
Phys. Plasmas 23, 056114 (2016); https://doi.org/10.1063/1.4948722 23, 056114

© 2016 Author(s).

Multi-region approach to free-boundary
three-dimensional tokamak equilibria and
resistive wall instabilities
Cite as: Phys. Plasmas 23, 056114 (2016); https://doi.org/10.1063/1.4948722
Submitted: 09 February 2016 • Accepted: 19 April 2016 • Published Online: 20 May 2016

N. M. Ferraro,  S. C. Jardin,  L. L. Lao, et al.

ARTICLES YOU MAY BE INTERESTED IN

Axisymmetric simulations of vertical displacement events in tokamaks: A benchmark of M3D-

C1, NIMROD, and JOREK
Physics of Plasmas 27, 022505 (2020); https://doi.org/10.1063/1.5127664

Modelling of NSTX hot vertical displacement events using 
Physics of Plasmas 25, 056106 (2018); https://doi.org/10.1063/1.5016348

 Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations
Physics of Plasmas 24, 102511 (2017); https://doi.org/10.1063/1.4990704

https://images.scitation.org/redirect.spark?MID=176720&plid=1953395&setID=418178&channelID=0&CID=715917&banID=520851883&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=943673ec9f4ebc46f9e1ff1533935ced61fca9d9&location=
https://doi.org/10.1063/1.4948722
https://doi.org/10.1063/1.4948722
https://aip.scitation.org/author/Ferraro%2C+N+M
http://orcid.org/0000-0001-6390-6908
https://aip.scitation.org/author/Jardin%2C+S+C
http://orcid.org/0000-0003-1937-2675
https://aip.scitation.org/author/Lao%2C+L+L
https://doi.org/10.1063/1.4948722
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4948722
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4948722&domain=aip.scitation.org&date_stamp=2016-05-20
https://aip.scitation.org/doi/10.1063/1.5127664
https://aip.scitation.org/doi/10.1063/1.5127664
https://doi.org/10.1063/1.5127664
https://aip.scitation.org/doi/10.1063/1.5016348
https://doi.org/10.1063/1.5016348
https://aip.scitation.org/doi/10.1063/1.4990704
https://doi.org/10.1063/1.4990704


Multi-region approach to free-boundary three-dimensional tokamak
equilibria and resistive wall instabilities

N. M. Ferraro,1,a),b) S. C. Jardin,2 L. L. Lao,1 M. S. Shephard,3 and F. Zhang3

1General Atomics, La Jolla, California 92186, USA
2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
3Rensselaer Polytechnic Institute, Troy, New York 12180, USA

(Received 9 February 2016; accepted 19 April 2016; published online 20 May 2016)

Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new

resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surround-

ing vacuum region are included within the computational domain. This implementation contrasts

with the method typically used in fluid codes in which the resistive wall is treated as a boundary

condition on the computational domain boundary and has the advantage of maintaining purely local

coupling of mesh elements. This new capability is used to simulate perturbed, free-boundary non-

axisymmetric equilibria; the linear evolution of resistive wall modes; and the linear and nonlinear

evolution of axisymmetric vertical displacement events (VDEs). Calculated growth rates for a

resistive wall mode with arbitrary wall thickness are shown to agree well with the analytic theory.

Equilibrium and VDE calculations are performed in diverted tokamak geometry, at physically real-

istic values of dissipation, and with resistive walls of finite width. Simulations of a VDE disruption

extend into the current-quench phase, in which the plasma becomes limited by the first wall, and

strong currents are observed to flow in the wall, in the SOL, and from the plasma to the wall.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948722]

I. INTRODUCTION

The macroscopic evolution and stability of tokamak

plasmas may be strongly influenced by the interaction

between the plasma and surrounding conducting structures.

Disruptive instabilities, which often involve substantial

changes to the magnetic field at the location of the resistive

wall, are particularly sensitive to the presence of these struc-

tures. Several fluid codes include the ability to model a thin

wall of finite resistivity (typically called a “resistive wall”)

surrounding the plasma, usually by shaping the computa-

tional domain boundary like the physical wall and applying

appropriate boundary conditions. We explore an alternative

method here, in which the resistive wall and the vacuum

region external to the wall are included as spatially resolved

regions within the computational domain. This method,

implemented in the M3D-C1 code and described in detail in

Section II, has some advantages over the boundary condition

method, including the property that it maintains local cou-

pling of mesh elements.

Here, we demonstrate the capability of this new model

to address a variety of applications for which the resistive

wall plays a crucial role. External kinks that are stable in the

presence of a perfectly conducting wall may become unsta-

ble when the wall has finite resistivity. These resistive wall

modes (RWMs) are an important instability which often set

the upper limit for achievable plasma pressure in tokamaks.

In Section III, we validate the implementation of the resistive

wall model in M3D-C1 by benchmarking against an analytic

solution for a RWM. This benchmarking is done over a wide

range of wall resistivities and widths, spanning both the iner-

tial and resistive wall regimes of the instability.

Stationary plasma equilibria are generally insensitive to

the presence of a resistive wall, since the lack of time varia-

tion implies the absence of inductively driven currents in

the wall. (Time independence implies the absence of a toroi-

dal loop voltage, which is driven by a time-varying flux.)

However, the presence of a perfectly conducting boundary

close to the plasma in a numerical model will prevent the

relaxation of the plasma to its proper stationary equilibrium.

We show how the resistive wall model here may be used to

obtain accurate time-independent axisymmetric and non-

axisymmetric equilibria with M3D-C1. The capability to

calculate the non-axisymmetric equilibria is of considerable

interest, because the application of non-axisymmetric fields

to the plasma is observed to have a significant effect on the

transport and stability properties of a tokamak plasma.

These effects may include the suppression of edge-localized

modes (ELMs), enhanced particle transport (“pump-out”),

and torquing of the plasma. The phenomenology of these

effects varies among tokamaks and among different parame-

ter regimes within a tokamak. This complexity is due in part

to the fact that the plasma generally responds strongly to the

applied fields by amplifying and suppressing various spec-

tral components of the magnetic field. Thus, the magnetic

equilibrium in the presence of the plasma is generally very

different from the sum of the equilibrium (axisymmetric)

magnetic field and the applied non-axisymmetric fields.

Progress toward a complete physical understanding and a

predictive modeling capability of the observed effects of
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non-axisymmetric fields therefore requires a capability to

calculate both the resulting non-axisymmetric magnetic ge-

ometry and also the changes in transport that are induced by

the perturbed magnetic geometry. Both aspects have been

the object of significant effort in recent years.

In Section IV, we describe modifications to the M3D-C1

Grad-Shafranov solver necessary to obtain axisymmetric

equilibria suitable for linear stability calculations with M3D-

C1. This is an important step in obtaining accurate stability

and response predictions, since directly interpolating the

Grad-Shafranov solution from separate equilibrium codes

often leads to unacceptably large errors in the toroidal cur-

rent density.

It is demonstrated in Section V that perturbed free-

boundary non-axisymmetric equilibria in the presence of

applied non-axisymmetric fields may be calculated using the

resistive wall model. This is done by calculating the time-

independent solution to the extended-MHD equations, line-

arized about the axisymmetric equilibrium obtained using

the Grad-Shafranov solutions described in Section IV. These

solutions differ from previously published solutions in that

now, using the resistive wall model, the magnetic perturba-

tions due to response currents in the plasma are allowed to

extend beyond the wall. This leads to quantitative differen-

ces in the calculated internal response of the plasma.

Validation of this capability against experimental data was

done as part of a recent experimental campaign among US

tokamaks and has been published separately.1

Finally, the resistive wall model is applied to the linear,

nonlinear, and early current-quench phases of an axisymmet-

ric vertical displacement event (VDE). Vertical displacement

events are axisymmetric, vertical motions of the plasma

caused by a loss of vertical stability. These events result in

the intersection of the plasma with the plasma-facing walls

of the tokamak, the loss (“quench”) of the thermal energy

and current in the plasma, and the uncontrolled termination

(“disruption”) of the discharge.2 The term “VDE” typically

refers to the case when vertical stability is lost during normal

operation of the tokamak, but vertical stability may also be

lost as a secondary instability after a thermal quench result-

ing from a different event. In either case, the vertical motion

of the plasma into the wall may result in large thermal loads

on the wall and may drive currents in the surrounding con-

ducting structures that may cause significant electromagnetic

forces.3 In Section VI, the axisymmetric evolution of a VDE

is simulated for a wide range of wall resistivities. VDE cal-

culations of this type, in which the resistive wall is treated as

a region within the computational domain, have been done

previously using the TSC code.4,5 Unlike the TSC calcula-

tions, here we do not prescribe a temperature or width for the

“Halo” region; rather, here the currents and temperature in

this region evolve according to the same extended-MHD

equations that govern the plasma evolution. It is shown that

the maximum current in the wall, and hence the maximum

force on the vessel, is largely independent of the wall resis-

tivity. The timescale of the instability increases with the wall

conductivity, however, and therefore the total impulse on the

vessel also increases with the wall conductivity. A spike in

the toroidal current is also observed when the plasma comes

into contact with the wall.

II. MODEL IMPLEMENTED IN M3D-C1

The implementation of the resistive wall model in M3D-

C1 differs somewhat from the method used both in comparable

parallel, nonlinear MHD codes, including M3D,6 JOREK,7

and NIMROD,8,9 and serial, linear MHD codes such as

MARS.10 In those codes, the resistive wall is implemented as a

boundary condition in which the component of the magnetic

field tangential to the simulation domain boundary at each

point on the boundary is related to the normal component of

the field at all boundary points: Btan
i ¼ MijB

norm
j . The matrix

M, usually calculated using a Green’s function approach,

depends only the geometry and conductivity of external con-

ducting structures and on any externally applied currents (e.g.,

from magnetic coils); as long as these are time-independent, M
will also be constant. An advantage of this method is that M
may be calculated using a separate code such as VACUUM,11

STARWALL,7 or GRIN12 that contains an accurate, and possi-

bly very complicated, description of the external conducting

structures and currents, sparing the MHD code from these

details. A disadvantage for parallel codes is the non-locality

of the boundary condition. Since M couples together all of

the degrees of freedom on the boundary, this necessitates

communication among non-adjacent domains in domain-

decomposed parallelization schemes. This will adversely affect

the scalability of both the construction and solution of matrix

equations, especially if the boundary conditions are imple-

mented implicitly.

M3D-C1 avoids the problems associated with non-locality

by including the resistive wall and the surrounding vacuum

region as distinct regions within its computational domain.

This limits, to some extent, the complexity of the external con-

ducting structures that can be modeled. In particular, the geom-

etry of the resistive wall must be axisymmetric, because the

mesh in M3D-C1 is composed of triangular prisms and cannot

vary toroidally at the present time. Properties of the wall, such

as the resistivity, may vary arbitrarily.

The magnetic field is explicitly split into the part due to

currents in the plasma and wall, ~B
p
, and the part due to cur-

rents in external coils, ~B
x

~B ¼ ~B
p þ ~B

x
: (1)

The finite element representation of the external field ~B
x

is

calculated from a description of external coils using Green’s

functions. Since the current density of the external field

never enters into the dynamical equations, the current den-

sity in the code is taken to be ~J ¼ r� ~B
p
=l0.

An example of a M3D-C1 mesh with a resistive wall

region using the wall geometry of the DIII-D tokamak is

shown in Figure 1. There are three regions: a “plasma”

region, which includes the entire region enclosed by the

resistive wall; a “resistive wall” region; and an “external

vacuum” region, which extends from the outer boundary of

the resistive wall to the computational domain boundary.
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A different set of equations is solved in each mesh

region. In the plasma region, the full two-fluid model is

implemented

@ni

@t
þr � ni~vð Þ ¼ 0; (2)

mini
@~v

@t
þ~v � r~v

� �
¼ ~J � ~B �rp�r �Pi; (3)

@p

@t
þ~v � rpþ Cpr �~v ¼ C� 1ð Þ gJ2 �r �~q �Pi :~v

� �
þ 1

nee
~J � rpe � C

rni

ni
pe

� �
;

(4)

@pe

@t
þ~v � rpe þ Cper �~v ¼ C� 1ð Þ gJ2 �r �~qe

� �
þ 1

nee
~J � rpe � C

rni

ni
pe

� �
;

(5)

@~B
p

@t
¼ �r� ~E; (6)

where

P ¼ �lðr~v þr~vtÞ þPki þP�
i ; (7)

~E ¼ g~J �~v � ~B þ 1

nee
~J � ~B �rpe

� �
; (8)

~q ¼ �jrðTe þ TiÞ; (9)

~qe;i ¼ �jrTe � jk
~B~B

B2
� rTe: (10)

The implementation of the parallel and ion gyroviscosity, Pki
and P�

i , is described in more detail in Ref. 13, and these

terms are not included in the results presented here. Note

that the open field-line region between the last-closed flux

surface (LCFS) and the resistive wall, where the plasma has

low density and high resistivity, is also treated using these

equations.

The resistive wall region only includes the resistive

Faraday’s law

@~B
p

@t
¼ �r� gw

~J
p

� �
: (11)

In the external vacuum region, the only constraint is that the

field remains current-free

r� ~B
p ¼ 0 (12)

(M3D-C1 uses a vector potential formulation of the magnetic

field, so r � ~B ¼ 0 is satisfied manifestly.)

Two types of time-steps are implemented in M3D-C1: a

split, semi-implicit method, in which the fluid velocity and

magnetic field are advanced separately, and a h-implicit

method in which all variables are advanced together.13 In

both cases, the magnetic field in the wall and external vac-

uum region is advanced simultaneously with the magnetic

field in the plasma; in fact, there is no distinction between

these fields in the code.

Although the~v, p, pe, and ni fields extend into the resis-

tive wall and external vacuum region, their values in these

regions do not enter into the dynamical equations and there-

fore do not affect the solution. In M3D-C1, these fields are

set to a constant value in these regions, and boundary condi-

tions on these fields are set at the interface between the resis-

tive wall region and the plasma region. In the calculations

presented here, no-slip, no-normal-flow (~v ¼ 0) conditions

are enforced on the velocity, and uniform Dirichlet condi-

tions are set on ni, p, and pe. There is no boundary condition

on ~B
p

at this interface; rather, the boundary condition that ~B
p

is constant is enforced on the computational domain bound-

ary (the boundary enclosing the external vacuum region).

III. RESISTIVE WALL MODE

In this section, we validate the implementation of the

resistive wall model in M3D-C1 by comparing the calculated

linear growth rate of a resistive wall mode in a straight cylin-

der against an analytic solution derived by Liu et al.14 The

equilibrium is given by

JzðrÞ ¼
J0 r < r0

0 r > r0;

�
(13)

BzðrÞ ¼ B0; (14)

qðrÞ ¼ q0 r < r0

0 r > r0;

�
(15)

with no equilibrium rotation, where z is the axial coordinate.

The perturbed fields are taken to have the form

d~B ¼ rw� ẑ; (16)

d~v ¼ r/� ẑ; (17)

w ¼ ~wðrÞeiðmh�nz=R0Þþct; (18)

FIG. 1. A mesh in which the resistive wall region is an approximation of the

DIII-D first wall is shown. The magenta line shows the magnetic separatrix.

The simulation domain boundary, vacuum-wall boundary, and wall-plasma

boundary are shown in purple, green, and blue, respectively. Right: a smaller

area of the mesh near the lower divertor, showing the discretization of the

resistive wall region.
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/ ¼ ~/ðrÞeiðmh�nz=R0Þþct; (19)

where 2pR0 is the axial period of the cylinder. The region

r < r0 is treated using the ideal MHD equations; r > r0 is

treated using the “vacuum-like” equation r2
?w¼r2w�@2

z w
¼ 0. A thin conformal wall having thickness d and resistivity

gw is present at r¼rw.

It is important to note here that the treatment of the vac-

uum region in this derivation is not strictly physical.

Representing the vacuum field using Equation (16) implies a

current density in the vacuum

d~J ¼ 1

l0

r� d~B ¼ � 1

l0

ẑr2
?wþ

in

R0

r?w
� �

; (20)

which requires w¼ 0 in a true vacuum. Instead, Liu et al. use

the “vacuum-like” equation r2
?w ¼ 0 in the region r > r0,

which eliminates the axial current density but allows perpen-

dicular (to z) current density in the “vacuum” region. In real-

ity, these perpendicular currents would be eliminated by

perturbations to the toroidal field, but those are not included

explicitly in the model here.

The resulting resistive wall mode dispersion relation

remains useful for benchmarking, but care must be taken to

ensure that the numerical treatment of the vacuum region is

consistent with this “vacuum-like” equation. This means that

either variations to the toroidal field must be allowed by

allowing a different representation of the magnetic field in

the vacuum region or perpendicular currents must be allowed

in the “vacuum” region. Since M3D-C1 represents the ~B and

~v fields using a flux / potential formulation, it is simple to

restrict the form of the perturbations to the two-field model

assumed in Equations (16) and (17);15 we choose to use this

reduced model here to ensure that the analytic result is

strictly applicable. M3D-C1 uses the same representation of

the magnetic field throughout its domain, including in the

“vacuum” regions, and therefore we must allow perpendicu-

lar currents in the “vacuum” regions in order to compare

with the Liu et al. result. We do this by modifying the form

of the resistive diffusion operator in M3D-C1 to neglect the

damping of the perpendicular components of the current den-

sity. (This modified form is only used for benchmarking in

this section and is not generally used in the code.) We note

that the failure of a recent benchmarking activity16 using

JOREK to find good quantitative agreement with the Liu

et al. result might be due to JOREK representing the mag-

netic field between the plasma and resistive wall using

Equation (16) and not appropriately modifying the resistivity

there to allow perpendicular currents.

The analytic result of Liu et al., obtained using the thin-

wall approximation, is the following dispersion relation:

�

m� nq0

� 1

1� csw

csw þ l
r0

rw

� �2l ¼
csAð Þ2

2

q2
0

m� nq0ð Þ2
; (21)

where sw¼l0rwd=2gw;sA¼
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
R0=B0;q0¼2B0=ðR0l0J0Þ;

l¼jmj, and �¼m=l. In the ideal-wall limit, where csw�l,

Equation (21) reduces to

csAð Þ2 ¼
2 m� nq0ð Þ2

q2
0

�

m� nq0

� 1

1� r0=rwð Þ2l

" #
: (22)

When the equilibrium is unstable in this limit, the instability

is more properly termed an external kink. In the no-wall

limit, where csw � l, Equation (21) reduces to

csAð Þ2 ¼
2

q2
0

m� nq0ð Þ � � m� nq0ð Þ½ �: (23)

In the limit in which the growth rate is sufficiently slow that

inertia does not play a role, sw � sA, Equation (21) reduces

to

csw ¼ �l
1� � m� nq0ð Þ

1� � m� nq0ð Þ � r0=rwð Þ2l : (24)

M3D-C1 is run here using straight cylinder geometry, as

is assumed by Liu et al., rather than using high-aspect ratio

toroidal geometry. We use the same equilibrium used in a

recent JOREK benchmark16 with R¼ 10 m, r0¼ 0.8825 m,

B0¼ 1 T, and q0¼ 1.1. The density varies from q0 ¼ 1020

m�3 in the plasma to 1017 m�3 in the region between the

plasma and the wall, following a tanh profile in the normal-

ized poloidal flux W centered at W ¼ 1 and having width

DW ¼ 0:01. Resistivity is taken to be discontinuous with

g ¼ 2:745� 10�8 X m when r < r0 and 2:745� 102 X m

when r0 < r < rw.

First, we consider the ideal wall limit. Here, no resistive

wall model is present; the wall is modeled using perfectly

conducting boundary conditions at the simulation domain

boundary. The radius of the conducting wall is varied between

rw ¼ 1:4 and rw¼ 2.5 m. The M3D-C1 results, shown in

Figure 2, are found to be in good agreement with the analytic

result, Equation (22). The small difference between the calcu-

lated growth rate and the analytic solution is mainly due to

the finite radial resolution (about 1 mm here) at the plasma-

vacuum interface, where the analytic solution has a singular

current layer.

Next, we consider the case with a resistive wall. Here,

we include a resistive wall region from r¼ rw¼ 1.2 m to

r¼ rwþ d¼ 1.22 m. Since the ideal-wall external kink mode

FIG. 2. The growth rate of the external kink as a function of the radius of a

conformal conducting wall.
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is stable at this value of rw, the instability found here is a

RWM. The computational domain boundary is placed at

r¼ 4, which is far enough out so as not to noticeably affect

the growth rate. The growth rate is also calculated over a

range of gw. These growth rates are compared with the ana-

lytic thin-wall solution, Equation (21), in Figure 3. Again,

excellent agreement is found through both the resistive

(sA=sw � 1) and inertial (sA=sw � 1) regimes.

Finally, we demonstrate the capability of this method to

resolve currents in the resistive wall by calculating the resistive

wall mode growth rate for walls in which the thin wall limit is

invalid. In Figure 4, the calculated growth rate, with d ranging

from 2 cm to 50 cm, is compared both with the thin wall solu-

tion, Equation (21), and with the general analytic solution

�

m� nq0

� 1

1� F
r0

rw

� �2l ¼
csAð Þ2

2

q2
0

m� nq0ð Þ2
; (25)

where

F ¼
Il�1 qbð ÞKl�1 qað Þ � Il�1 qað ÞKl�1 qbð Þ
Il�1 qbð ÞKlþ1 qað Þ � Ilþ1 qað ÞKl�1 qbð Þ

: (26)

Here, qa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cswrw=d

p
; qb ¼ ð1þ d=rwÞqa, and I and K

represent modified Bessel functions of the first and second

kinds. The derivation of Equation (25) is outlined in

Appendix A. Note that the general result begins to deviate

appreciably from the thin-wall result in this case when

d=rw � 0:1. The M3D-C1 solution is in good agreement with

the general result.

We note that in these calculations, packing of the mesh

significantly improves the computational efficiency of these

calculations. The meshes used in this section use strongly

anisotropic mesh packing. Typical mesh elements have

radial and poloidal extents of roughly 1 mm and 2 cm,

respectively, near the plasma-vacuum boundary r¼ r0 and in

the wall. The mesh elements are significantly larger in the

region between the plasma and the resistive wall and in the

external vacuum region. A section of the mesh with d¼ 5 cm

is shown in Figure 5.

IV. FREE-BOUNDARY AXISYMMETRIC TOROIDAL
EQUILIBRIA

MHD codes such as M3D-C1 often start from an axisym-

metric initial condition—which may be a reconstruction of an

experimental discharge—either as the initial value for a non-

linear calculation or as the equilibrium for an eigenfunction

or linear response calculation. In the case of a static, axisym-

metric plasma, Equation (3) reduces in toroidal ðR;u; ZÞ
coordinates to the well-known Grad-Shafranov equation

r � rw
R2

� �
¼ �l0p0 wð Þ � 1

R2
FF0 wð Þ; (27)

where ~B ¼ rw�ruþ Fru.

Many codes are available for solving this equation for w
given pðwÞ and FðwÞ profiles and boundary conditions on w,

which may be obtained through experimental measurements.

Unfortunately, three issues prevent M3D-C1 from using the

solutions from these codes. The first is that the domain of

most of these Grad-Shafranov codes often does not extend

far enough outside of the plasma to be useful for M3D-C1,

which requires the solution all the way to the outer domain

boundary, which may be far outside the physical vacuum

vessel. Second, even those that could be extended to include

the full M3D-C1 domain (EFIT,17 for example) do not out-

put the field from the plasma separately from the field from

the coils; this distinction is necessary in the M3D-C1

FIG. 3. The RWM growth rate calculated by M3D-C1 (symbols) as a func-

tion of the resistive diffusion time of the wall sw, compared with the thin-

wall solution (solid line).

FIG. 4. The RWM growth rate calculated by M3D-C1 (symbols) as a func-

tion of the wall thickness d, compared with the general analytic solution

(solid line) and the thin-wall solution (dotted line). Note that sw is propor-

tional to d, so the growth rate in physical units is decreasing with d.

FIG. 5. A section of the mesh used for the resistive wall mode calculations

with d¼ 5 cm in M3D-C1. The center of the plasma region is at (R, Z)¼ (10, 0)

m, the plasma-vacuum interface is at r0¼ 0.8825 m, and the resistive wall

extends from r¼ 1.2 to 1.25 m.
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formulation. The third issue is that a very high degree of accu-

racy in the solution is often required in the Grad-Shafranov so-

lution for well-converged linear eigenfunctions to be obtained,

especially in diverted, high-confinement mode (H-mode) plas-

mas.18,19 Therefore, it is preferable to obtain the weak solution

to the Grad-Shafranov equation on the M3D-C1 finite element

basis rather than to interpolate the result from a separate code

that uses a different discretization scheme.

For these reasons, a Grad-Shafranov solver is imple-

mented as part of M3D-C1.20 pðwÞ and FðwÞ profiles may be

read from common equilibrium file formats (such as EFIT’s

“eqdsk” format). This solver has been updated to allow solu-

tions in the case where the poloidal field coils are inside

the computational domain, by separating the field due to

the coils from the field due to the plasma, as described in

Section II. The solver uses a Picard iteration scheme, which

can be unstable when the stabilizing wall is moved far from

the plasma.17 Therefore, a proportional feedback controller

on the magnetic axis is added to some of the coil currents to

ensure vertical stability during the Grad-Shafranov solve.

(This feedback is not active during the MHD evolution.)

One practical consideration that arises when using p pro-

files from typical equilibrium formats is that these profiles

typically do not extend beyond the last closed flux surface

(LCFS). One straightforward way to handle this in M3D-C1

is to treat the equilibrium density and temperature as uniform

outside the last closed flux surface. However, this choice con-

flicts with the reality of the experiment, in which the density

and temperature continue to decrease beyond the LCFS. In

order to allow for such profiles in M3D-C1, the option to

allow pressure gradients beyond the separatrix is also imple-

mented. In practice, the following is typically done: the den-

sity n and electron temperature Te profiles as a function of w
are provided from experimental data, using a equilibrium

reconstruction to map from real space to w. M3D-C1 then

determines the pressure outside the LCFS by assuming

that the ion temperature Ti outside the LCFS, which is

often poorly constrained by empirical data, is uniform:

pðwÞ ¼ nðwÞ½TeðwÞ þ TSOL
i �. (In contrast, inside the LCFS Ti

is obtained from the given p, Te, and ne profiles.) This pres-

sure profile is then used in the M3D-C1 Grad-Shafranov

solver. The advantage of this method is a more realistic treat-

ment of the region outside the LCFS; the disadvantage is that

this sometimes introduces noticeable differences between

M3D-C1’s equilibrium geometry and the geometry of the

source solution due to the change in force balance at the edge.

An example of an equilibrium solution from the M3D-

C1 Grad-Shafranov solver for a DIII-D discharge is shown

in Figure 6. The poloidal field coil (“F-coil”) currents and

the p0 and FF0 profiles have been taken from an EFIT recon-

struction. From the figure, it can be seen that the poloidal

field coils are in the external vacuum region of the computa-

tional domain.

V. FREE-BOUNDARY NON-AXISYMMETRIC TOROIDAL
EQUILIBRIA

Here, we demonstrate the capability to calculate the per-

turbed magnetic geometry in the presence of externally

applied magnetic fields using the new resistive wall model in

M3D-C1. This capability is unique in that it simultaneously

allows: a free-boundary response; a two-fluid model; and a

diverted magnetic geometry in which plasma current and

pressure may extend up to, or even beyond, the LCFS.

M3D-C1 calculations have previously been compared

with measurements of non-axisymmetric response in the

edge of an H-mode discharges in the DIII-D tokamak in

which perturbations having toroidal mode number n¼ 3

were applied using the DIII-D I-coils.21–23 These calcula-

tions were done using a superconducting boundary roughly

approximating the DIII-D first wall. At this boundary, the

perturbed magnetic field was initialized to be the value due

to the perturbing coils only and held fixed. Thus, the mag-

netic field due to response currents in the plasma was con-

strained to vanish at the boundary. This boundary condition

is not generally appropriate in these experiments, in which

the perturbing field is oscillated at 1–10 Hz, which is much

FIG. 6. The total poloidal flux per radian in the equilibrium solution calcu-

lated by the M3D-C1 Grad-Shafranov solver for a DIII-D discharge.

FIG. 7. The total perturbed toroidal field dBu at u ¼ 0, in the simulation

with a close conducting wall (left) and with a resistive wall (right). The cyan

squares indicate the locations of the I-coils, which are applying an even-

parity n¼ 3 perturbation. The toroidal field from the I-coils at this toroidal

angle is zero, so the depicted perturbed fields are entirely due to response

currents in the plasma.
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lower than the frequency associated with the resistive wall

diffusion time (1=2psW � 50 Hz in DIII-D).

Here, we employ the resistive wall implementation to

consider the opposite extreme: a time-independent calculation

where the fields from the plasma may freely penetrate the

wall. In this limit, the resistive wall plays essentially no physi-

cal role since eddy currents will not be present. The presence

of the wall is numerically useful here, however, both in that it

reduces the region in which the full extended-MHD system is

solved, and it avoids potential numerical issues associated

with the direct interaction of the plasma with the perturbing

coils, which are just outside the resistive wall in this case. For

these calculations, the mesh is packed anisotropically, with

elements in the pedestal region having radial dimensions of a

few millimeters. Spitzer resistivity is used, and the equilib-

rium Te, ne, and E�B rotation frequency are taken to match

the experimental profiles.

Four non-axisymmetric equilibria are calculated here:

two are calculated using a close conducting wall, as was

done in the previous calculations, and two were done using a

resistive wall in order to approximate the free-boundary

response. In both cases, the n¼ 1 and n¼ 3 response to

even-parity (up-down symmetric) fields from the DIII-D

I-coils are calculated. The perturbed toroidal field in the

n¼ 3 calculations is shown in Figure 7. It can be seen that

the perturbed magnetic field does not penetrate the conduct-

ing wall but freely penetrates the resistive wall. The penetra-

tion of the field allows direct comparison with experimental

magnetic probe measurements which are placed on the wall.

Such a comparison was done as part of the 2014 Fusion

Energy Science Joint Research Target for several codes,

including M3D-C1 using this new capability. The results

of this validation exercise, which generally found good

agreement among codes and between the codes and data,

have been published separately.1

The perturbed radial field can be decomposed into poloi-

dal Fourier components using straight field-line magnetic

coordinates ðw; h;uÞ

dBmn wð Þ ¼ 2pð Þ2

A

ð ð
d~B � rw
~B � rh

ei mh�nuð Þdh du: (28)

This representation is useful because it clarifies the distinction

between two types of response: “kink” response, which is a

distortion of the plasma that preserves the topology of the

magnetic field and is the only response permitted in the ideal-

MHD model; and “tearing” response, which implies the for-

mation of magnetic islands. (Note that “kink” response is not

necessarily equivalent to a kink mode; interchange modes will

also imply a kink response.) The magnitude of Bmn is plotted

as a function of the normalized poloidal flux in Figures 8 (for

n¼ 1) and 9 (for n¼ 3). In the case of the n¼ 1 response, the

Bmn spectrum shows a global response, with significant pertur-

bations over much of the plasma radius. In contrast, the n¼ 3

response is much more highly localized to the edge, which is

indicative of a driven peeling-ballooning mode. For both

n¼ 1 and n¼ 3, the magnitude of the perturbed fields is gen-

erally greater in the resistive-wall case than the conducting-

wall case; indeed, for the n¼ 1, the resistive-wall response is

roughly twice that of the conducting-wall case. This behavior

can be understood through the well-known effect of wall sta-

bilization. When the close conducting wall is removed, the

plasma moves closer to marginal stability and will be more

strongly excited by a given perturbation. This effect is stron-

ger for n¼ 1 fields, which fall off less strongly with distance

than n¼ 3 fields, and therefore is more strongly influenced by

the presence of the wall.

FIG. 8. The spectrum of the perturbed

radial field in the n¼ 1 plasma

response in a conducting-wall calcula-

tion (left) and a resistive-wall calcula-

tion (right).

FIG. 9. The spectrum of the perturbed

radial field in the n¼ 3 plasma

response in a conducting-wall calcula-

tion (left) and a resistive-wall calcula-

tion (right).
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The resonant field components of Bmn, which are the

components at each mode-rational surface for which m ¼ nq,

imply the presence of magnetic islands and are therefore a

measure of the tearing response of the plasma. In Figures 8

and 9, the mode-rational surface associated with each poloidal

mode number m is indicated with a vertical dashed line. The

magnitude of the resonant field components in the n¼ 3

response calculations is shown in Figure 10. The resonant

components of the total field are generally found to be smaller

than those of the applied field alone (indicated by the dotted

line in Figure 10), which implies that the plasma is acting to

exclude (“screen”) magnetic islands. The resonant fields are

generally largest in the range W ¼ 0:8–0.85, which is where

the electron rotation in this equilibrium passes through zero,

as shown in Fig. 10. This is consistent with the previous stud-

ies using a two-fluid model in which it was shown that the

tearing response is maximum where the electron rotation is

small.21 It is also qualitatively consistent with theory in sim-

plified geometry predicting that electron rotation damps tear-

ing modes.24 Interestingly, the screening tends to be weaker

in the conducting-wall case.

VI. VERTICAL DISPLACEMENT EVENTS

Both linear and nonlinear, axisymmetric simulations are

conducted here with M3D-C1, using an EFIT reconstruction

of a vertically unstable DIII-D discharge as initial conditions.

In this discharge, a thermal quench was initiated intentionally

by injecting a “killer” pellet of neon into the plasma, dramati-

cally raising the radiated power. Vertical stability control of

the plasma was lost shortly (�2 ms) thereafter, resulting in a

current quench and termination of the discharge. The objec-

tive of these simulations is not to validate the model through

quantitative comparison with experimental measurements, but

simply to explore the qualitative dynamics of the vertical insta-

bility, wall currents, and subsequent current quench as a func-

tion of the resistivity of the wall, gw. For simplicity, several of

the modeling choices used here deviate from the experiment;

in particular, the resistive wall here takes the shape of the DIII-

D first wall in 2015 (which differs from the wall that was pres-

ent when the experiment was conducted), and the highly con-

ducting vacuum vessel, which lies several centimeters outside

of the first wall, is not included in the model. Instead, the first-

wall is taken to be conducting structure setting the flux diffu-

sion timescale. Furthermore, these calculations are done at

fairly low resolution, with a typical mesh element �10 cm2 in

the plasma region, in order to complete a large number of non-

linear calculations over a wide range of parameters.

The pressure profile in the reconstructed equilibrium is

centrally peaked, with a central electron temperature

Te	 2.4 keV. To simulate the radiative thermal collapse, an

anomalously large perpendicular thermal conductivity is

included, with j	 1.54� 1022 m�1 s�1. Given the electron

density profile, v? ¼ j=ne ranges from roughly 100 m2/s in

the core to 800 m2/s in the edge. This results in a collapse of

the temperature profile on a timescale of roughly 300 ls. The

resistivity profile is assumed to follow the Spitzer form and

evolves with Te. The reason for including the thermal col-

lapse in these simulations is to observe, in the nonlinear cal-

culations, the redistribution of the current as the plasma

cools and the resistivity changes; quantifying other important

effects, such as the formation of runaway electrons and the

distribution and magnitude of the radiated power, would

require a more sophisticated model of the thermal collapse

and is not considered here.

A. Linear results

Axisymmetric, linear simulations were run for a large

range of gw, from gw ¼ 1:9� 10�8 to 19 X m. (For refer-

ence, the resistivity of copper at 20 
C is roughly 1.7� 10� 8

X m.) These calculations were initialized with small random

perturbations imposed on the equilibrium, and the least-

stable mode was obtained by integrating in time until the

growth rate (c ¼ @tlnK=2, where K is the kinetic energy)

became independent of time. Only n¼ 0 (axisymmetric)

FIG. 10. Left: The total resonant field at

each mode-rational surface in the n¼ 3

response from m¼ 4 at W	 0.47 to

m¼ 12 at W	 1 for both the conduct-

ing wall (red diamonds) and resistive

wall (blue triangles) models. The dotted

line shows the value in the absence of

the plasma response (i.e., the “vacuum”

field). Right: The electric drift (xE�B),

ion rotation (x), electron rotation (xe),

and ion diamagnetic (x*i) frequencies.

FIG. 11. The linear growth rate c of the least-stable n¼ 0 eigenmode, as a

function of gw. Growth rates were calculated using TSOL
e ¼ 14 eV (red dia-

monds) and 99 eV (blue triangles). The resistivity of the open field line

region is indicated by the vertical dashed lines and is consistent with TSOL
e .

The dotted black line shows c / gw.
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perturbations are considered here. The linear growth rate of

the least-stable n¼ 0 mode is shown as a function of gw in

Figure 11 for two different choices of the scrape-off layer

(SOL) temperature TSOL
e : 14 eV and 99 eV. In both cases, the

equilibrium temperature of the entire open field-line region

is uniform at this value, and the resistivity of this region,

gSOL, is the Spitzer value for the given temperature.

As in the simple resistive wall mode considered in

Section III, the linear VDE is found to transition between a

resistive-wall regime at low gw to an inertial regime at high

gw. The growth rate of the VDE is shown in Figure 11 as a

function of gw. In contrast to the simple resistive wall mode,

these VDE calculations also exhibit an intermediate

resistive-SOL regime, in which strong response currents are

driven in the SOL. This occurs in the intermediate regime

where gw > gSOL and sW > sA. The value of gSOL is indicated

by the vertical dashed lines in Figure 11. This intermediate

regime is unlikely to be physically important, since gSOL is

likely to be much greater than gw in typical devices.

The perturbed toroidal current density in the eigenmode

in the resistive-wall and inertial asymptotic regimes

(gw � gSOL and gw � gSOL) is shown in Figure 12. Since

this figure represents a linear eigenmode, the amplitude is ar-

bitrary. Note that the eigenmode is nearly identical inside the

separatrix in both cases, but the response currents outside the

separatrix depend strongly on gw. (The graininess of the solu-

tion of the large gw case is a consequence of the low resolu-

tion, together with the fact that no artificial method for

smoothing the current density, like hyper-resistivity, has

been employed here. The current density is the second deriv-

ative of the vector potential, which is the field being evolved

in M3D-C1,25 and is therefore not guaranteed to be continu-

ous across element boundaries.) In the inertial regime, the

response currents flow primarily on the surface of the plasma

and are in the counter-IP direction on the surface that is mov-

ing towards the wall. These counter-IP currents have been

termed “Hiro” currents in some instances.26 Taking red to

indicate positive (co-IP) current perturbation, the eigenfunc-

tion in Figure 12 would be consistent with a downward-

moving plasma. In the resistive-wall regime, these induced

currents are driven primarily in the wall.

B. Nonlinear results

Axisymmetric, nonlinear simulations were run with

gw ¼ 1:94 � 10�2; 1:94 � 10�3; 1:94 � 10�4; 1:94 � 10�5,

and 1.94� 10�6 X m. In most of the calculations, the tem-

perature at the wall was held fixed at approximately 99 eV.

In order to gauge the importance of the edge temperature

and thermal conductivity on the vertical instability and cur-

rent quench, an additional calculation was done with an edge

temperature of 65 eV and with v? reduced a factor of 10

below the baseline case.

In these simulations, the plasma is observed to move

downward, as shown in Figure 13. The vertical displacement

proceeds on a timescale which depends on the resistivity of

the wall, gw. The time-evolution of the vertical position of

FIG. 12. The perturbed toroidal current density in the fastest-growing linear

n¼ 0 eigenmode, for (left) gw¼ 1.9� 10�8 X m, in which the response cur-

rents are driven in the wall, and (right) gw¼ 19 X m, in which the response

currents form preferentially in the open field-line region of the plasma. In

both cases, gSOL	 3.1� 10�5 X m.

FIG. 13. The toroidal current density in a nonlinear axisymmetric VDE simulation with gW¼ 1.94� 10�3 X m at t¼ 2.27, 2.59, and 2.92 ms.
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the magnetic axis, Z0, is shown for all of these cases in

Figure 14. Although the growth rate of the instability for

these values of gw is roughly linear with g�1
w , the timescale

of the macroscopic displacement of the plasma, as measured

by the time it takes for the magnetic axis to reach

Z0¼�20 cm (roughly 25 cm below its original location),

scales more closely with g�1=2
w . This timescale is evidently

not strongly dependent on gSOL; the timescale between

the TSOL¼ 65 eV (orange in Figure 14) and TSOL¼ 99 eV

(yellow) cases is less than 20%, despite nearly a factor-of-

two difference in gSOL.

The total toroidal current enclosed by the wall (not

including the toroidal current in the wall) is shown as a func-

tion of time in Figure 15. Interestingly, a spike in the toroidal

current is observed almost immediately after the magnetic

axis reaches Z0¼�20 cm, which is very close to the time

that the plasma first contacts the lower divertor in all cases.

This spike is reminiscent of the spikes in the plasma current

observed during disruptions in experiments;27 this is dis-

cussed further in Section VII. The spike in these simulations

is due to the elimination of the counter-IP response currents

on the surface of the plasma and in the wall when the plasma

comes into contact with the wall. Physically, this is due to

the quenching of the counter-IP voltage on the leading edge

of the plasma when the wall stops the vertical motion of the

plasma edge. For the parameters considered here, the toroi-

dal response currents in the plasma edge are generally domi-

nant over those in the wall. At higher wall conductivity, the

rate of the instability is slower, and the surface currents and

the spike associated with the plasma touching the wall are

also correspondingly smaller.

VII. SUMMARY AND DISCUSSION

The resistive wall model presented here is an attractive

alternative to methods in which the resistive wall is treated as

a boundary condition. One of its primary advantages is that

it avoids non-local coupling of mesh elements, which can

potentially impair scalability, especially in implicit methods.

Here, we have demonstrated a successful implementation of

this method in the M3D-C1 code, which now has the unique

capability to model both linear and nonlinear resistive wall

instabilities using a two-fluid model and with resistive walls

of arbitrary thickness. The capability to model thick resistive

walls is necessary for modeling ITER.

Good agreement with the thin-wall analytic theory of

Liu et al.14 is found for a resistive wall mode in straight cy-

lindrical geometry, for wall resistivities ranging from the

resistive-wall to inertial limits. Good agreement is also found

for walls of varying thickness by extending Liu et al.’s
theory to allow for walls of arbitrary thickness. It is noted

that if the region between the plasma and the wall is treated

resistively (as opposed to as a true vacuum)—as it is in most

extended-MHD codes—and if the perturbed magnetic field

in that region is represented as a perturbed poloidal flux as in

Liu et al., then a modified form of the resistivity must be

used in order to recover the result of Liu et al. This is

because the reduced model of the field does not permit a

nontrivial current-free solution. It is possible that this detail

is responsible for the discrepancy in a previous comparison16

between JOREK and the Liu et al. result. In MHD stability

codes in which this region is a true vacuum, this issue does

not arise; the perturbed magnetic field there will simply devi-

ate from the reduced form by additionally perturbing the to-

roidal field in order to maintain a current-free solution.

The resistive wall model in M3D-C1 also facilitates the

calculation of axisymmetric and perturbed non-axisymmetric

free-boundary equilibria. Although a superconducting do-

main boundary is present, this boundary can be moved arbi-

trarily far from the plasma, in which limit the free-boundary

solution is obtained. For truly time-independent solutions, as

are presented here, eddy currents are not present in the wall,

and a resistive wall model is not needed in principle.

However, sectioning the mesh into a plasma region and vac-

uum region does have the advantages of reducing the extent

FIG. 14. Left: the vertical position of

the magnetic axis, Z0 as a function of

time, for various values of gw. The

final case (orange) is the “reduced

transport” case. Vertical lines indicate

the time at which Z0¼�20 cm. Right:
The time at which Z0¼�20 cm, as a

function of gw. The uppermost data

point is the “reduced transport” case.

FIG. 15. The toroidal current in the plasma region as a function of time, for

different values of gw. The vertical lines indicate the times at which

Z0¼�20 cm.
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of the domain in which the full extended-MHD equations are

solved, as well as obviating any potential issues arriving

from having a numerical plasma at the location of magnetic

coils. Furthermore, a simple modification of the linearized

equations will allow solutions given perturbations with a

non-zero frequency, in which eddy currents will be present

and may play an important role.

The free-boundary perturbed non-axisymmetric equili-

bria calculated here are found to have some quantitative dif-

ferences with calculations of the type presented in the

previous publications, in which the superconducting domain

boundary is relatively close to the plasma. The free-boundary

solution is found to have a larger kinking response in this

case, especially for n¼ 1, which is consistent with the idea

that the plasma becomes easier to excite as it moves closer to

marginal stability. Similar results have been found both

experimentally and with ideal-MHD by varying the plasma

pressure.28 Unexpectedly, the total resonant fields in the n¼ 3

response tend to be larger in the conducting wall case than in

the free-boundary case. This may provide an explanation for

why previous M3D-C1 calculations, which had a conducting

wall close to the plasma, typically found less screening than

similar free-boundary calculations with MARS.

Axisymmetric modes, including the VDE, are strongly

affected by the presence of the resistive wall. The VDE sim-

ulations done here have demonstrated the capability to fol-

low a disruption in realistic geometry into the current quench

phase. Although the calculations presented here are done at

low resolution and not meant to be quantitatively comparable

to experiment, they exhibit behavior that is likely qualita-

tively similar to VDEs observed in experiments. During the

early phase of the vertical instability, the response currents

arising in the plasma edge and in the wall are calculated, as

is the dependence of their relative strengths on the resistive

wall time. Even over five orders of magnitude in the resistive

wall time, the maximum current density arising in the wall,

and hence the maximum force on the wall, is found to vary

only by roughly a factor of 2 (cf. Figure 16). However, since

the timescale of the instability is strongly dependent on the

wall time, the total impulse delivered to the wall increases

with the wall conductivity.

The spike in the toroidal current enclosed by the wall is

also strikingly similar to experimental observations.27 In

experiments, this spike is often attributed to the rapid redis-

tribution of the plasma current density during the thermal

quench. However, in these calculations, the spike is clearly

associated with the plasma contacting the wall; even though

there is a redistribution of current density during the thermal

quench, no significant change to the total current is observed

during that time. This is actually consistent with some experi-

mental results in which the current spike was observed not to

occur until well after the thermal quench began.27 Still, it is

not clear that mechanism responsible for the current spikes in

these simulations is the sole or primary mechanism for those

observed in experiments. In some experiments, for example,

the spike is observed before equilibrium reconstructions show

the plasma undergoing a significant displacement.29 It is pos-

sible that in these instances, the spike seen in experiments is

related to forces not present in the model considered here. In

particular, TSC simulations exhibit a current spike during the

thermal quench when hyper-resistivity is included.30

After the current spike in these calculations, qedge is

found to drop as the plasma is scraped off by the first wall,

consistent with the expectations. Inevitably, this will lead to

a kink instability, which is not modeled in these axisymmet-

ric simulations. A full accounting of currents and forces in

the wall will require modeling the onset and evolution of

such a mode, and recent calculations imply that these non-

axisymmetric forces may strongly depend on the wall

time.31,32 The capability demonstrated here will improve

studies of this type by allowing a more scalable computation

that can span transport timescales at realistic parameters.

This will be a primary focus of future work.

Simulations of several other important tokamak phenom-

enon will be enabled by this wall model in addition to those

applications presented here. In particular, it will allow simula-

tions of mode-locking, a process in which a rotating magnetic

perturbation (such as a magnetic island) induces eddy currents

in the wall which result in an electromagnetic torque on the

plasma. This torque may brake and eventually halt the rota-

tion of the plasma, which often leads to a disruption. While

this phenomenon is well understood conceptually, quantita-

tive predictive models of locking and the subsequent incep-

tion of a disruption have not yet been demonstrated.
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APPENDIX A: RWM DISPERSION RELATION FOR
WALL OF ARBITRARY THICKNESS

Liu et al.14 derive the dispersion relation for a resistive

wall mode in straight cylindrical geometry using a two-field

model and a step-function equilibrium, as described in

Section III. They show that in this model, the poloidal flux

must satisfy the equation
FIG. 16. The maximum radial current density in the resistive wall as a func-

tion of time, for various values of gw.
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r2
?w ¼ 0; (A1)

everywhere, and is subject to the jump condition

rw0

w

" #
r¼r0

¼ � 2m

m� nq0

þ
q2

0 csAð Þ2

m� nq0ð Þ2
r0w

0 r0ð Þ
w r0ð Þ

; (A2)

at the plasma-vacuum interface (r¼ r0). Additionally, the thin

wall approximation yields a second jump condition at r¼ rw

rw0

w

" #
r¼rw

¼ 2csw: (A3)

Equation (A1) implies a solution of the form

w ¼
Aprl r < r0

Avr
l þ Bvr

�l r0 < r < rw

Bxr�l rw < r;

8<
: (A4)

which, together with the jump conditions and enforcing con-

tinuity of wðr0Þ and wðrwÞ, yields the thin-wall dispersion

relation equation (21).

In the general case, not considered by Liu et al., the

jump condition Equation (A3) is replaced by Faraday’s law

@~B=@t ¼ �r� ðgw
~JÞ in the wall region rw < r < rw þ d.

Using the modified form of the resistivity appropriate for the

two-field model, as discussed in Section III, Ohm’s law

reduces to cw ¼ gwr2
?w. The general solutions to this equa-

tion are modified Bessel functions IlðkrÞ and KlðkrÞ, where

k2 ¼ c=gw. (Note that for the standard form of the resistivity,

in which poloidal current is damped, Faraday’s law would

yield cw ¼ gwr2w and the general solution would have

k2 ¼ c=gw þ n2=R2.) Thus, w is of the form

w ¼

Aprl r < r0

Avr
l þ Bvr

�l r0 < r < rw

AwIlðkrÞ þ BwKlðkrÞ rw < r < rw þ d
Bxr�l rw þ d < r:

8>><
>>: (A5)

Taking this form of w together with the jump condition

Equation (A2), and enforcing continuity of wðr0Þ; w0ðrwÞ,
and w0ðrw þ dÞ, yields the general dispersion relation,

Equation (25), with qa ¼ krw. This reduces to Equation (21)

in the limit d� rw.

APPENDIX B: COMPUTATIONAL EXPENSE

The computational resources used by the calculations

presented here vary from roughly 8 cpu-h for high-resolution

linear perturbed equilibrium calculations to over 300 cpu-h

for transport-timescale nonlinear axisymmetric VDE calcula-

tions. High-resolution meshes in two dimensions may have

25k mesh nodes or more; with six fields and twelve degrees

of freedom per field per mesh node, one of these calculations

may have nearly 2M degrees of freedom. Parallelization is

accomplished using Message Passing Interface (MPI) for

domain decomposition; typically 8–32 domains (with one

domain per MPI process) are used in a calculation. The

inclusion of two-fluid or other non-ideal effects does not

strongly impact the computational expense of these calcula-

tions, in which the matrix equations are solved using direct

LU-factorization methods (both SuperLU_dist33 and

MUMPS34 have been used successfully on different hard-

ware systems), which are relatively insensitive to the stiff-

ness of the system.

In marked contrast, fully nonlinear 3D calculations with

M3D-C1 (not presented here), which typically have 24 or

more toroidal planes, often require on the order of 100k cpu-

h, depending on the problem. Typically, between 1 k and 10 k

computational cores are used in these calculations. Scalability

and memory considerations require iterative matrix solution

methods to be used in these cases. Therefore, the additional

stiffness incurred by including two-fluid effects increases the

computational cost of 3D nonlinear calculations. A more com-

plete description of the numerical methods used by M3D-C1

can be found in a publication by Jardin et al.35
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