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Ideal and resistive edge stability calculations with M3D-C1
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Growth rates of edge localized modes for various benchmark equilibria, including a diverted
equilibrium, are calculated using the nonideal fluid code M3D-C1. Growth rates calculated by
M3D-C1 in the ideal limit are found to agree with those calculated by ideal magnetohydrodynamics
codes. The effects of nonuniform density and resistivity profiles are explored, as well as the
sensitivity of growth rates to the position of the ideal vacuum-plasma interface. Growth rates of the
diverted equilibrium are found to be particularly sensitive to moving this interface inward from the
separatrix, but less sensitive to extending the plasma region beyond the separatrix. The resistivity
profile within the plasma is found not to affect growth rates significantly; however, growth rates may
be greatly reduced by treating the outer region as a resistive plasma instead of an ideal vacuum.
Indeed, it is found that for typical scrape-off layer �SOL� temperatures, the resistive SOL model
behaves more like an ideal plasma than a vacuum. © 2010 American Institute of Physics.
�doi:10.1063/1.3492727�

I. INTRODUCTION

In present tokamaks operating in high-confinement mode
�H-mode�, the steep pressure gradients at the edge are often
observed to relax through frequent, intermittent discharges of
energy, known as edge localized modes �ELMs�. The physics
of ELMs is a key issue for planned reactor scale tokamaks,
such as ITER, both because the onset of ELMs constrains the
pressure at the top of the edge barrier �or “pedestal height”�,
and because the ELM event can transport substantial heat
and particle loads to plasma facing materials. If not con-
trolled, ELMs in ITER are predicted to deliver energy to
some plasma-facing components at levels at or above that
which can be safely and sustainably handled.1

A predictive understanding of the onset of type-I ELMs
has been gained via the development of the peeling-
ballooning model,2 in which ELMs are triggered by instabili-
ties driven by the large pressure gradients and bootstrap cur-
rent in the edge. �A historical overview of the development
of MHD models of ELMs can be found in the introduction to
Ref. 3.� The calculation of peeling-ballooning modes at in-
termediate toroidal mode numbers �n�3–30� �Refs. 4–6�
has permitted quantitative tests of the model against ob-
served ELM onset and pedestal constraints on several toka-
maks in a wide variety of cases.4–10 In comparisons to ex-
periment, peeling-ballooning mode stability has typically
been calculated in the ideal magnetohydrodynamics �MHD�
limit, in many cases in conjunction with a simple analytic
model of diamagnetic stabilization, �MHD

2 =����−��, where
�MHD is the ideal MHD growth rate, � is the complex fre-
quency, and �� is the ion diamagnetic frequency.11,12 This
model results in a threshold �MHD��� /2 for instability in
the presence of diamagnetic effects, but does not account for
spatial variation of �� �beyond using an average or typical

value of �� across the radial mode structure�. Furthermore,
other nonideal effects, such as those arising due to finite
collisionality, have not yet been explored in detail. In order
to test and improve upon the �� model of diamagnetic sta-
bilization, and to gauge the importance of other nonideal
effects accurately, it is necessary to appeal to models that
include these effects self-consistently in general geometry.
Recently, peeling-ballooning calculations have been under-
taken using nonideal codes NIMROD,

13–15
BOUT,16,17 and

BOUT++.18 Here we use M3D-C1 to explore ideal and non-
ideal peeling-ballooning stability.

M3D-C1 is an initial-value finite-element fluid code
which has been used mainly for two-dimensional nonlinear
two-fluid equilibrium calculations.19 Recently it has been
modified to allow the calculation of three-dimensional linear
stability of axisymmetric equilibria. The comprehensive
physical model employed by M3D-C1 allows the quantifica-
tion of many nonideal effects on peeling-ballooning stability.
Furthermore, the computational domain in M3D-C1 extends
across the separatrix, which allows both an accurate descrip-
tion of eigenmodes which cross the separatrix �as ELMs do�,
and allows treatment of the outer region �the region between
the plasma and the wall� as a resistive plasma.

A primary goal of this paper is to verify the numerical
methods of M3D-C1 by reproducing the results of ideal cal-
culations in the appropriate limit, in order to gain confidence
in future nonideal calculations. In Sec. III B we present cal-
culations of peeling-ballooning growth rates and show that,
in the ideal limit, the M3D-C1 results are in good agreement
with those of ideal codes. In particular, we focus on compari-
son with results from ELITE,4,20,21 which itself has been
benchmarked against a number of other codes including
GATO,22

MISHKA,23
DCON,24

CASTOR,25
MARG2D/MINERVA,26,27

BAL-MSC, ILSA,28
MARS,29 BOUT++, and NIMROD. This com-

parison is carried out for three equilibria: CBM18, a circular
cross-section case; DBM18, an elongated limited case; anda�Electronic mail: ferraro@fusion.gat.com.
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MEUDAS1, a diverted case in JT-60U-like geometry. These
equilibria are described in more detail in Sec. III A.

We then extend these results by exploring the sensitivity
of the growth rates to the density and resistivity profiles in
the edge and in the outer region. Due to the singularity at the
active x-point of diverted plasmas, most ideal codes do not
extend the ideal plasma region fully to the separatrix, but
rather place the plasma-vacuum interface slightly within the
separatrix. The sensitivity of peeling-ballooning growth rates
to the location of this interface is calculated in Sec. III C.

II. NUMERICAL METHODS

M3D-C1 implements a set of visco-resistive two-fluid
equations similar to the Braginskii equations,30 although
transport coefficients are not constrained to take the Bragin-
skii values or scalings.19 These equations may include aniso-
tropic thermal diffusivity and viscosity, including gyrovis-
cosity. In the present benchmark, in which we seek to obtain
results in the limit of ideal MHD, the dissipative terms �ex-
cept resistivity�, two-fluid terms, and gyroviscosity are ne-
glected. Although M3D-C1 has the option of using reduced
MHD models, we use the full, compressible fluid model
here. For the single-fluid cases discussed here, density per-
turbations and momentum advection do not contribute to the
linear system, and are therefore neglected. Thus, the model
under consideration is

�
�u�

�t
= J� � B� − �p , �1�

�p

�t
= − u� · �p − �p � · u� , �2�

�B�

�t
= − � � E� , �3�

where the current density and electric field are defined as

J� = � � B� , �4�

E� = − u� � B� + �J� �5�

and u� is the fluid velocity.
The domain is discretized in the poloidal plane using

triangular C1 finite elements.31 The C1 elements allow the
efficient use of a flux/potential representation of the velocity
and magnetic field, which results in fourth-order differential
operators.32 This representation has the advantages that the
magnetic field B� is manifestly divergence free, and also that
it is possible to represent displacements which manifestly do
not compress the toroidal magnetic field. Furthermore, the
flux representation allows easy identification of magnetic
surfaces in �R ,Z� coordinates, which is exploited in Sec.
III B to approximate an ideal plasma-vacuum interface accu-
rately. The finite elements are arranged on a fully unstruc-
tured mesh, to allow packing of resolution in regions that
require it. An example of a typical mesh used in the present
study is illustrated in Fig. 1. In these linear simulations, a
single toroidal Fourier mode is considered at a time.

In the split, semi-implicit time step implemented in
M3D-C1, the velocity is advanced using a temporal discreti-
zation of the form

�1 − 	t2
2L�u�n+1 = �1 − 	t2�L�u�n + . . . , �6�

where L is the ideal MHD operator.19 Using 
-centered time
differencing, one finds �=
�
−1�; however, it has been
shown that numerical dissipation may be reduced by letting
�=
2 and staggering the time-centering of the fields �particle
density, pressure, and magnetic� relative to the velocity, as
with a leapfrog method.33 In particular, it has been shown
that stationary solutions obtained with �=
2 are more accu-
rate than with �=
�
−1�.19 However, it is found here that
linear eigenmodes obtained using �=
2 exhibit small-scale
spatial oscillations in the absence of dissipative terms. These
oscillations may significantly impact the calculated growth
rate unless the features of the eigenmode are highly resolved
everywhere; this is difficult to achieve in practice because
the peeling-ballooning eigenmode structure is very fine
�though not generally large in amplitude� on the high-field
side and near the x-point of diverted plasmas, where the
magnetic pitch angle is relatively shallow. In contrast, the
choice �=
�
−1� naturally dissipates these small-scale spa-
tial oscillations, and growth rates obtained with this choice
of � are found to be less sensitive to the spatial resolution.
�The previous study which found the �=
2 choice to be
favorable for steady-state calculations did not observe these
small-scale oscillations, likely because it only considered
axisymmetric geometry �and therefore lacked rational sur-
faces� and had relatively large physical dissipation.� The sen-
sitivity of both choices of � to �h−1�, the average mesh ele-
ment inverse length scale, is illustrated in Fig. 2. Here we
define h=	2A, where A is the area of a triangular element.
The inverse length scale is used in order to give more weight
to the smaller elements, in which the eigenmodes are mostly
localized. All of the results that follow have been obtained
using �=
�
−1�.
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FIG. 1. �Color� A section of the n=30 eigenmode of the DBM18 equilibrium
overlaid with the finite element mesh. The magenta line represents the foot
of the pedestal.
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III. RESULTS

A. Equilibria

Benchmarks of M3D-C1 have been carried out for three
equilibria of increasing numerical difficulty, each of which is
unstable to ideal peeling-ballooning modes at intermediate to
high toroidal mode numbers.

�1� The CBM18 equilibrium is a circular cross-section
plasma. The pedestal width, calculated here as the full-
width at half-max of the peak in ��� �defined below�, is
approximately �
0.12. The plasma resides within a
circular cross-section conformal conducting wall with a
major radius of 3 m and a minor radius of 2 m. The
normalized flux at the wall is w=10 /7.

�2� DBM18 differs from the CBM18 equilibrium in that it is
shaped, with an ellipticity of 1.5 and triangularity of 0.2,
and has a narrower pedestal than the CBM18 case, with
�
0.08.

�3� The MEUDAS1 equilibrium is designed to be characteris-
tic of a diverted H-mode plasma in JT-60U. The calcu-
lation of linear eigenmodes of this equilibrium is signifi-
cantly more challenging than for the CBM18 and DBM18
equilibria, due both to the narrower pedestal ��

0.06� and to the presence of a x-point, near which the
rotational transform vanishes and the poloidal length
scale of the eigenmode diverges �Fig. 3�. Unlike in the
CBM18 and DBM18 cases, the conducting boundary in
the MEUDAS1 case is not conformal to a flux surface, and
comes quite close to the foot of the pedestal.

The profiles of the surface-averaged ballooning param-
eter ��� and normalized parallel current density ��J� /B�� are
plotted for each equilibrium in Fig. 4, as a function of the
normalized poloidal flux , defined as

 =
� − �0

�b − �0
, �7�

where � is the poloidal magnetic flux per radian �to which
we refer simply as the “poloidal flux”�. The poloidal flux at
the magnetic axis is �0, and �b is the poloidal flux at the foot
of the pedestal, i.e., the magnetic surface farthest from the
magnetic axis for which the pressure gradient is nonzero.
The surface-averaged ballooning parameter is defined to be

0.0

0.1

0.2

|γ
–
γ 0|/γ

0
0.3

CBM18: α = θ (θ – 1)
CBM18: α = θ2

DBM18: α = θ (θ – 1)
DBM18: α = θ2

Meudas1: α = θ (θ – 1)
Meudas1: α = θ2
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kθ/〈h–1〉
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FIG. 2. �Color online� Growth rates are calculated using two different time-
step methods for the three equilibria described in Sec. III A, at various mesh
resolutions. Here �h−1� is the average inverse element length scale of the
mesh, and k
=nqc / �rc� is the approximate poloidal wavenumber of the
mode, where qc is the safety factor at the center of the pedestal, �rc� is the
surface-averaged minor radius at the center of the pedestal, and n is the
toroidal mode number �n=10 here�. Each curve shows the fractional differ-
ence from the growth rate calculated with the most highly resolved mesh in
the curve.
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FIG. 3. �Color� The n=10 eigenfunction of the normal velocity for the
MEUDAS1 equilibrium near the active x-point. Left: step-function plasma
density and resistivity �Eqs. �10� and �11��; right: nonuniform, continuous
plasma density and Spitzer resistivity �Eqs. �14� and �15��.
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��� = −  1

2�2� �V

��
	 V

2�2R0
� �p

��
� , �8�

where V is the volume enclosed by the flux surface, R0 is the
major radius at the magnetic axis, and p is the pressure. The
surface average is defined as

�A� =

�
C

d�

Bp
A

�
C

d�

Bp

, �9�

where Bp is the magnitude of the poloidal component of the
magnetic field, and C is the contour defined by the poloidal
projection of the magnetic surface.

B. Comparison of ideal MHD results

In ideal MHD, the plasma is modeled as a perfectly con-
ducting fluid surrounded by a vacuum, all of which may or
may not be enclosed by a perfectly conducting boundary or a
resistive wall. The transition region between the plasma and
vacuum is assumed to be infinitesimally thin. This assump-
tion is difficult to model in M3D-C1, which makes no algo-
rithmic distinction between the “plasma” and the
“vacuum”—the outer region is simply treated as a region of
high resistivity plasma—because it requires a discontinuous
jump in the resistivity and mass density. A discontinuous
field may be approximated simply by having a sharp but
continuous transition region; the ideal result should then be
obtained in the limit that the transition region narrows to
zero width. However, the resolution required to obtain con-
verged results in this limit may be extraordinarily high, even
when a nonuniform mesh is used to pack resolution near the
transition region. This problem is exacerbated by the use of
C1 elements, which constrain not only the fields to be con-
tinuous, but their first derivatives to be continuous every-
where �including element boundaries�.

This onerous resolution requirement may be bypassed by
not representing the resistivity on the C1 finite elements at
all. Specifically, the resistivity and mass density are taken to
be an explicit �discontinuous� functions of the poloidal flux
�. Thus, whenever the resistivity or density needs to be
evaluated, it suffices simply to evaluate the poloidal flux at
that location. The poloidal flux is typically a smooth, slowly
varying quantity across the plasma-vacuum boundary, and
does not require high resolution to resolve there �though high
resolution is typically needed in the edge for other reasons,
such as to resolve the pressure pedestal and eigenfunctions�.
Specifically, we choose the following profile for the resistiv-
ity:

�ideal�x�� = ��p if x� is in the plasma region

�v otherwise
� �10�

and mass density

�ideal�x�� = ��p if x� is in the plasma region

�v otherwise.
� �11�

The “plasma region” is defined as the simply connected re-
gion containing the magnetic axis for which the poloidal flux
�� ��0 ,�i�, where �=�0 at the magnetic axis, and �=�i at
the plasma-vacuum interface. �The private-flux region of a
diverted plasma is not within the plasma region.� Typically
�i=�b.

In practice, when carrying out numerical integrations, �
and � can be evaluated according to Eq. �10� at each sam-
pling point in the numerical integration quadrature �M3D-C1

generally uses a 25-point Gaussian quadrature�, and therefore
� and � may be discontinuous even within an element do-
main. Thus, one need not align the elements with the plasma-
vacuum boundary for this method to be effective. This tech-
nique is facilitated by M3D-C1’s use of the flux
representation of the magnetic field �axisymmetric fields are
represented by B� =�����+ I��, with � the toroidal angle
and I=RB��. Since � is one of the fundamental scalar fields
in M3D-C1, value of � is known trivially at any point.

One potential issue with the above representation of re-
sistivity and density is that the derivatives of �ideal and �ideal

are undefined at the plasma-vacuum interface. This issue is
obviated by the use of integrations-by-parts to move deriva-
tives off of � and � in the weak-form equations �i.e., the
weak-derivatives are used�.

Recent NIMROD calculations of growth rates for the equi-
libria similar to the CBM18 equilibrium have found that ideal
behavior is adequately recovered when �v /�p�10−2, Sp

�108 and Sv�103, where Sp and Sv are the Lundquist num-
bers in the plasma and outer regions, respectively.15 Calcula-
tions with M3D-C1 essentially concur with this assessment,
although we find the DBM18 and MEUDAS1 equilibria to be
somewhat more sensitive to the “vacuum” parameters than
the CBM18 equilibrium �Fig. 5�. The growth rate is seen to
decrease with �v, in accordance with the well-known argu-
ment based on energy principle considerations that treating
the outer region as a resistive plasma must yield lower
growth rates than using an ideal vacuum model.34 Once �v
approaches the “ideal” value of approximately 10−8, the
growth rate becomes insensitive to further reductions in �v;
this corresponds to the limit where the outer region is treated
as an ideal plasma. �The units of � here are such that � is the
inverse Lundquist number based on a one Tesla field and one
meter scale-length.� The MEUDAS1 case is particularly sensi-
tive to the outer region resistivity, with the growth rate drop-
ping by half as the outer region transitions from a vacuum to
an ideal plasma.

The ideal results presented below have been obtained
with �p=10−8 and �v=10−2 and �v /�p=10−2, unless other-
wise specified. All other explicit dissipative terms—
viscosity, particle and thermal diffusivity, hyperdiffusivities,
etc.—are zero.

Growth rates are calculated both using an adiabatic
equation of state ��=5 /3� and an equation of state in which
the contribution of compressional displacement is neglected
��=0�, where � is the ratio of specific heats. The “compres-
sionless” equation of state is the preferred model in ELITE;
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the adiabatic equation of state is also implemented in ELITE,
but to a lower order in the inverse mode number expansion
than other terms, and is therefore expected to be less accurate
at low toroidal mode numbers n.21

A comparison of the growth rates for each equilibrium as
calculated by ELITE, GATO, and M3D-C1 is shown in Fig. 6.
The growth rates are normalized to the characteristic Alfvén
frequency

�A =
B0

R0
	4��p

, �12�

where B0 is the magnetic field strength at the magnetic axis,
R0 is the major radius of the magnetic axis, and �p is the
mass density at the top of the pedestal. The normal velocity
�un=u� ·�� / ����� of the n=10 eigenmode for each equilib-
rium is shown in Figs. 7 and 8. There is generally good
agreement among the different codes. The largest disagree-
ment is found in the low-n growth rates of the MEUDAS1
case. The boundary conditions are a factor in this disagree-
ment; ELITE assumes an infinite vacuum, whereas M3D-C1

has a perfectly conducting wall that runs close to the plasma-
vacuum interface along much of the plasma. It is expected
that such a conducting wall should be stabilizing, especially
to lower-n modes for which the eigenfunction tends to ex-

tend further into the outer region. However, the difference in
boundary conditions is probably not enough to fully explain
the growth rate discrepancy; expanding the wall outward by
8% yields only a few percent change in the growth rate of the
n=10 eigenmode �Fig. 9�. Unfortunately it is not possible to
move the conducting wall more than this due to the close
proximity of various poloidal field coils in the MEUDAS1
case. M3D-C1 does not presently have the capability to
model a resistive or insulating wall.
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FIG. 5. �Color online� The fractional difference in the growth rate of the
n=10 eigenmode from the case where �v /�p=10−2 and �v=10−2 as �v /�p or
�v is varied.
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Another potential source of disagreement is that the po-
sition of the plasma-vacuum interface used in ELITE �and
similar codes� may strongly affect the growth rate. This is
discussed in more detail in the following section. For the
MEUDAS1 case, the ELITE results have been computed with
the plasma-vacuum interface at the 99.8% flux surface,
which is converged to within a few percent. For the CBM18
and DBM18 cases, which are not diverted, this is not an issue.

The remaining disagreement between the codes in the
MEUDAS1 case, as well as the smaller disagreements in the
DBM18 equilibrium are too large to be accounted for by dis-
cretization errors alone. It has been shown that the growth
rates are highly sensitive to the initial equilibrium, with
slight differences in the method of mapping the CBM18 equi-
librium �by far the easiest to resolve of the three equilibria
presented here� onto the computational domain resulting in
changes in the growth rate on the order of 10%.15

Finally, it should be noted that calculations of the ideal
growth rate in the MEUDAS1 case have also been performed
with MARG2D and ILSA. With the plasma-vacuum interface at
the same position as ELITE’s �in this case, at the 99.4% flux
surface� MARG2D found growth rates within a few percent of
ELITE, whereas ILSA produced growth rates roughly 10%
lower.28

ELITE and MARG2D also agree within 5% for cutoffs
at 99.6% and 99.8%.

C. The effect of moving the plasma-vacuum interface

Due to the singularity arising from the x-point of di-
verted magnetic geometries, many ideal MHD codes, includ-
ing ELITE, typically place the plasma-vacuum interface just
inside the magnetic separatrix of diverted equilibria, and thus
do not include the x-point itself within the calculation of the
plasma perturbed energy. For peeling-ballooning modes, the
eigenfunction is not entirely localized to the closed field line
region but may substantially cross the separatrix. This raises
the concern that the growth rate may be sensitive to the po-
sition of the plasma-vacuum interface, and therefore it is of
interest to study the limiting behavior as the plasma-vacuum
interface approaches and crosses the separatrix. This issue
has been addressed previously both computationally10,35,36

and analytically,37 with the conclusion that low-n pure peel-
ing modes, when driven by current at the cutoff, are strongly
stabilized in the presence of an x-point, while the peeling-
ballooning modes typically found in experimental equilibria
are more modestly affected �the growth rate for a particular
equilibrium can be significantly affected but the stability
threshold generally only changes by a few percent�. Here we
quantify the sensitivity of n=10 peeling-ballooning mode
growth rates as the plasma-vacuum interface is moved to
include or exclude the separatrix.

M3D-C1 uses cylindrical coordinates and is therefore
able to include poloidal field nulls in the computational do-
main without difficulty. In order to assess the sensitivity of
the growth rate to the position of the plasma-vacuum inter-
face, a series of calculations have been performed with
M3D-C1 for each equilibrium, with the plasma-vacuum in-
terface displaced from its nominal position at the foot of the
pedestal. Specifically, the position of the density and resis-
tivity transition is moved inward or outward while the pres-
sure and magnetic field profiles are unchanged �i.e., �i is
changed but �b is not�. The distance of this displacement is
measured here in terms of the offset in the normalized flux

FIG. 8. �Color online� The n=7 eigenfunction of the normal velocity for the
MEUDAS1 equilibrium. Only regions having un�0 are highlighted. The out-
ermost surface plotted is =1.002.

ηv
10–8 10–6 10–4 10–2

a = 1
a = 1.08

100
–0.6

–0.4

–0.2

0.0

0.2
Meudas1 (Ideal)

(γ
–
γ

0)/
γ

0
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	 =
�i − �b

�b − �0
�13�

relative to the distance from the foot of the pedestal �=1�
to the center of the pedestal �=c�. The center of the ped-
estal is defined as the magnetic surface for which ��� is
maximum.

The results of these calculations are shown in Fig. 10. It
is evident from these results that the growth rate is sensitive
to the position of the plasma-vacuum interface, particularly
in the diverted equilibrium. In the MEUDAS1 case, the growth
rate is increased by approximately 30% when the cutoff is
moved from the separatrix to the 99.7% flux surface �corre-
sponding to 	 / �1−c�=−0.06 in this case�. Growth rates
are found to be much more sensitive to inward shifts than to
outward shifts.

In the results in Fig. 10, both the density transition and
the resistivity transition have been moved together. Other
calculations in which the density transition is held fixed
while the resistivity transition is moved show that the sensi-
tivity of the diverted case is due primarily to the position of
the density profile. For example, a shift of both profiles by
	 / �1−c�
−10% in the MEUDAS1 case roughly doubles
the growth rate of the n=10 eigenmode, whereas shifting
only the resistivity transition yields just a 5% increase, indi-
cating that much of the growth rate change is due to a change
in the effective inertia of the plasma.

D. The effect of realistic density and resistivity
profiles

The fidelity of edge stability studies can be improved by
treating both the density and resistivity profiles as continu-
ously varying, in both the plasma and outer region. In previ-
ous ideal MHD studies of experimental discharges, realistic
density profiles are generally used in the plasma region �un-
like the step function density profiles used in the benchmarks
above�, but the density in the scrape-off-layer region �and

outside the cutoff, if a cutoff inside the separatrix is used� is
approximated as zero by the vacuum model. While the den-
sity in this region is typically small, the contribution of its
inertia to growth rates may still be significant.

Of course, ideal MHD codes do not include a nonuni-
form resistivity profile, but have instead an abrupt transition
from an ideally conducting plasma to a zero conductivity
vacuum region. A series of calculations have been done us-
ing M3D-C1 to gauge the effect of including nonuniform
density and resistivity profiles within the plasma. For these
calculations, the mass density profile is chosen such that

��x�� = �0pd�x�� �14�

with 0�d�1. Thus Te+Ti=mip
1−d /�0, where mi is the ion

mass. Because this density profile is continuous, the density
field may be �and are here� represented on the finite element
basis, as opposed to the explicit functional dependence on �
used in the previous section. While it is not necessary to do
this for linear ideal calculations which are unaffected by per-
turbations in �, it is necessary for many nonideal and non-
linear cases in which these perturbations must be retained.
This choice does not otherwise affect the stability or conver-
gence properties of the numerical method.

For the CBM18 case, the factor �0 is chosen so that the
density at the top of the pedestal is the same as in the
discontinuous-density case ��p�, d is chosen so that the den-
sity at the foot of the pedestal is 100 times smaller than at the
top of the pedestal �to facilitate comparison with the results
obtained with the step-function profile�, and the pressure in
the outer region is such that the temperature there is roughly
41 eV. In the DBM18 case, density is treated the same way,
but the edge temperature is approximately 62 eV. In the MEU-

DAS1 case, the density in the scrape-off layer is 20 times less
than at the top of the pedestal. �The plasma-vacuum density
ratio is smaller in the MEUDAS1 case in order to prevent
overshoot in the finite element projection that result in nega-
tive temperatures.� Two different temperature profiles are
considered with the MEUDAS1 equilibrium: one with Te

=38 eV in the outer region and one with Te=243 eV. The
temperature is changed by adjusting the outer region pres-
sure while holding the density at the top and bottom of the
pedestal constant. Because the pressure in the outer region is
so small, the pressure gradient does not change appreciably
anywhere as the temperature is changed.

One set of calculations is done in which resistivity is
taken to have the same discontinuous form as used in the
previous sections; in another set the resistivity is taken to
have the Spitzer value, approximately

�Spitzer�x�� = 2 � 10−4	�pTe
−3/2�x�� �15�

in the same normalized units used before, with Te in eV and
�p in units of 1013 mi cm−3 �the dependence on �p arises
from the normalization�, and where we have assumed the
Coulomb logarithm ln �
17. In all cases considered here,
Te=Ti. It should be noted that in all cases the Spitzer resis-
tivity is actually lower through the core of the plasma than in
the ideal case �as mentioned earlier, the growth rates are
insensitive to reductions in the resistivity below roughly
10−8�. In the edge the Spitzer resistivity becomes somewhat
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FIG. 10. �Color online� The growth rate of the n=10 eigenmode vs the
plasma-vacuum interface offset 	. Growth rates are normalized to the
growth rate at zero offset; the offsets are normalized to distance from the
foot of the pedestal to the center of the pedestal in the relevant equilibrium.
A negative offset indicates an inward shift of the plasma-vacuum interface.
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larger than in the ideal case, but in the outer region the
Spitzer resistivity is far smaller than in the ideal case. The
ideal resistivity profile is compared to the Spitzer resistivity
for various outer region temperatures in Fig. 11.

The effect of using the continuously varying density and
resistivity profiles is illustrated in Fig. 12. Replacing the uni-
form �within the plasma� density profile �used in the ELITE

and M3D-C1 �ideal� curves� with the nonuniform density
profile results in a significant increase in the growth rate. The
factor by which the growth rate increases is roughly the
square-root of the factor by which the density has been re-
duced at the center of the pedestal. This can be understood
simply by noting that occurrences of density in the ideal
MHD equations may be eliminated by scaling time by the
Alfvén time and velocity by the Alfvén velocity, which im-
plies that ideal frequencies must scale as �1 /	�eff, where
�eff is an effective mass density seen by the eigenmode.
Equivalently, the eigenvalues of the ideal MHD operator
�which does not involve density� are of the form �eff�

2,
which leads to the same conclusion. Thus, for these modes,
the effect of having a continuously varying mass density in
the edge is to change the effective inertia of the plasma such
that �eff is approximately the mass density at the center of the
pedestal.

In the CBM18 case, using �Spitzer instead of �ideal results
only in a very small decrease in the growth rates of the
lowest-n modes, and has practically no effect on high-n
modes. In the MEUDAS1 case, however, using �Spitzer with
Te=38 eV in the outer region has a significant stabilizing
effect at all n considered here. The observed stabilization is
consistent with the results shown in Figs. 5 and 9, in which
step functions for �ideal and �ideal are used, but �v is varied.
Evidently, using the Spitzer resistivity profile has an effect
similar to having an instantaneous resistivity transition at the
foot of the pedestal from an ideal value inside the plasma
���10−8� to the Spitzer value in the outer region. Assuming
a resistive outer region at a realistic temperature, the growth

rates are actually closer to those obtained using an ideal
plasma model of the outer region than to those obtained us-
ing an ideal vacuum model for this case.

IV. CONCLUSIONS

Growth rates of peeling-ballooning modes calculated
with M3D-C1 have been shown generally to agree well with
those calculated by ideal MHD codes in the ideal limit. This
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agreement should lend confidence that future nonideal
peeling-ballooning calculations with M3D-C1 may be com-
pared meaningfully with the results of ideal codes. Boundary
conditions are observed to have a small effect on calculated
growth rates. The major sources of discrepancies among the
codes in the ideal benchmark cases are likely the treatment of
the boundary conditions, and small differences in the initial
equilibria due to mapping differences.

It has been shown here that the growth rate of ideal
peeling-ballooning modes in diverted equilibria is sensitive
to the position of the plasma-vacuum boundary; specifically,
the location of the density transition. The diverted equilib-
rium is in fact much more sensitive than the limited equilib-
ria, even after accounting for the various pedestal widths of
the equilibria. This may be due in part to the fact that ex-
cluding even a small region of flux-space excludes a large
region of physical space near the x-point in diverted equilib-
ria. Given this sensitivity, an ideal calculation extending only
to the 99% flux surface may significantly overestimate
growth rates in diverted equilibria. In the MEUDAS1 case,
moving the cutoff inward from the separatrix to the 99.7%
flux surface leads to a 30% increase in the growth rate, when
a step function density profile is used. Of course, this sensi-
tivity is ultimately an artifact of the strongly discontinuous
density profile used for this benchmark study, and is miti-
gated by the use of more realistic density profiles. Studies
with ELITE using experimentally relevant profiles find that
the stability boundary is typically converged to within a few
percent as long as the cutoff is beyond the 99.4% flux
surface.10

With continuously varying density profiles, it is found
that the ratio of the growth rate to the Alfvén frequency at
the center of the pedestal remains roughly similar to the
uniform-density case. This means that the actual growth rate
will be larger than the growth rate calculated using a uniform
density equal to �p by roughly a factor of 	2 �assuming the
density at the center of the pedestal is half that at the top�.
This dependence of the growth rate on the density profile can
be relevant, for example if a model of diamagnetic stabiliza-
tion based on the ratio � /�� is used to determine the stability
criterion.

To varying extents for each equilibrium, lowering the
resistivity in the outer region to realistic values is observed
to reduce the peeling-ballooning growth rates. This general
trend is expected, but has not previously been quantified. For
the diverted equilibrium, this reduction is quite significant
even at intermediate toroidal mode numbers �n�20�. It is
found that growth rates obtained using a resistive model of
the outer region more closely match those obtained using an
ideal plasma model of the outer region than a vacuum model
when �v�10−5. This corresponds to an electron temperature
in the outer region of roughly 10 eV, above which the ideal
plasma model of the outer region is more accurate. In
DIII-D, the scrape-off layer temperature in ELMing dis-
charges is typically 50 eV.38

Future work will focus on quantifying the importance of
other nonideal effects on linear ELM stability, including an-
isotropic viscosity and thermal conductivity, gyroviscosity,
and two-fluid effects.
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