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ABSTRACT

Recently, it has been shown that a vertical displacement event (VDE) can occur in ITER even when the walls are perfect conductors, as a
consequence of the current quench (CQ) [A. H. Boozer, Phys. Plasmas 26, 114501 (2019)]. We used the extended-MHD code M3D-C1 with
an ITER-like equilibrium and induced a CQ to explore cold VDEs in the limit of perfectly conducting walls, using different wall geometries.
In the case of a rectangular first wall with the side walls far away from the plasma, we obtained very good agreement with the analytical
model developed by Boozer that considers a top/bottom flat-plates wall. We show that the solution in which the plasma remains at the initial
equilibrium position is improved when bringing the side walls closer to the plasma. When approximating the ITER first wall as a perfect
conductor, the plasma remains stable at the initial equilibrium position far beyond the value predicted by the flat-plates wall limit. When
considering an opposite limit in which only the inner shell of the ITER vacuum vessel acts as a perfect conductor, the plasma is displaced
during the CQ, but the edge safety factor remains above 2 longer in the current decay compared to the flat-plates wall limit. In all the simu-
lated cases, the VDE is found to be strongly dependent on the plasma current, in agreement with a similar finding in the flat-plates wall limit,
showing an important difference with hot VDEs in which the CQ is not a necessary condition.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037464

I. INTRODUCTION

Vertical Displacement Events (VDEs) are major disruptions that
occur in elongated tokamak plasmas (see, for example, Ref. 1). Reliable
simulations to predict possible scenarios in ITER are essential. In a
“cold VDE,” the disruption thermal quench (TQ) occurs when the
plasma is still at the equilibrium position, and then the plasma displa-
ces upward or downward.2 This is in contrast to a “hot VDE” in which
the hot plasma column displaces vertically due to the loss of position
control, and the thermal quench occurs later as a result of the plasma
contacting the first wall. Both of these events are expected to occur in
ITER and they each develop heat and force loads that will stress the
structure in different ways.

The actual ITER conducting structure is complicated as discussed
in Ref. 3. The first wall will have poor toroidal conductivity since it is
made of panels with gaps between them. The solid inner shell of the
vacuum vessel is removed from the first wall by about 60 cm and has
very good toroidal conductivity. In between the first wall and the vac-
uum vessel are complex 3D blanket modules that are conducting but
do not provide a continuous toroidal path. However, it has been
pointed out4 that if the plasma fills the gaps in the first wall during a
disruption event, it might short circuit the first wall making it

toroidally conducting. More recently, Boozer5 has considered the lim-
iting case in which the ITER first wall acts as a perfect conductor and,
approximating it as two top/bottom flat plates, has shown that, even in
this perfectly conducting wall limit, a current quench (CQ) could drive
a VDE. In this situation, active controls would not be applicable since
the magnetic fields cannot penetrate the wall in the required timescale.
In addition, this simple model, which will be referred to here as the
flat-plates wall limit, shows that the edge safety factor could drop
down to values around q95 � 2 even when the plasma current is still
large. This condition could lead to large and unacceptable halo cur-
rents and local force densities in the first wall.5

In this study, we use the M3D-C1 code to simulate cold VDEs in
the limit of perfectly conducting walls. We represent the conducting
structure as axisymmetric and consider two limiting cases: (1) the first
wall is a perfect conductor or (2) the first wall and blanket modules are
insulators and the vacuum vessel is a perfect conductor. For case (1),
we also consider different geometries and show that in this limit, the
ITER first wall keeps the plasma centered far beyond the value pre-
dicted by the flat-plates wall limit. However, for case (2), when assum-
ing that the perfectly conducting structure is the inner shell of the
ITER vacuum vessel, the plasma is displaced during the current
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quench but the safety factor should not decrease as fast as in the flat-
plates wall limit.

This paper is organized as follows: in Sec. II, we present the
plasma equilibrium and the different wall geometries employed. In
Sec. III, we show the limiting case in which the flat-plates wall limit is
applicable. Finally, we show in Sec. V the results using the ITER first
wall as a perfect conductor as well as the case in which only the inner
shell of ITER vacuum vessel acts as a perfect conductor.

II. NUMERICAL MODEL

We started the simulations from a standard ITER-like equilib-
rium with plasma current I ¼ 15MA, vacuum magnetic field B0

¼ 5:3 T, internal inductance lið3Þ ¼ 0:816, magnetic axis ðRm;ZmÞ
¼ ð6:524m; 0:537mÞ, an active lower x-point at ðR;ZÞ ¼ ð5:148m;
�3:386mÞ, and a passive upper x-point at ðR;ZÞ ¼ ð6:618m;
4:748mÞ. The equilibrium is the same as the one used in Ref. 6, which
provides more detailed information, and Ref. 7. The plasma central
temperature is�30 keV (the temperature is the same for electrons and
ions) and boundary temperature is set to a constant value of 0.169 eV.
All the cases presented in this study start from the same equilibrium.

M3D-C1 (Refs. 8 and 9) is a high order finite-element code that
solves the extended-MHD equations in a plasma region (P). It has also
been extended to include a (resistive) wall region (W) and a vacuum
region (V),10 and external coils are included to calculate the initial
equilibrium. These regions and the meshes are shown in Fig. 1. The
code was successfully employed to study VDEs in tokamaks in both
2D and 3D.7,11 In support of this capability, a benchmark in 2D with
well-known codes NIMROD12 and JOREK13 was recently carried out
with success.14 In this study, we use the 2D version of M3D-C1 and we
employed different wall geometries: (a) a thin rectangular wall, (b) a
thin ITER first wall, and (c) a thick two-layer ITER wall. We note here
that M3D-C1 can handle only closed contours around the plasma as a
resistive wall. Note also that the “thin” walls were of thickness 2–6 cm
with finite elements in the wall.

For the rectangular geometry, Fig. 1(a), we scanned over three
different cases R1, R2, and R3: the former with the side walls far away

from the plasma but inside the coil region and the latter with the side
walls very close to the plasma. The wall resistivity employed in the
rectangular geometries as well as in the thin ITER wall geometry, Fig.
1(b), was gw ¼ 3:6� 10�8 Xm, which is similar to the resistivity of
Beryllium and approximates an ideal conducting wall on the time-
scales of these calculations.

The last case, Fig. 1(c), shows a new capability that has been
recently incorporated in M3D-C1: a resistive wall region with different
layers in which anisotropic wall resistivities can also be set. This new
model is an important step toward more realistic simulations of resis-
tive wall instabilities. The plasma–wall interface matches the ITER first
wall as in the I1 model, and the W1 region represents the ITER first
wall panels and blanket modules. As mentioned before, in ITER, the
first wall panels are expected to have a poor toroidal conductivity. The
W2 region constitutes the ITER inner vacuum vessel shell, which is a
very good conductor. As a limiting case for the present study and, in
contrast to the models R1–3 and I1, we also explored the situation in
which the W1 region acts as an insulator while the W2 region acts as a
perfect conductor. We set the W1 region to have a resistivity of gw1
¼ 1:933� 10�2 Xm, while in the W2 region, gw2 ¼ 3:6� 10�8 Xm.
With this election, the W1 region will not play a significant role, but it
will limit the plasma movement. On the other hand, all the toroidal
wall induction due to the plasma dynamics will develop in the W2
region.

All these simulations were performed in 2D using the single tem-
perature MHD model described in Ref. 15. To facilitate the discussion
in Secs. III and IV, we introduce here the primary terms in the temper-
ature equation that is solved in the plasma region:

3
2
n
@T
@t
¼ �r � qþ gJ2 þ ð� � �Þ; (1a)

q ¼ �j?r?T � jkrkT: (1b)

Here, g � T�3=2 is the Spitzer resistivity, which can be scaled by an
arbitrary constant, and q is the heat flux. The ratio of parallel to per-
pendicular heat flux coefficients, jk=j?, was set to 104–106, large

FIG. 1. Different wall geometries, computational domains, and meshes employed for the simulations. In all cases, the computational domain includes a plasma region (P), a
wall region (W), and a vacuum region (V). (a) shows three different rectangular walls labeled as R1, R2, and R3, (b) shows a thin ITER first wall model I1, and (c) shows a two
layer ITER vessel model, I2, in which the W1 region represents the first wall and blanket modules, and the W2 region, which is on average �60 cm away from the first wall
contour, represents the inner shell of the ITER vacuum vessel.
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enough to minimize the magnitude of halo currents, which were not
considered in Ref. 5.

III. TOP–BOTTOM FLAT-PLATES WALL LIMIT

Here, we summarize some of the results presented in Ref. 5 that
will be useful in this work. Following that model, which we will refer
to as the flat-plates wall limit, the vertical displacement can be written
as

d ¼ 0 ðI > I�Þ; (2a)

d2

b2
¼ 1:2158

I�
I
� 1

� �
ðI < I�Þ; (2b)

where d ¼ ZmðtÞ � Zmð0Þ is the displacement of the magnetic axis
measured from its initial equilibrium position and b is the top/bottom
wall distance measured from the same equilibrium magnetic axis posi-
tion. Equation (2b) has real solution when the plasma current has
decayed below a critical current value I�. When I > I� the solution is
stable at d¼ 0. We can compute this critical current value by specify-
ing the height bx0 of the x-point, at which the radial magnetic field
vanishes, obtaining

I0
I�
¼ 1:2337

b2x0
b2
: (3)

This result shows that I� < I0 only when the ratio bx0=b > 0:9.
Therefore, in order to observe in our simulations a transition in

which the plasma changes its equilibrium position from d¼ 0 to
jdj 6¼ 0 when the plasma current decays below I�, we have to choose
the top/bottom walls close enough to the x-points. In addition, to
make the comparison with the flat-plates wall limit, the top/bottom
walls should be both equidistant to the equilibrium magnetic axis
z-position Zmð0Þ and the side walls should be as far as possible from
the plasma. That is why we used the R1 geometry shown in Fig. 1(a).

Figure 2 shows the equilibrium poloidal flux w with contour lines. It
also shows the two, active and passive, x-points. The theoretical model
presented in Ref. 5 assumes up/down symmetry, but the ITER equilib-
rium is not. From Fig. 2, we get that bð1Þx0 =b ¼ 0:95 and bð2Þx0 =b � 1,
leading to Ið1Þ� ¼ 13:5MA and Ið2Þ� ¼ 12:2MA, respectively. From the
analysis performed for the symmetric case, we infer from this that the
configuration will certainly be unstable when the plasma current
decays below 12.2 MA.

In order to compare with the flat-plates wall limit model, we
evolved this initial equilibrium increasing the plasma Spitzer resistivity
by 105 to simulate the current quench. Figure 3 shows the magnetic
axis Z-position as a function of the plasma current, for slightly differ-
ent but small perpendicular heat flux coefficients j? (jk was fixed to
200). To get j in SI units, multiply by 1:542� 1026 m�1 s�1. The arti-
ficial increase in the Spitzer resistivity produces a current quench (CQ)
without a thermal quench (TQ). This keeps the plasma b approxi-
mately constant, avoiding the inward displacement and initial kick
that triggers the VDE (as used, for example, in Ref. 7). The plasma b
and R� coordinate of the magnetic axis, Rm, are shown in Fig. 4 as a
function of the plasma current. The perpendicular heat flux coefficient
j? was slightly varied in order to scan over small b variations, primar-
ily due to the increased Ohmic heating when the resistivity is
increased. We can observe from Fig. 3 that the simulation is in excel-
lent agreement with the flat-plates wall limit model. It was not possible
to generate a case that surpasses this stability limit using the R1 rectan-
gular wall.

However, if the side walls are brought closer to the plasma, the
stability of the d¼ 0 solution improves drastically. Figure 5 shows the
case “(iv)” of Fig. 3 (j? ¼ 5� 10�5) for the R1 model but now com-
pared with the R2 and R3 models. The side walls, which were
neglected in Ref. 5, are seen to be very stabilizing to the VDE. They
impose a constraint on the normal component of the perturbed mag-
netic field and, hence, on the plasma motion.

IV. COLD VDE DRIVEN BY A THERMAL QUENCH

In a more realistic situation, a cold VDE is triggered by a thermal
quench (TQ). This produces a collapse in the plasma b and

FIG. 2. ITER equilibrium poloidal flux employed is identical in all the cases, but dif-
ferent wall geometries were employed (as indicated in Fig. 1). Here, we show with
the R1 model that was used to approximate the two flat perfect conducting plates.

FIG. 3. Z� coordinate of the magnetic axis as a function of the plasma current for
different perpendicular heat flux coefficients j?. The dashed curves show the flat-
plates wall limit model, Eq. (2).
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temperature, as shown in Fig. 6, which usually triggers the vertical dis-
placement. Here, we have chosen a post-TQ Te � 30 eV as a standard
post-TQ plasma core temperature. The TQ is induced in the simula-
tions by setting j? to a large enough value. Different values lead to dif-
ferent post-TQ peak temperatures, as explained in Ref. 7. Here we used
j?¼ 4.8 � 10�2. During this collapse, which in these simulations lasts
�0:3ms, the plasma changes its equilibrium state to satisfy the force-
free condition and the evolution of this new state will be affected by the
boundary condition imposed by the conducting walls. The evolution of
some relevant global quantities is shown in Fig. 7. We can observe that
in these cases, the R1 and R2 wall geometries lead to a significant
upward motion, as shown in Fig. 7(a), while bringing the wall closer
such as in R3 and I1 geometries substantially reduces the displacement.

However, the nature of this upward/downward movement is differ-
ent from that of a standard VDE, which exhibits exponential growth on
the resistive wall timescale. Here, the vertical movement is a function of
the plasma current and radial position. If the side walls are far enough
away, such as in the R1 and R2 cases, the plasma will displace into a
region where the external fields are more destabilizing. The combination
of the stronger destabilizing force from the external fields and the weaker
passive stabilization due to the reduced current will cause the configura-
tion to seek a new equilibrium state, displaced vertically. It is seen that the
R1 and R2 configurations displace vertically even before the plasma cur-
rent begins to decrease. Freezing the plasma current (at a given major
radius position) at any later time leads to a constant Zm time evolution
(an example is shown in Sec. V). In this sense, these simulations show an
extension of the flat-plates wall limit for different wall geometries.

Figure 7(c) shows the current quench for all different cases. The
current quench is affected not only by the plasma temperature after
the TQ, which is almost identical in all cases (�30 eV), but also by the
wall geometry. Different wall geometries allow the plasma to change
its internal inductance in different ways, as shown in Fig. 7(d), in order
to keep the magnetic fluxes constant and to satisfy their respective
boundary condition.

V. THE ITER CASE

Figure 7 shows that the perfectly conducting ITER first wall limit
(model I1) is the most stable case we scanned. A longer time history of
the Z� coordinate of the magnetic axis and plasma current is shown
in Fig. 8. We can observe that the plasma is stable at d¼ 0 far beyond
the flat-plates wall limit and goes to a solution jdj 6¼ 0 when the
plasma current is below�2MA. This result leads to an edge safety fac-
tor increasing in time as shown in Fig. 9, improving the stability
of non-axisymmetric modes. On the other hand, we also include in
Fig. 8 the results from the thicker wall model I2 shown in Fig. 1(c), in
which the perfect conductor is assumed to be the outer wall layer W2,
which accounts for the inner shell of the ITER vacuum vessel. Since
this perfectly conducting wall is further away than in model I1, we can
observe that the plasma is displaced from the very beginning, as the
plasma current decreases. However, the vertical displacement is not as
fast as in the flat-plates wall limit so that the edge safety factor, shown
in Fig. 9, remains above 2 until the current has decayed below 6 MA.
The dotted line in Fig. 8 exemplifies a case in which the current

FIG. 4. (a) Plasma b and (b) R� coordinate of the magnetic axis as a function of
the plasma current for different perpendicular heat flux coefficients j?, as indicated
in Fig. 3.

FIG. 5. Z� coordinate of the magnetic axis as a function of the plasma current for
different rectangular walls, as shown in Fig. 1(a).

FIG. 6. Central electron temperature and plasma poloidal beta as a function of time
for different wall geometries.
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quench was frozen at an arbitrary time (�30ms) by reducing the
plasma resistivity. We can observe here that, as a consequence, Zm also
freezes in time, illustrating that the Z� position is a function of the
plasma current.

VI. CONCLUSIONS

In this work, we used the extended-MHD code M3D-C1 and
explored the perfectly conducting wall limit of an ITER cold VDE. We

analyzed the flat-plates wall model by Boozer, performing a scan over
different rectangular first wall geometries. We found that the model is
applicable in a situation when the side walls are far enough from the
plasma, but bringing the walls closer considerably improves the stabil-
ity of the d¼ 0 solution. It is shown that in the case of the ITER first
wall, the d 6¼ 0 solution takes place only when the plasma current has
decayed below 2 MA.

Finally, when using the inner shell of the ITER vacuum vessel as
a perfect conductor, the vertical displacement occurs at the time of the
thermal quench, but it is a slow enough function of the current decay,
compared to the flat-plates wall limit, so that the edge safety factor
does not decrease significantly down to values below 2 until the cur-
rent has decayed below 6 MA.

In all the simulated cases, it was found that, in the limit of a per-
fectly conducting wall, the vertical displacement showed a strong
dependency on the plasma current, in agreement with a similar find-
ing in the flat-plates wall limit. Freezing the current leads to a freezing
of the magnetic axis position in contrast to “hot” VDEs, which begin
with full plasma current and beta values and do not occur in the limit
of a perfectly conducting wall. The findings in this paper appear to be

FIG. 7. Global quantities as a function of time for different wall models: (a) Z�
coordinate and (b) R� coordinate of the magnetic axis, (c) plasma current, and (d)
internal inductance. A zoom in time at the beginning shows the initial displacement
caused by the thermal quench.

FIG. 8. Time evolution of the Z� coordinate of the magnetic axis and plasma cur-
rent for models I1 (solid) and I2 (dash). See Fig. 1 for models’ reference. The dot-
ted line shows that when freezing the current quench (by reducing the plasma
resistivity), Zm also freezes in time.

FIG. 9. Edge safety factor (q95) as a function of time for wall models I1 (solid) and
I2 (dash). See Fig. 1 for models’ reference.
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consistent with Ref. 2, although they did not consider realistic ITER
plasma and vessel shapes, and did not take the ideal wall limit as was
done here.
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