ 1; d ¼ 0:1, and p0 = 0.01. This is meant to model the conditions in a
low-beta tokamak plasma with propagation dominantly in the poloidal plane. In this case I corresponds to
the toroidal field and w to the poloidal flux. Assuming sinusoidal variation in x and t: sinðkx� xtÞ, we find
the following dispersion relation for the square of the frequency, X ¼ x2:
X3 þ AX2 þ BXþ C ¼ 0

A ¼ �k2½2d2 þ cp0 þ I2
0 þ k2d2�

B ¼ k4½d4 þ cp0ð2d2 þ k2d2Þ þ d2I2
0�

C ¼ �k6cp0d
4

ð8:1Þ
Here c = 5/3 is the adiabatic index. For a particular value of k ¼ 1; 2; . . ., we define a doubly periodic domain
with 0 < x < 2p=k and 0 < y < 2p=k and initialize the perturbation to be one of the three roots of Eq. (8.1)
corresponding to the (i) Slow, (ii) Alfven, or (iii) Fast branch, modified by the two-fluid terms. We set
w ¼ 10�4; and the other perturbed quantities are initialized as follows:
U ¼ �ðk=xÞdw

I ¼ 1� k2d2

x2


 �
� I2

0

x2=k2 � cp0

� �
" #�1

ðk3=xÞdw

V ¼ �ðk=xÞdI

v ¼ xI0

ðx2 � cp0k2Þ
I

p ¼ cp0ðk2=xÞv

ð8:2Þ
We follow the evolution of the wave for the time T ¼ 2pk=x that it should theoretically take to traverse a sin-
gle period, and compute the L2 norm of the difference between the final and initial conditions, normalized to
the initial amplitude. In the computational studies, we included small dissipative terms with amplitude
j ¼ l ¼ g ¼ 4� 10�5 for the fast wave initialization and j ¼ l ¼ g ¼ 4� 10�4 for the Alfven and Slow wave
initializations. We note that this will affect the minimum value of the error that can be obtained as these are
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not taken into account in the analytic dispersion relation. The layout of the triangular elements for the 4 · 4
case, and the initial 1D sinusoidal perturbation of the w function are shown in Fig. 1.

We plot the relative error in the plane wave convergence test for a particular wave number k = 1 in Fig. 2 as
a function of the time step used in the calculation. The solid (black) curve was initialized to an eigenmode of
the Fast Wave with x=k ¼ 1:018057, the dashed (red) curve was initialized to the Alfven Wave with
x=k ¼ 0:100329, and the dotted (blue) curve was initialized to the Slow Wave with x=k ¼ 0:0126393. For
the Fast Wave we compute the L2 error using the variable I, for the Alfven Wave we use w, and for the slow
wave we use p. For the Fast wave we use an implicitness parameter of h ¼ 0:51, and for the Alfven and Slow
wave we used h ¼ 0:55.
Fig. 1. Left shows arrangements of triangles for 4� 4 doubly periodic wave propagation test. Right is corresponding initial contours of
poloidal flux w.

Fig. 2. Relative error after propagation for one wavelength when periodic plasma is initialized in an eigenmode of one of the three waves
for wave number k = 1. The solid (black) curve was initialized to an eigenmode of the Fast Wave with x=k ¼ 1:018057, the dashed (red)
curve was initialized to the Alfven Wave with x=k ¼ 0:100329, and the dotted (blue) curve was initialized to the Slow Wave with
x=k ¼ 0:0126393. Circles, triangles, and squares correspond to using 32, 8, and 4 triangles per linear wavelength.
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This is a very stringent test as it measures to what degree the initial state is a ‘‘pure’’ eigenmode in both
space and time. The total L2 error is the result of many factors: the propagation velocity is slightly off, the
wave damps, or other eigenmodes get excited. We can see that the Fast Wave is converging most rapidly
as both the time step and mesh spacing decreases. The sub-dominant waves also are converging, but more
slowly.
9. The tilting cylinder

This problem, in the resistive (single fluid) MHD limit, was proposed in [16], and solutions for reduced
MHD are given in [3] (two-field model) and [4] (four-field model). Following [16], we define an initial bipolar
vortex equilibrium state:
w0ðx; yÞ ¼
½2=kJðkÞ�J 1ðkrÞ cos h; r < 1

ðr � 1=rÞ cos h; r > 1

�
J 1ðkÞ ¼ 0: ð9:1Þ
We have defined a polar coordinate system such that y ¼ r cos h; x ¼ r sin h. For given values of the parameters
B0 and bP, the initial longitudinal field and electron pressure inside the radius r < 1 are defined as
½I0ðx; yÞ�2 ¼ B2
0 þ ð1� bP Þk2½w0ðx; yÞ�2

p0
eðx; yÞ ¼

1

2
k2bP ½w0ðx; yÞ�2 þ 0:01

ð9:2Þ
For r > 1, these are both constant so as to be continuous at r = 1. The initial ion pressure and density are set
to zero and unity, respectively. In these calculations we took the background field B0 ¼ 1. It is readily verified
that this specification corresponds to a configuration satisfying the equilibrium equation: rp ¼~J �~B.

To illustrate the flexibility of this approach, we have perturbed the above equilibrium and computed the
time evolution for several sets of equilibrium parameters corresponding to varying the quantity bP from zero
to one, and varying the ion skin depth, to which the lengths are scaled. As an aid to doing this, we utilize the
ion skin depth parameter di, discussed at the end of Section 3. This appears such that when di ¼ 1 the ion skin
depth is unity in these units, when di ¼ 0:1, it is 1/10th unit, and when di ¼ 0, the ion skin depth shrinks to
zero and the equations reduce to resistive MHD. We compute the linear growth rate by renormalizing the
solution back to a fixed amplitude each timestep N and computing the growth rate from the rate of change
of the kinetic energy KN: c ¼ ½KNþ1 � KN �=½Dt � ðKNþ1 þ KNÞ�. The values quoted are when this no longer
changes with cycle number N. The normalizations used are those in Eq. (2.8).

The results of this study are shown in Figs. 3 and 4. The different curves in Fig. 3a correspond to different
sets of equations, and bP values of either zero or one. The curve n = 1 corresponds to just one velocity var-
iable, U, and one field variable, w . The curve n = 2 adds the velocity variable Vz and the field variable I, and
the curve n = 3 adds the velocity variable v and the field variable pe to give the full system of equations dis-
cussed in this paper. The curves corresponding to n = 1 and n = 2 were discussed in [3,4]. These were com-
puted in our formulation by keeping just the upper left element and the upper 2 · 2 sub-matrix in our Eqs.
(4.15) and (5.3). Fig. 3b presents a convergence study for one point, that with bP ¼ 1; n ¼ 3, and di = 0.
The growth rate is seen to converge very rapidly with the number of mesh points N and quadratic with the
time step Dt.

We see from Fig. 3 that except for the n = 1 reduced model, the linear growth rate increases significantly as
the ion skin depth becomes comparable to the equilibrium scale length. The n = 2 reduced model gives the
correct qualitative behavior, but can be substantially off in the actual growth rate.

To illustrate the complexity of the linear eigenfunction and how it changes with the ion skin depth, we show
five of the field variables and five of the velocity variables in Figs. 4a and 4b for several configurations corre-
sponding to bP ¼ 1 and scanning several values of di. Note that only seven independent scalar variables are
being integrated in time in this example (since the ion pressure is zero). While we have plotted the toroidal
current density, the vorticity, and the velocity divergence, these are not independently time-advanced vari-
ables, but are obtained by taking the Laplacian of the poloidal flux w, the velocity stream function U, and
the velocity potential v, respectively.
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Fig. 3b. Convergence study for point in Fig. 3a with bP ¼ 1, n = 3, and di ¼ 0. Shown are curves for 25� 25, 50� 50, and 100� 100 mesh
points in a rectangular domain.

Fig. 3a. Growth rate vs ion skin depth for two equilibrium ðbP ¼ 0 and bP ¼ 1Þ and for three sets of equations.
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Fig. 4a. Linear eigenfunctions of the field variables for beta = 1 configurations for several values of di.
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These growth rates were obtained using a uniformly laid-out triangular mesh such as shown in Fig. 1a. The
baseline calculations were done with a mesh of 51 · 51 nodes and a timestep of Dt ¼ 0:05. We find that the
growth rates typically change only in the 4th decimal place when repeating the calculation on a mesh with
101 · 101 nodes, and in the 3rd decimal place when increasing the timestep to Dt ¼ 0:10.

10. A reconnection problem

What has become a ‘‘standard problem’’ in two-fluid magnetic reconnection was proposed in [17]. We
define an initial equilibrium as follows;
w0ðx; yÞ ¼ 1

2
lnðcosh 2yÞ

I0ðx; yÞ ¼ 0

P 0ðx; yÞ ¼ 1

2
½sech2ð2yÞ þ 0:2�

n0ðx; yÞ ¼ ½sech2ð2yÞ þ 0:2�
P 0

eðx; yÞ ¼ 0:2P 0ðx; yÞ

ð10:1Þ
All other quantities are initialized to zero. A perturbation is applied at time t = 0 as follows:



Fig. 4b. Linear eigenfunctions of the velocity variables for beta = 1 configurations for several values of di.
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wðx; yÞ ¼ e cos kxx cos kyy: ð10:2Þ

The initial equilibrium and perturbed current densities are just the Laplacian of the
fluxes,J 0 ¼ r2w0; J ¼ r2w. The computation is carried out in a rectangular domain: �Lx=2 6 x 6 Lx=2 and
�Ly=2 6 y 6 Ly=2. The system is taken to be periodic in the x-direction with ideal conducting boundaries
at y ¼ �Ly=2: The parameters are chosen such that kx ¼ 2p=Lx; ky ¼ p=Ly , with Lx ¼ 25:6; Ly ¼ 12:8; and
e ¼ 0:1.

These calculations used values of resistivity g ¼ 0:005, viscosities l ¼ lC ¼ 0:05, and thermal conductivity
j ¼ 0:02. An implicitness parameter of h ¼ 0:51 was used. For all calculations presented, the time step used
was as follows: From t = 0 to t = 20, Dt ¼ 0:2; from t = 20 to t = 24, Dt ¼ 0:1; from t = 24 to t = 34,
Dt ¼ 0:05; from t = 34 to t = 40, Dt ¼ 0:1. These timesteps were chosen for accuracy considerations and were
the same for all spatial resolutions. (We have verified that the calculation remains stable for arbitrarily large
timestep, but the accuracy will deteriorate if the timestep is not lowered during periods of rapid change. A
future timestep control algorithm will adjust the timestep automatically to retain adequate accuracy.) There
were a total of 400 timesteps for each calculation.

We performed a series of calculations with N · N equally spaced nodes with N ¼ 61; 91; 121, and 151. The
triangular elements were then constructed by inserting diagonals similar to what is shown in Fig. 1. The inter-
node spacing in the x-direction is denoted by Dx. This enters into the coefficients for the hyper-resistivity, Eq.
(2.5), which we define as follows: k ¼ CH h2, where h is a typical triangle dimension and with the coefficient
CH ¼ 1:0 used in these calculations. Since the physical value of the hyper-resistivity is smaller than any of



Fig. 5. Contours of the toroidal current density at selected times. Note that a transition occurs between the time of t = 16 and t = 32.
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those used in this series, the meaningful result is to perform a convergence study and take the limit of h! 0.
The reason for choosing this dependency of k on h is discussed below.

We show typical results for contours of the toroidal current density, J ¼ r2w, for the 121 · 121 nonlinear
calculation at selected times in Fig. 5. We note that a transition occurs around the time t = 24, at which time
the current density abruptly peaks on axis. To illustrate this more clearly, we show in Fig. 6 a plot of the cur-
rent density along the y = 0 midplane as a function of the horizontal (x) distance and time. It can be seen from
this graph how rapidly the transition occurs at time t 	 24.

To understand this transition better, we plot in Fig. 7 the z-component of the electric field along the mid-
plane, y = 0, at two times: t = 20 (before the transition) and t = 30 (after the transition). The total electric field
is the smooth dark black line in Fig. 7. It is seen from Eq. (2.1f) that this is made up of several different con-
tributions. For convenience, we rewrite the z-component of Eq. (2.1f) here:
Fig. 6.
abrupt
Midplane Current density vs time. Vertical axis is current density along midplane y = 0, and horizontal axis is time. Note the
transition at t 	 24.



Fig. 7. Different components of the Electric Field. Solid black line is the total electric field. Green line is part due to J � B term, blue to the
V � B term, dark red to the resistive term, and the bright red to the hyper-resistive term. Top figure is before transition, middle is after
transition, and bottom is close-up of middle figure.
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ẑ �~E ¼ 1

ne
ẑ �~J �~B� ẑ � ~V �~Bþ gẑ �~J � CHgh2r2ẑ �~J ð10:3Þ
The terms in Eq. (10.3) are written in the order in which they occur when traversing down a vertical line in
Fig. 7a (top) at the location x = 10. The top, bold curve is the total electric field. The next curves are the field
due to the J � B term, the V � B term, the resistive term, and the hyper-resistive term. We can see from Fig. 7b
(middle) that at time t = 30, after the transition, the J � B is the only significant contribution to the electric
field in the vicinity of the x-point (central location), but that it must vanish exactly at the x-point since the
magnetic field vanishes there ðB ¼ 0Þ. In Fig. 7c (bottom), which is a blowup of Fig. 7b, we see that in the
very near vicinity of the x-point, the term due to the hyper-resistivity becomes important. The scaling factor
of h2 was, in fact, chosen so that there would always be several triangular elements within this transition re-
gion. It has been shown previously that this leads to a globally convergent result in the limit as 1=N 	 h! 0
where the maximum reconnection rate and reconnected flux converge to a unique value [18].

Finally, we show in Fig. 8 some results comparing the series of calculation with everything else the same but
different spatial resolutions (different number of elements). These graphs show both what stringent resolution



Fig. 8. Top figure is global kinetic energy vs time for four calculations with differing resolution, middle figure is the flux change at the
midpoint vs time, and bottom graph is the time derivative of the middle curves. Reconnected Flux (middle curves) at time t = 40 is seen to
be converging to a unique value.
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requirements this problem has, and that the global quantities are converging, although slowly. We postulate
that the slow convergence is due to the singular nature of the current sheet after the transition.

The time advance equations are not written in conservation form, although they should conserve energy as
discussed following Eq. (2.3). We find that the numerical results conserve global energy to better than 1 part in
103 throughout the 120 · 120 calculation, and that this relative error decreases for the better resolved
calculations.

11. Summary and future directions

We have described a method for solving a high-order set of partial differential equations providing a two-
fluid description of a high temperature magnetized plasma in a relatively simple geometry and in 2D. The flux
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function/potential representation of the vector velocity and magnetic fields leads to a representation in which
the divergence of the magnetic field is intrinsically zero, and which allows accurate computation of nearly
incompressible flow fields.

As discussed in [3], the technique should compare favorably with other finite element based methods in 2D.
The fact that all the DOF are located at the nodes and are shared by all the surrounding triangles leads to a
very compact representation. The C1 continuity property allows computation with spatial operators contain-
ing up to fourth-order derivatives without introducing new auxiliary variables. A split semi-implicit method is
used that breaks the full time advance into four sequential time advances, each involving smaller matrices.
These features make feasible direct solution of the resulting sparse matrix equations, avoiding the slow con-
vergence problems that would result if an iterative method were applied to these multiscale equations.

Illustrative examples are given of plane wave propagation, the computation of linear eigenmodes of a tilting
cylinder, and a challenging problem in magnetic reconnection. Earlier studies have also demonstrated the
applicability of this technique to the gravitational instability [13].

Work is presently underway to extend this work in several directions. It is being extended to cylindrical
geometry in order to be applicable to an axisymmetric torus. An adaptive algorithm is being implemented
to allow concentration of nodes in regions of high gradients. Three-dimensional extensions are being consid-
ered where the third dimension is represented by finite differences or by a spectral expansion. Indications are
that the techniques demonstrated here form a powerful base that can be extended into more complex
geometries.
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Appendix A. Definitions of the operators

I. Operators with 2 indices:
Ai;jUj �
Z Z

vir2U dndg

Bi;jUj �
Z Z

vir4U dndg

Di;jU j �
Z Z

viU dndg

X 0
i;jN j �

Z Z
vinx dndg

Y 0
i;jN j �

Z Z
viny dndg
II. Operators with three indices:
Ki;j;kWjUk �
Z Z

vi½w;U �dndg ¼ �Ki;k;jWjUk

K1
i;j;kWkUj �

Z Z
viwUdndg ¼ K1

i;k;jWkU j

K2
i;j;kN kV j �

Z Z
ðvin; V zÞdndg
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Gi;j;kWjUk �
Z Z

vi½r2w;U �dndg ¼ �
Z Z

r2w½mi;U �dndg

G2
i;j;kNk

_U j � �
Z Z

nðvi; _UÞdndg

G3
i;j;kU jN k �

Z Z
vi �nr4U � ðn;r2UÞ
	 


dndg ¼ �
Z Z

r2Ur � ðnrviÞdndg

G4
i;j;kWjWk �

Z Z
r2wðvi;wÞdndg

G5
i;j;kIjIk � �

Z Z
vi

1
2
r2I2dndg ¼

Z Z
IðI ; viÞdndg

G6A
i;j;k

_X jP k � �
Z Z

ðmi; ðp; _vÞÞdndg

G6B
i;j;k

_X jP k �
Z Z

pr2 _vr2midndg

G7
i;j;k

_U jP k � �
Z Z

ðmi; ½p; _U �Þdndg

G12
i;j;kIjIk �

Z Z
viðI2

xx þ I2
yy þ 2I2

xyÞdndg

G13
i;j;kEkP j �

Z Z
vir4ðpEÞdndg ¼

Z Z
r2vir2ðpEÞdndg

G14
i;j;kU jU k �

Z Z
mifðUyy � U xxÞ2 þ 4U 2

xygdndg

G15
i;j;kX jX k �

Z Z
mið4v2

xy � 4vxxvyy þ 2jr2vj2Þdndg

G16
i;j;kU jX k �

Z Z
mi4fU xyðvxx � vyyÞ þ vxyðU yy � UxxÞgdndg

G17
i;j;kX jX k �

Z Z
mijr2vj2dndg

H 3
i;j;kSwkWj �

Z Z
f�Jðmi; SwÞ � r2Swðmi;wÞgdndg

H 5
i;j;kSIkIj �

Z Z
f�Iðmi; SIÞ � SIðI ; miÞgdndg

X 1
i;j;kN kU j �

Z Z
vi½n;U �xdndg

X 2
i;j;kN kX j �

Z Z
vi½ðn; vÞ þ nr2v�xdndg

Y 1
i;j;kN kUj �

Z Z
vi½n;U �ydndg

Y 2
i;j;kN kX j �

Z Z
vi½ðn; vÞ þ nr2v�ydndg
III. Operators with four indices:
V 1
i;j;k;lNlU kU j ¼ V 2

i;k;j;lNlUkU j �
Z Z

f�nr2U ½mi;U � þ 1
2
n½mi; ðU ;UÞ�gdgdn

V 3
i;j;k;lNlX kU j ¼ V 4

i;k;j;lNlX kU j �
Z Z

mif�nr2Uðmi; vÞ þ ½n; mi�½v;U �gdgdn

V 5
i;j;k;lNlX kX j ¼ V 6

i;k;j;lNlX kX j � �1
2

Z Z
mi½n; ðv; vÞ�dgdn
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V 7
i;j;k;lNlU kV zj ¼ V 8

i;k;j;lN lUkV zj �
Z Z

vin½V z;U �dndg

V 9
i;j;k;lNlX kV zj ¼ V 10

i;k;j;lNlX kV zj �
Z Z

vinðV z; vÞdndg

V 11
i;j;k;lNlU kX j ¼ V 12

i;k;j;lNlU kX j �
Z Z

f�nr2U ½mi; v� � nðmi; ½v;U �Þgdgdn

V 13
i;j;k;lNlX kX j ¼ V 14

i;k;j;lN lX kX j � �1
2

Z Z
nðvi; ðv; vÞÞdgdn

V 15
i;j;k;lNlU kU j ¼ V 16

i;k;j;lNlUkU j �
Z Z

fnr2Uðmi;UÞ � 1
2
nðvi; ðU ;UÞÞgdgdn

C1
i;j;k;lWkWl

_Uj � r2w½½w; _U �; mi� þ ð½w; _U �; ½mi;w�Þ
C3

i;j;k;lWkWl
_X j � r2w½ðw; _vÞ; mi� þ ððw; _vÞ; ½mi;w�Þ

C5
i;j;k;lI lwk

_U j ¼ �½w; _U �½mi; I � þ ½I ; _U �½mi;w�
C7

i;j;k;lI lwk
_X j ¼ �ðw; _vÞ½mi; I � þ ðI ; _vÞ½mi;w� þ Ir2 _v½mi;w�

C9
i;j;k;lwlwk

_V j ¼ �½w; V j�½w; mi�
C11

i;j;k;lWlWk
_Uj ¼ �ððmi;wÞ; ½w; _U �Þ þ r2wðmi; ½w; _U �Þ

C13
i;j;k;l

_X jWkWl ¼ �ððmi;wÞ; ðw; _vÞÞ þ r2wðmi; ðw; vÞÞ
C15

i;j;k;l
_V jWkIl ¼ �I ½w; _V �r2mi

C17
i;j;k;l

_X jIkIl ¼ �I ½Ir2 _vþ ðI ; _vÞ�r2mi

U 1
i;j;k;lElWjWk ¼ U 2

i;k;j;lElWjWk ¼ �
Z Z

r2WE½vi;W�dndg

U 3
i;j;k;lElWjI k ¼ U 4

i;k;j;lElWjIk ¼
Z Z

viE½W; I �dndg

U 5
i;j;k;lElP ejIk ¼ U 6

i;k;j;lElP ejIk ¼
Z Z

viP e½E; I �dndg
Appendix B. Computation of the operators

Each of the scalar variables is expanded within each element as a sum over the 18 basis functions, for exam-
ple as given in Eq. (3.2). Each basis function is a quintic polynomial in the local triangle coordinates given in
[3], i.e.
mj �
X20

i¼1

gi;jn
migni ðB:1Þ
To obtain the form of the operators, we expand all variables in the polynomial representation and apply the
operation and integrations in the local coordinates. Thus, for example,
Ai;jUj �
Z Z

miðn; gÞr2/ðn; gÞdndg ¼ �
Z Z

rmiðn; gÞ � r/ðn; gÞdndg

¼ �
X20

p¼1

X20

q¼1

X18

j¼1

gp;igq;j mpmq

Z Z
nmpþmq�2gnpþnq dndgþ npnq

Z Z
nmpþmqgnpþnq�2dndg

� �
ðB:2Þ
where gp,i is the geometry matrix defined in [3] and the integrals over the triangle are evaluated in closed form.
In the concise notation that follows, we will write this as
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Ai;jUj ¼ �½mpmqF ð�2; 0Þ þ npnqF ð0;�2Þ�: ðB:3Þ

The summations, the multiplication by the appropriate geometry matrices, and the integrals involving the mi

and ni are implied. The other operators are computed similarly, using the same notation.
2Þ
Bi;j ¼ mpðmp � 1Þmqðmq � 1Þ � F ð�4; 0Þ þ npðnp � 1Þnqðnq � 1Þ � F ð0;�4Þ
þ ½mpðmp � 1Þnqðnq � 1Þ þ mqðmq � 1Þnpðnp � 1Þ� � F ð�2;�2Þ

Di;j ¼ F ð0; 0Þ
X 0

i;j ¼ cos hmqF ð�1; 0Þ � sin hnqF ð0;�1Þ
Y 0

i;j ¼ sin hmqF ð�1; 0Þ þ cos hnqF ð0;�1Þ
Ki;j;k ¼ ðmqnr � mrnqÞF ð�1;�1Þ
K1

i;j;k ¼ F ð0; 0Þ
K2

i;j;k ¼ ðmp þ mrÞmqF ð�2; 0Þ þ ðnp þ nrÞnqF ð�2; 0Þ
Gi;j;k ¼ �ðmpnr � mrnpÞ½mqðmq � 1ÞF ð�3;�1Þ þ nqðnq � 1ÞF ð�1;�3Þ�
G2

i;j;k ¼ �½mpmqF ð�2; 0Þ þ npnqF ð0;�2Þ�
G3

i;j;k ¼ ½mpmqðmq � 1Þðmp þ mr � 1Þ�F ð�4; 0Þ þ ½npnqðnq � 1Þðnp þ nr � 1Þ�F ð0;�4Þ
þ ½npmqðmq � 1Þðnp þ nr � 1Þ þ mpnqðnq � 1Þðmp þ mr � 1Þ�F ð�2;�2Þ

G4
i;j;k ¼ mqðmq � 1ÞmpmrF ð�4; 0Þ þ nqðnq � 1ÞnpnrF ð0;�4Þ

þ ½mqðmq � 1Þnpnr þ nqðnq � 1Þmpmr�F ð�2;�2Þ
G5

i;j;k ¼ mpmrF ð�2; 0Þ þ npnrF ð0;�2Þ
G6

i;j;k ¼ ½mpmqf�mrðmr þ mq � 2Þ þ cðmq � 1Þðmp � 1Þg�F ð�4; 0Þ
þ þmpnqf�nrðmr þ mqÞ þ cðnq � 1Þðmp � 1Þg þ npmqf�mrðnr þ nqÞ þ cðmq � 1Þðnp � 1Þg½ �F ð�2;�
þ ½npnqf�nrðnr þ nq � 2Þ þ cðnq � 1Þðnp � 1Þg�F ð0;�4Þ

G7
i;j;k ¼ �ðmrnq � mqnrÞ½mpðmr þ mq � 1Þ � F ð�3;�1Þ þ npðnr þ nq � 1Þ � F ð�1;�3Þ�

G12
i;j;k ¼ mqðmq � 1Þmrðmr � 1Þ � F ð�4; 0Þ þ 2mqmrnqnr � F ð�2;�2Þ

þ nqðnq � 1Þnrðnr � 1Þ � F ð0;�4Þ
G13

i;j;k ¼ ðmq þ mrÞðmq þ mr � 1Þmpðmp � 1Þ � F ð�4; 0Þ

þ
ðmq þ mrÞðmq þ mr � 1Þnpðnp � 1Þ
þðnq þ nrÞðnq þ nr � 1Þmpðmp � 1Þ

� �
� F ð�2;�2Þ

þ ðnq þ nrÞðnq þ nr � 1Þnpðnp � 1Þ � F ð0;�4Þ
G14

i;j;k ¼ mqðmq � 1Þmrðmr � 1ÞF ð�4; 0Þ þ nqðnq � 1Þnrðnr � 1ÞF ð0;�4Þ
þ ½�nqðnq � 1Þmrðmr � 1Þ � mqðmq � 1Þnrðnr � 1Þ þ 4mqnqmrnr�F ð�2;�2Þ

G15
i;j;k ¼ 2½mqðmq � 1Þmrðmr � 1ÞF ð�4; 0Þ þ nqðnq � 1Þnrðnr � 1ÞF ð0;�4Þ þ 2mqnqmrnrF ð�2;�2Þ�

G16
i;j;k ¼ 4mqmr½nqðmr � 1Þ � nrðmq � 1Þ�F ð�3;�1Þ � 4nqnr½mqðnr � 1Þ � mrðnq � 1Þ�F ð�1;�3Þ

G17
i;j;k ¼ mqðmq � 1Þmrðmr � 1ÞF ð�4; 0Þ þ nqðnq � 1Þnrðnr � 1ÞF ð0;�4Þ

þ ½mqðmq � 1Þnrðnr � 1Þ þ nqðnq � 1Þmrðmr � 1Þ�F ð�2;�2Þ
H 3

i;j;k ¼ �mpmqmrðmr þ mq � 2ÞF ð�4; 0Þ � npnqnrðnr þ nq � 2ÞF ð0;�4Þ
� ½mqnrðmpðnr � 1Þ þ npðmq � 1ÞÞ þ nqmrðnpðmr � 1Þ þ mpðnq � 1ÞÞ�F ð�2;�2Þ

H 5
i;j;k ¼ �mpðmr þ mqÞF ð�2; 0Þ � npðnr þ nqÞF ð0;�2Þ

X 1
i;j;k ¼ ðmqnr � mrnqÞ½mp cos hF ð�2;�1Þ þ np sin hF ð�1;�2Þ�
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X 2
i;j;k ¼ �mqðmr þ mq � 1Þ½mp cos hF ð�3; 0Þ � np sin hF ð�2;�1Þ�

� nqðnr þ nq � 1Þ½mp cos hF ð�1;�2Þ � np sin hF ð0;�3Þ�
Y 1

i;j;k ¼ ðmqnr � mrnqÞ½mp sin hF ð�2;�1Þ þ np cos hF ð�1;�2Þ�
Y 2

i;j;k ¼ �mqðmr þ mq � 1Þ½mp sin hF ð�3; 0Þ þ np cos hF ð�2;�1Þ�
� nqðnr þ nq � 1Þ½mp sin hF ð�1;�2Þ þ np cos hF ð0;�3Þ�

V 1
i;j;k;l ¼

mqfmr½ðmq � 1Þðns þ npÞ � nqms� � nrmpðmq � 1Þg � F ð�3;�1Þ
þnqfmrnpðnq � 1Þ þ nr½mqns � ðnq � 1Þðms þ mpÞ�g � F ð�1;�3Þ

� �

V 3
i;j;k;l ¼

½�mrmpmqðmq � 1Þ�F ð�4; 0Þ

þ
mrnq½ðmr þ mq � 1Þns � ðnq � 1Þðms þ mpÞ � msnr�
þnrmq½ðnr þ nq � 1Þms � ðmq � 1Þðns þ npÞ � nsmr�

� �
F ð�2;�2Þ

þ½�nrnpnqðnq � 1Þ�F ð0;�4Þ

8>>><
>>>:

9>>>=
>>>;

V 5
i;j;k;l ¼ 1

2
ðmsnp � mpnsÞ½mrmqF ð�3;�1Þ þ nrnqF ð�1;�3Þ�

V 7
i;j;k;l ¼ ½mqnr � mrnq�F ð�1;�1Þ

V 9
i;j;k;l ¼ ½mqmrF ð�2; 0Þ þ nqnrF ð0;�2Þ�

V 11
i;j;k;l ¼

�½ðmpnq � mqnpÞmrðmr � 1Þ þ ðmqnr � mrnqÞmpðmq þ mr � 1Þ�F ð�3;�1Þ
�½ðmpnq � mqnpÞnrðnr � 1Þ þ ðmqnr � mrnqÞnpðnq þ nr � 1Þ�F ð�1;�3Þ

� �

V 13
i;j;k;l ¼

1
2
mpmqmrðmp þ ms � 1ÞF ð�4; 0Þ

þ 1
2

mpnqnrðmp þ ms � 1Þ
þnpmqmrðnp þ ns � 1Þ

� �
F ð�2;�2Þ

þ 1
2
npnqnrðnp þ ns � 1ÞF ð0;�4Þ

8>>><
>>>:

9>>>=
>>>;

V 15
i;j;k;l ¼

� 1
2
mpmrmqðmr � mqÞ

� �
F ð�4; 0Þ

þ
mpmrnqðnq � 1Þ þ npnrmqðmq � 1Þ
� 1

2
mpnrnqðmr þ mqÞ � 1

2
npmrmqðnr þ nqÞ

� �
F ð�2;�2Þ

þ � 1
2
npnrnqðnr � nqÞ

� �
F ð0;�4Þ

8>>>><
>>>>:

9>>>>=
>>>>;

C1
i;j;k;l ¼ ðmsnq � mqnsÞ �

mrðmr � 1Þ½ðms þ mq � 1Þnp � mpðns þ nq � 1Þ�
þðmpnr � mrnpÞðms þ mq � 1Þðmp þ mr � 1Þ

� �
F ð�4;�2Þ

þ
nrðnr � 1Þ½ðms þ mq � 1Þnp � mpðns þ nq � 1Þ�
þðmpnr � mrnpÞðns þ nq � 1Þðnp þ nr � 1Þ

� �
F ð�2;�4Þ

8>>><
>>>:

9>>>=
>>>;

C3
i;j;k;l ¼ mrmq

ðmpns � msnpÞ½ðmr þ mq � 2Þðmp þ ms � 1Þ�
þmsðms � 1Þ½ðmr þ mq � 2Þnp � mpðnr þ nqÞ�

� �
F ð�5;�1Þ

þ
mrmq

ðmpns � msnpÞ½ðnr þ nqÞðnp þ ns � 1Þ�
þnsðns � 1Þ½ðmr þ mq � 2Þnp � mpðnr þ nqÞ�


 �

þnrnq
ðmpns � msnpÞ½ðmr þ mqÞðmp þ ms � 1Þ�
þmsðms � 1Þ½ðmr þ mqÞnp � mpðnr þ nq � 2Þ�


 �
8>>><
>>>:

9>>>=
>>>;

F ð�3;�3Þ

þ nrnq

ðmpns � msnpÞ½ðnr þ nq � 2Þðnp þ ns � 1Þ�
þnsðns � 1Þ½ðmr þ mqÞnp � mpðnr þ nq � 2Þ�

� �
F ð�1;�5Þ

C5
i;j;k;l ¼ ½�ðmrnq � mqnrÞðmpns � msnpÞ þ ðmsnq � mqnsÞðmpnr � mrnpÞ�F ð�2;�2Þ

C7
i;j;k;l ¼ �mqfmrðmpns � msnpÞ þ ðmrnp � mpnrÞ½ms þ mq � 1�gF ð�3;�1Þ

� nqfnrðmpns � msnpÞ þ ðmrnp � mpnrÞ½ns þ nq � 1�gF ð�1;�3Þ
C9

i;j;k;l ¼ �ðmrnp � mpnrÞðmsnq � mqnsÞF ð�2;�2Þ
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C11
i;j;k;l ¼ �ðmsnq � mqnsÞ �

mpmrðmp � 1Þðms þ mq � 1ÞF ð�5;�1Þ
ðnpnrðmp þ mrÞ � mpnrðnr � 1ÞÞðms þ mq � 1Þ
þðmpmrðnp þ nrÞ � npmrðmr � 1ÞÞðns þ nq � 1Þ

� �
F ð�3;�3Þ

npnrðnp � 1Þðns þ nq � 1ÞF ð�1;�5Þ

2
6664

3
7775

C13
i;j;k;l ¼

�ðmp � 1Þmsmpmrmqðmr þ mq � 2ÞF ð�6; 0Þ

þ
½npðms � 1Þ � mpðnp þ nsÞ�msmrmqðnr þ nqÞ
þ½ðns � np � 1Þmp � npms�nsmrmqðmr þ mq � 2Þ
þð1� mpÞnrnqmpmsðmr þ mqÞ

8><
>:

9>=
>;F ð�4;�2Þ

þ
½mpðns � 1Þ � npðmp þ msÞ�nsnrnqðmr þ mqÞ
þ½ðms � mp � 1Þnp � mpns�msnrnqðnr þ nq � 2Þ
þð1� npÞmrmqnpnsðnr þ nqÞ

8><
>:

9>=
>;F ð�2;�4Þ

�ðnp � 1Þnsnpnrnqðnr þ nq � 2ÞF ð0;�6Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

C15
i;j;k;l ¼ �ðmrnq � mqnrÞ½mpðmp � 1ÞF ð�3;�1Þ þ npðnp � 1ÞF ð�1;�3Þ�

C17
i;j;k;l ¼ �mpmq½ðmq þ ms � 1Þðmp � 1Þ�F ð�4; 0Þ þ npnq½ðnq þ ns � 1Þðnp � 1Þ�F ð0;�4Þ

þ fnpmq½ðmq þ ms � 1Þðnp � 1Þ� þ mpnq½ðnq þ ns � 1Þðmp � 1Þ�gF ð�2;�2Þ
U 1

i;j;k;l ¼ �½mpnr � mrnp� � ½mqðmq � 1ÞF ð�3;�1Þ þ nqðnq � 1ÞF ð�1;�3Þ�
U 3

i;j;k;l ¼ ðmqnr � mrnqÞF ð�1;�1Þ
U 5

i;j;k;l ¼ ðmsnr � mrnsÞF ð�1;�1Þ
Appendix C. The implicit time advance for a simple wave equation

Here we apply the time advance used in the paper to a simple wave equation to clarify the derivation, sta-
bility properties, and accuracy. Consider a wave equation written as two first-order equations:
ou
ot
¼ c

ov
ox

ov
ot
¼ c

ou
ox

ðC:1Þ
Rewrite this system, centering the time derivatives at time cycle n + 1/2, and Taylor expanding the space deriv-
atives forward in time about time n:
ou
ot
¼ c

o

ox
vn þ hdt

ov
ot

� �
ov
ot
¼ c

o

ox
un þ hdt

ou
ot

� � ðC:2Þ
Or, upon substitution of the second equation into the first:
ou
ot
¼ c

o

ox
vn þ hdt c

o

ox
un þ hdt

ou
ot

� �
 �� �
ov
ot
¼ c

o

ox
un þ hdt

ou
ot

� � ðC:3Þ
Expanding the time-centered time derivatives as dtou=ot ¼ unþ1 � un, and rearranging, Eq. (C.3) becomes:
1� h2ðdtÞ2c2 o2

ox2

� �
unþ1 ¼ 1þ hð1� hÞðdtÞ2c2 o2

ox2

� �
un þ dtc

o

ox
vn



2174 S.C. Jardin et al. / Journal of Computational Physics 226 (2007) 2146–2174
vnþ1 ¼ vn þ dtc h
o

ox
unþ1 þ ð1� hÞ o

ox
un

� �
If we evaluate the spatial derivatives using centered differences or finite elements, the system (C.4) is second-
order accurate in time for h = 1/2 and unconditionally stable for h P 1/2. Note that the two equations in (C.4)
can be solved sequentially, so that the implicit system only involves one variable. The first equation in (C.3) is
the analogue of Eq. (4.5), and the first equation in (C.4) is the analogue of Eq. (4.7).
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