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A set of scalar variables and projection operators for the vector momentum and magnetic field
evolution equations is presented that has several unique and desirable properties, making it a
preferred system for solving the magnetohydrodynamic equations in a torus with a strong toroidal
magnetic field. A “weak form” of these equations is derived that explicitly conserves energy and is
suitable for a Galerkin finite element formulation provided the basis elements have C1 continuity.
Systems of reduced equations are discussed, along with their energy conservation properties. An
implicit time advance is presented that adds diagonally dominant self-adjoint energy terms to the
mass matrix to obtain numerical stability. © 2009 American Institute of Physics.
�doi:10.1063/1.3224035�

I. INTRODUCTION

Here we are concerned with developing a set of scalar
equations that are appropriate for use in finite element com-
putations of three-dimensional global-scale magnetohydro-
dynamics �MHD� in a strongly magnetized torus, such as a
tokamak. It is well known that there are severe challenges to
be overcome in applying the MHD equations to a tokamak.
There are multiple time and space scales present, the diver-
gence of the magnetic field must be constrained to vanish,
and the treatment must be such as to accurately describe a
flow field that avoids compressing the strong externally im-
posed magnetic field to a large degree.1 In linear MHD, this
latter property has been called the avoidance of spectral
pollution.2

The M3D �Ref. 3� approach to overcome these difficul-
ties was to introduce a potential and stream function repre-
sentation for the velocity and the magnetic vector potential
and to develop a partially implicit algorithm for integrating
the equations in time. In M3D-C1 we build on that approach
by introducing slightly modified forms of the velocity and
magnetic field variables that have several desirable proper-
ties. They are compatible with appropriate projection opera-
tors that lead to energy-conserving weak forms of the equa-
tions when the Galerkin method is applied. When the
numerical algorithm of differential approximations4–8 is ap-
plied, they also lead to self-adjoint forms for partial-energy
terms that are added to the mass matrix to give a stable
well-conditioned fully implicit time advance. This technique
has been demonstrated in two-dimensional slab6,7 and toroi-
dal geometry.8 The latter reference goes into the two-fluid
extensions in some detail. Here we present the full three-
dimensional �3D� toroidal equations and discuss their prop-
erties but restrict our attention in the main text to single fluid
resistive MHD for simplicity. The technique presented is

readily generalized to include additional terms in the equa-
tions, such as gyroviscosity and additional transport terms.

Another important feature of the formulation presented
here is that it leads naturally to several systems of “reduced
MHD” equations that are obtained simply by zeroing out one
or two of the three scalar variables in the velocity field and
not including the corresponding projection operator for that
component with the momentum equation. Similarly, the
magnetic field advance can be simplified by zeroing the con-
tribution to the toroidal field by the plasma currents and re-
moving the corresponding projection operator for the mag-
netic field advance equation. This procedure provides 3D,
toroidal, energy-conserving sets of reduced MHD equations
that are generalizations of equation sets previously proposed.

We state the resistive MHD equations in Sec. II and
introduce the forms of the velocity and magnetic vector po-
tential vectors in Sec. III. Taking the weak form of the pro-
jection operators introduced in Secs. IV and V and of the
scalar density and pressure equations in Sec. VI is shown in
Sec. VII to lead to an energy conserving set of evolution
equations. Properties of the velocity representation are dis-
cussed in Sec. VIII and how this leads to energy conserving
subsets of two-field, Sec. IX, and four-field, Sec. X, equa-
tions that are energy-conserving toroidal generalizations of
equation sets previously proposed. Section XI introduces the
implicit time advance and shows the close connection with it
and the ideal MHD perturbed energy �W. In Secs. XII and
XIII we explicitly demonstrate that the partial-energy terms
added to the mass matrix for the implicit time advance are
self-adjoint. A subset of these same terms is used in the re-
duced equation sets. The Appendix A covers the two-fluid
extensions in the generalized Ohm’s law. Appendix B de-
scribes the variables and projection operators used in the
original M3D code for comparison. Appendix C introduces a
self-consistent set of orderings that are used to demonstrate
desirable properties of the formulation presented in the main
text.

a�Author to whom correspondence should be addressed. Electronic mail:
jardin@princeton.edu.
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II. THE RESISTIVE MHD EQUATIONS

Consider the standard resistive MHD equations for the
mass density n, the fluid velocity V, the magnetic field B,
and the fluid pressure p �in rationalized MKS units�:

�n

�t
+ � • �nV� = 0, �1a�

n� �V

�t
+ V • �V� + �p + � • � = J � B , �1b�

�B

�t
= � � �V � B − �J� , �1c�

�p

�t
+ V • �p + �p � • V = �� − 1���J2 − �:�V� . �1d�

Here, the current density is defined by J���B and the
condition � •B=0 is implied by Eq. �1c�. The viscous stress
term is taken to have the form

� = − ���V + �V†� − 2��C − ���� • V�� ,

� • � = − ��2V − �2�C − �� � �� • V� . �1e�

We introduced the adiabatic index, � �=5 /3 for an ideal gas�,
the electrical resistivity �, and the isotropic and compressible
viscosities � and �C.

III. THE FORM OF THE VECTORS V AND B

We use a physics-motivated decomposition of the vector
fields in toroidal geometry. Using a cylindrical coordinate
system �R ,� ,Z� with ����=1 /R, we define the two-
dimensional �2D� gradient and 2D divergence operators as,

��a�aRR̂+azẐ ,��•A�R−1�RA • R̂�R+ �A • Ẑ�Z. Subscripts
denote partial differentiation with respect to R and Z. We
also define the 2D inner products and Poisson brackets. For
any two scalar variables a and b, we define the inner product

�a,b� � ��a • ��b = aRbR + aZbZ, �2a�

and the Poisson bracket

�a,b� � ��a � �b • ��� = R−1�aZbR − aRbZ� . �2b�

The velocity field is represented in terms of the three scalar
variables �U ,� ,	� as follows:

V = R2 � U � �� + �R2 � � + R−2��	 . �3�

This form is chosen so that the in-plane stream function U
does not compress the toroidal field �as described in Sec.
VIII�, � is the toroidal angular frequency, and the in-plane
compressibility term 	 is orthogonal to the others as de-
scribed below.

The magnetic vector potential is given in terms of the
two scalar variables �f ,
� and the constant F0 �proportional
to the current in the toroidal field magnets� as

A = R2 � � � �f + 
 � � − F0 ln RẐ . �4�

This form leads to orthogonality between f and 
 in the
magnetic energy �below� and to a particularly convenient

form for the current density J. Note that the gauge condition
implied by this form is ��•R−2A=0. The magnetic field and
current density are calculated in terms of the vector potential
variables as

B = � � A = �
 � �� − ��f� + F � � , �5a�

=�
 � �� − �f� + F� � � , �5b�

and

J � � � B = �F� � �� + R−2��
� − ��
 � � . �6�

The third term in this expression for J is the toroidal current
density. The second is the poloidal current needed to make
the toroidal current divergence-free when it has � variation.
The first term is the remaining poloidal plasma current that
contributes to the toroidal field F. Here we defined auxiliary
variables, F�F0+R2� •��f , F��F0+R2�2f =F+ f�, and
the operator ��
�R2��•R−2�
. Primes denote differentia-
tion with respect to the angle �. Note that B and J are mani-
festly divergence-free in these forms.

The forms for the vector fields V and B have the prop-
erty that their corresponding energies do not have any cross
terms when integrated over a volume, as these cross terms
become surface terms that vanish if the normal components
of these vectors vanish at the boundaries. Thus, if we define
the 2D volume integral �at constant �� as d2R�RdRdZ, we
have

	 	 d2RV2 =	 	 d2R�R2�U,U� + R−4�	,	� + R2�2� ,

�7a�

	 	 d2RB2 =	 	 d2R�R−2�
,
� + �f�, f�� + R−2F2� .

�7b�

The different terms in the velocity and magnetic field vec-
tors, Eqs. �3� and �5�, are therefore orthogonal in this sense.
However, we note that if a nonconstant density is present, the
kinetic energy will have the additional factor of the density
and so the cross term n�U ,	� will not vanish, albeit these
terms are still approximately orthogonal.

IV. THE SCALAR MOMENTUM EQUATIONS

We introduce a set of trial functions with C1 continuity,
which we denote as �i. These can either be 2D functions
�i�R ,Z� or 3D functions �i�R ,� ,Z�. To get scalar forms for
the momentum equation, we take the weak form of the fol-
lowing three projection operators applied to Eq. �1b�, inte-
grate over the 2D plane �R ,Z�, and perform integration by
parts as indicated in Eq. �8�:

	 	 d2R�i � � • �� � R2�1b� →	 	 d2RR2���i

� �� • �1b� , �8a�
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	 	 d2R�iR
2 � � • �1b� →	 	 d2R�iR

2 � � • �1b� ,

�8b�

−	 	 d2R�i�� • R−2�1b� →	 	 d2RR−2���i • �1b� .

�8c�

The boundary terms from the integration by parts are as-
sumed to vanish here, but will be the subject of a future
publication. By comparing the integrands on the right in Eq.

�8� with the form of the velocity in Eq. �3�, we see that after
the integration by parts, these projection operators are
equivalent to taking the inner product of the momentum Eq.
�1b� separately with each of the three terms in the velocity
field, but with the trial function �i replacing each of the three
scalars �U ,� ,	�. We show in Sec. VII that this property
leads to an energy-conserving set of discrete equations, to
two energy-conserving subsets of reduced equations, and in
Sec. XI we show that this leads to self-adjoint energy terms
being introduced in an implicit time advance. After substitut-
ing for the magnetic field and velocity from Eqs. �3� and �5�,
Eqs. �8a�–�8c� gives the following integrands:

nR2��i,U̇� − n��i,	̇� = − n
���
2 U −

2

R4	Z��R4��i,U� + ��i,	�� − ���i,	�� + R2��i,U�� + R2�2�iZ

−
1

2
R2��i,R

2�U,U� +
1

R4 �	,	�� + R2��i,�U,	�� + ��
���i,
� − ��i, f��� +
F

R2 ��i,
�� + F��i, f��

− R2�p,�i� − ��R2���
2 �i����

2 U� − ��i,U��� , �9a�

nR2�i�̇ = − n�i
R2�R2�,U� +
1

R2 �R2�,	� + R2��� −
�i

R2 �
,
�� + �i�F�,
� + �i�f�,
�� − �i�f�,F�� − �ip�

+ ��i����R2�� + 2�C�i��� , �9b�

n

R4 ��i,	̇� + n��i,U̇� = n
���
2 U −

2

R4	Z����i,U� −
1

R2 ��i,	�� −
�

R4 ��i,	�� − ���i,U�� +
1

R
�2�iR

−
1

2R2��i,R
2�U,U� +

1

R4 �	,	�� −
1

R2 ��i,�	,U�� − ��
� 1

R4 �
,�i� +
1

R2 ��i, f���
−

F

R4 ���i,F
�� − ��i,
��� −

1

R2 ��i,p� − 2�C
1

R2�†�i�
†	 . �9c�

Here and elsewhere we are denoting time derivatives as

U̇��U /�t, etc. We again note that the terms −n��i , 	̇� and

n��i , U̇� on the left sides of Eqs. �9a� and �9c� would vanish
for constant density, n=const.

V. THE MAGNETIC FIELD EVOLUTION EQUATIONS

In a manner analogous to the momentum equation, we
obtain the scalar weak form of the magnetic field evolution
equations by applying the following two projection operators
to Eq. �1c�, integrating over the 2D plane, and performing
integration by parts:

	 	 d2R�i � � • �� � �1c� →	 	 d2R���i

� �� • �1c� , �10a�

	 	 d2R�i � � • �1c� →	 	 d2R�i � � • �1c� . �10b�

As in the discussion following Eq. �8�, if we compare the
integrands on the right in Eq. �10� with the form of the mag-
netic field in Eq. �5b�, we see that these projection operators
are equivalent to taking the inner product of the magnetic
field evolution Eq. �1c� with the first and third terms in the
magnetic field, but with the trial function �i replacing the
scalar quantities 
 and F�. In this case, there is no need to
take the third projection, which would be

−	 	 d2R�i � • �1c� →	 	 d2R � �i • �1c� , �10c�

since the divergence constraint on the magnetic field assures
that this is satisfied. After substituting for the magnetic field
and velocity from Eqs. �3� and �5�, Eqs. �10a� and �10b� give
the following integrands:
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1

R2 ��i,
̇� = − �U,
����i −
1

R2 ��i,R
2�f�,U�� + �F�

R2���i,U� + � F

R2���i,U�� − ��� 1

R2 ��i,
� + ��i, f���
− �� 1

R2 ��i,
�� + ��i, f��� −
1

R2 ��i,R
−2�
,	�� +

1

R2 ��i,�f�,	�� −
1

R4F���i,	�

−
1

R4F��i,	�� −
�

R2����i�
�
 −

1

R2 ��i,
�� − ��i, f�� − ��i,F��� , �11a�

and

− ��i, ḟ� =
�i

R2 Ḟ = F��i,U� +
1

R4F��i,	� − ���i,
�

+ ���i, f�� −
�

R2 ��i,F� −
�

R2 ��i, f��

+
�

R2 ��i,
�� . �11b�

Equation �11b� is seen to be an evolution equation both for f
and for F.

VI. DENSITY AND PRESSURE EVOLUTION

The density and pressure equations follow directly from
Eqs. �1a� and �1d� after substituting for the magnetic field
and velocity from Eqs. �3� and �5�,

ṅ + �nR2,U� + �n��� + �� • � n

R2��	� = 0, �12�

ṗ + �pR2,U� + �p��� + �� • � p

R2��	� = − �� − 1�p�− 2Uz + �� +
1

R2��	� + �� − 1�
��R2���
2 U����

2 U� + �U�,U���

+
�

R2 �R2�,R2�� + 2�C���� + 2�C
1

R2�†	�†	 +
�

R2��
��
 +
�

R4 �
�,
��

+
�

R2 �
�,F�� +
�

R2 �F�,F�� . �13�

VII. ENERGY CONSERVATION

The well known demonstration of energy conservation
by Eq. �1� depends on the equivalent of the following vector
identities being satisfied by the scalar equations:

nV • �V • �V� = nV • �� 1
2V2� , �14a�

V • � • � = − �:�V + ST, �14b�

B • ��� � V� � B� = − V • �� � B� � B + ST, �14c�

B • �� � �� � � B�� = − ��� � B�2 + ST. �14d�

�Here we denote by ST those surface terms that vanish at the
boundary if the normal velocities and Poynting fluxes vanish
there.� It is seen that these vector identities are satisfied ex-
actly in the present formulation because of the equivalence
of the weak forms of the projection operators that we use to
taking the inner product of Eq. �1b� with each of the vector
components of V and of Eq. �1c� with each of the vector
components of B. Since the weak form of Eqs. �9� and �10�
holds true for any function �i in the admissible function

space, to explicitly demonstrate energy conservation, we
make the particular choices in Table I.

With the functions of Table I inserted as indicated, we
sum Eqs. �9a�–�9c� and �10a�–�10c� together with 1 /2 V2

times Eq. �12� and ��−1�−1 times Eq. �13�, and integrate
over the volume to obtain the explicit demonstration of en-
ergy conservation. After many cancellations and integrations
by parts, this yields

d

dt
	 	 	 dV
1

2
n�R2�U,U� + R2�2 +

1

R4 �	,	�

+ 2�	,U�� +
1

2
� 1

R2 �
,
� +
F2

R2 + �f�, f���
+

1

�� − 1�
p = 0 + ST.

As discussed earlier, the final term in the kinetic energy
term, n�	 ,U�, would integrate to zero if the density n were
constant.

092503-4 Breslau, Ferraro, and Jardin Phys. Plasmas 16, 092503 �2009�



VIII. PROPERTIES OF THE VELOCITY FIELD

The toroidal magnetic field in a standard tokamak is
much greater in strength than the poloidal field. The domi-
nant contribution to the toroidal field, denoted by the con-
stant F0 in Eq. �4� and those that follow, is produced by the
large toroidal field coils. It follows that the leading order
plasma motion will be such as to convect the strong exter-
nally imposed toroidal field but not to compress it.9 The de-
sire to represent this dominant plasma flow field with a
single scalar variable led to the particular form of the veloc-
ity field vector introduced in Eq. �3�.

One sees from the toroidal field evolution equation, Eq.
�11b�, that the only place that U enters in this integrand is in
the first term on the right. This term can be written as

�i

R2 Ḟ = F��i,U� + ¯

= − �i�F,U� + ¯

= − �i��F • ��U � �� + ¯ . �15a�

We see that since �F0=0, U only convects the part of F that
is produced by the plasma currents, but does not compress
the toroidal field. We therefore expect that to a very good
approximation, the plasma motion in the �R ,Z� plane will be
represented by the first term in the velocity equation.

To understand better how this comes about, suppose the
first term in the velocity field was given by

V = Rm � U � �� + . . .

�In Eq. �3� we have m=2�. The �� component of the mag-
netic field evolution equation, Eq. �1c� becomes

1

R2 Ḟ = − � • �V
F

R2� + ¯

= − � • �Rm−2 � U � ��F� + ¯

= − Rm−2 � U � �� • �F − F � U � �� • �Rm−2.

�15b�

Since the second term contains F0 �if m�2� but the first term
does not �since �F0=0�, it will dominate in this equation and
hence restrict the velocity field associated with the U vari-
able as there is a large energy penalty associated with com-
pressing the toroidal field. This is the physical basis for
choosing the form of the velocity field in Eq. �3� and for the
reduced MHD model presented below which follows from it.

IX. GENERALIZED TWO-FIELD EQUATIONS

Since the entire system of equations conserves energy,
we can also obtain energy-conserving subsets by setting one
or two of the velocity variables �� ,	� to zero, and either
keeping or setting to zero the vector potential variable f .
Thus, by eliminating Eqs. �9b�, �9c�, and �11b� and setting
�=	= f =0 in the remaining equations, we obtain the follow-
ing two integrands and two equations:

nR2��i,U̇� = − n
���
2 U�R4��i,U� + R2��i,U��

−
1

2
R2��i,R

2�U,U�� + ��
��i,
�

+
F0

R2 ��i,
�� − R2�p,�i� − ��R2���
2 �i����

2 U�

− ��i,U��� , �16a�

1

R2 ��i,
̇� = − �U,
����i + �F0

R2���i,U��

−
�

R2����i�
�
 −

1

R2 ��i,
��� , �16b�

ṅ + �nR2,U� = 0, �16c�

ṗ + �pR2,U� = �� − 1�
2Uzp + ��R2���
2 U����

2 U�

+ �U�,U��� +
�

R2��
��
 +
�

R4 �
�,
�� .

�16d�

It is shown in Appendix C that the force terms neglected in
the evolution equation for U in going from Eq. �9a� to Eq.
�16a�, which all contain f , are all higher order in a systematic
ordering and this is why these simplified equations are of
interest. This set of equations is seen to be an energy-
conserving toroidal generalization of the “Strauss
equations.”10 A further reduction is possible by eliminating
the last two equations and setting the density n to a constant
n0 and the pressure p to zero. This set of equations, called the
two-field reduced equations, consists of just Eqs. �16a� and
�16b� with n=n0 and p=0. This reduced equation set no
longer has the exact energy conservation property but is nev-
ertheless useful for many applications.

X. GENERALIZED FOUR-FIELD EQUATIONS

Another set of energy-conserving reduced equations is
obtained by keeping the full magnetic field advance equa-
tions for 
 and f but just eliminating the third velocity equa-
tion, Eq. �9c�, and setting 	=0 in the remaining equations.
This leads to a set of toroidal equations where the component
of the velocity field in the �R ,Z� plane does not compress the
toroidal field. These equations are toroidal energy-conserving
generalizations of those presented in Refs. 11 and 12, which
can be extended to two-fluid MHD as discussed in Appendix
A.

TABLE I. Trial functions used to show energy conservation.

Equation �i

�9a� U

�9b� �

�9c� 	

�10a� 


�10b� F�
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XI. THE IMPLICIT TIME ADVANCE EQUATIONS

It has been shown by several authors4–8 that a stable
implicit numerical time stepping algorithm, now known as
the method of differential approximation, can be obtained by
replacing Eq. �1b� by the following equation, and then by
applying centered time differences and either centered space
differences or finite elements:

�n − 2��t�2L�
�V

�t
+ nV • �V + �p + � • � = J � B .

�17�

This is followed by an implicit time advance for the mag-
netic field, pressure, and density using the advanced time
velocity. Here we introduced the implicit parameter , where
1 /2��1 for numerical stability, �t is the time step, and L
is the linear ideal MHD operator:13

L�V� = �� � �� � �V � B��� � B + �� � B�

��� � �V � B�� + ��V • �p + �p � • V� . �18�

When the operator projections in Eq. �8� are applied to Eq.
�17�, new terms, called partial energy terms, appear on the
left sides of Eqs. �9a�–�9c� but the right sides remain un-
changed. The left sides of these integrands then become

nR2��i,U̇� − n��i,	̇� − 2��t�2��W11
�0���i,U̇�

+ �W11
�1���i,U�˙ � + �W11

�2���i,U�˙ � + �W12
�1���i,��˙ �

+ �W12
�2���i,��˙ � + �W13

�0���i,	̇� + �W13
�1���i,	�̇�

+ �W13
�2���i,	�̇�� = ¯ , �19a�

nR2�i�̇ − 2��t�2��W21
�1���i,U�˙ � + �W21

�2���i,U�˙ �

+ �W22
�0���i,�̇� + �W22

�2���i,��˙ � + �W23
�0���i,	̇�

+ �W23
�1���i,	�̇� + �W23

�2���i,	�̇�� = ¯ , �19b�

n

R4 ��i,	̇� + n��i,U̇� − 2��t�2��W31
�0���i,U̇� + �W31

�1���i,U�˙ �

+ �W31
�2���i,U�˙ � + �W32

�0���i,�̇� + �W32
�1���i,��˙ �

+ �W32
�2���i,��˙ � + �W33

�0���i,	̇� + �W33
�1���i,	�̇�

+ �W33
�2���i,	�̇�� = ¯ . �19c�

Properties of these partial energy terms as applied to an axi-
symmetric equilibrium with zero equilibrium flow are dis-
cussed in the next section.

XII. DIRECT EVALUATION OF ENERGY TERMS

The partial energy terms, �Wkj�ak ,bj� are obtained
by taking the 2D integral of the inner product of the kth
velocity component with the operator L operating on the jth
velocity component. For example, �W13�U ,	��R2�U
��� •L�R−2��	�. In implementing the Galerkin method,
each finite element basis function is used in place of the first
variable and the second variable is expanded in basis func-

tions. Integration by parts is done so that no more than
two derivatives appear on any scalar, consistent with restric-
tions on C1 elements. We use the equilibrium equation,
��
=−R2dp /d
−FdF /d
, to simplify the energy terms and
put them in a manifestly self-adjoint form. Note that “prime”
means � /�� �e.g., U���U /���. We also make use of the
identities �obtained by integration by parts� that for any sca-
lars a, b, and c,

c�a,b� = −
a

R2 �cR2,b� − ac��b ,

a�b,c� = − c�b,a� .

The terms that appear in the integrands of Eq. �19� are as
follows:

�W11
�0���i,U� = −

1

R2 �R2�U,
�,R2�vi,
�� + R2 d

d

�F

dF

d

�

��U,
��vi,
� − 4�pUz�iz,

�W11
�1���i,U�� = −

F

R2 �U�,R2�vi,
�� +
F

R2 ��i,R
2�U�,
��

+ ��
F�vi,U�� ,

�W11
�2���i,U�� =

F2

R2 �U�,vi� ,

�W12
�1���i,��� =

��

R2 �
,R2�vi,
�� + ��F�vi,F�

+ ��R2�vi,p� + 2�p���iz,

�W12
�2���i,��� = − ��

F

R2 �
,vi� ,

�W13
�0���i,	� =

1

R2 �R−2�	,
�,R2�vi,
�� −
d

d

�F

dF

d

��vi,
�

��	,
� −
d2p

d
2 �vi,
��	,
� +
2�

R2 p�iZ��	 ,

�W13
�1���i,	�� = +

F

R4 �R2�vi,
�,	�� −
F

R2 �vi,R
−2�	�,
��

+ ��

F

R4 �	�,vi� ,

�W13
�2���i,	�� =

F2

R4 �	�,vi� ,

�W21
�1���i,U�� = −

�i

R2 �
,R2�U�,
�� − �iF�U�,F�

− �iR
2�U�,p� − 2�p�iUZ� ,

�W21
�2���i,U�� = − �i

F

R2 �
,U�� ,
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�W22
�0���i,�� = − R2��i,
���,
� ,

�W22
�2���i,��� = �i

��

R2 �
,
� + ��ip��,

�W23
�0���i,	� = F��i,
��R−2��	 + �R−2,	�� ,

�W23
�1���i,	�� = +

�i

R2 �
,R−2�	�,
�� + F
�i

R4 �F,	��

+
�i

R2 �p,	�� + �p
�i

R2��	�,

�W23
�2���i,	�� = −

�i

R4F�	�,
� ,

�W31
�0���i,U� = +

1

R2 �R−2��i,
�,R2�U,
�� −
1

R2

d

d

�F

dF

d

�

��U,
���i,
� −
d2p

d
2 �U,
���i,
�

+
2�

R2 pUZ���i,

�W31
�0���i,U�� = −

F

R4 �R2�U�,
�,�i� +
F

R2 �U�,R−2��i,
��

− ��

F

R4 ��i,U�� ,

�W31
�2���i,U�� =

F2

R4 ��i,U�� ,

�W32
�0���i,�� = F��,
��R−2���i + �R−2,�i�� ,

�W32
�1���i,��� = −

��

R2 �
,R−2��i,
�� − F
��

R4 �F,�i�

−
��

R2 �p,�i� − �p
��

R2 ���i,

�W32
�2���i,��� = −

��

R4 F��i,
� ,

�W33
�0���i,	� = −

1

R2 �R−2�	,
�,R−2��i,
��

− F2R2�� •
1

R4 � �i��� •
1

R4 � 	�
+

1

R6

d

d

�F

dF

d

��	,
���i,
� −

�p

R4 ��	���i

+
1

R4

d2p

d
2 �	,
���i,
� ,

�W33
�1���i,	�� = −

F

R4 ��i,R
−2�	�,
�� +

F

R4 �	�,R−2��i,
��

−
1

R6��
F�	�,vi� ,

�W33
�2���i,	�� = +

F2

R8 �	�,�i� .

XIII. SYMMETRY PROPERTIES OF ENERGY
TERMS

The forms of the energies in Sec. XII have the following
symmetries that follow from the self-adjointness property:

�W11
�0���i,U� = �W11

�0��U,�i�,

�W11
�1���i,U�� = − �W11

�1��U�,�i�,

�W11
�2���i,U�� = �W11

�2��U�,�i� ,

�W22
�0���i,�� = �W22

�0���,�i�,

�W22
�2���i,��� = �W22

�2����,�i� ,

�W33
�0���i,	� = �W33

�0��	,�i�,

�W33
�1���i,	�� = − �W33

�1��	�,�i�,

�W33
�2���i,	�� = �W33

�2��	�,�i� ,

�W12
�1���i,��� = − �W21

�1����,�i�,

�W12
�2���i,��� = �W21

�2����,�i� ,

�W13
�0���i,	� = �W31

�0��	,�i�,

�W13
�1���i,	�� = − �W31

�1��	�,�i�,

�W13
�2���i,	�� = �W31

�2��	�,�i� ,

�W23
�0���i,	� = �W32

�0��	,�i�,

�W23
�1���i,	�� = − �W32

�1��	�,�i�,

�W23
�2���i,	�� = �W32

�2��	�,�i� .

If we define V1=U , V2=� , V3=	 and denote phi deriva-
tives as V1

�1�=U� , V1
�2�=U�, etc., we can write these com-

pactly as

�Wjk
�l���i,Vk

�l�� = �− 1�l�Wkj
�l��Vj

�l�,�i� . �20�

XIV. SUMMARY

Equations �9a�–�9c� for the velocity and Eqs. �11a� and
�11b� for the magnetic field variables are the weak forms of
the 2D integrands for the momentum and magnetic field ad-
vance for a resistive MHD plasma. They are similar to the

092503-7 Some properties of the M3D-C1 form… Phys. Plasmas 16, 092503 �2009�



equations used by the M3D code, given in Appendix B, but
are different in some important ways. They are preferable for
use in a 3D MHD finite element code if the elements posses
C1 continuity with respect to �R ,Z�. These forms satisfy the
equivalent of the vector identities that are required to obtain
energy conservation. These are supplemented by the density
and pressure evolution equations in Eqs. �12� and �13�. These
equations manifestly preserve the divergence-free condition
on the magnetic field and will accurately describe plasma
motions that minimize the compression of the strong toroidal
field. Because the formalism of this paper only involved
2D integrals over �R ,Z� at constant toroidal angle �, it
is generally applicable to any kind of discrimination in
the toroidal direction: spectral, finite difference, or finite
element.

To construct a well behaved numerically stable implicit
time advance, called the differential approximation, we add
the partial energy terms given in Eqs. �19a�–�19c� to the
inertial terms on the left of Eqs. �9a�–�9c� as indicated. These
terms are shown to be self-adjoint and thus their addition to
the mass matrix should lead to a well conditioned matrix
equation for the new time velocities. This clean result, and
that of energy conservation for the discrete forms, stems
from the equivalence of the projection operators that we use
to taking the inner product of the momentum equation with
each term in the velocity vector, and the magnetic field evo-
lution equation with each term in the magnetic field vector. It
is shown in Secs. IX and X how to use this formalism to
construct well-behaved reduced systems of equations that
also conserve energy and whose matrix equation for the new
time advance is also well conditioned.

Initial results with the linear version of 3D M3D-C1, in
which the � dependence is represented spectrally, are pre-
sented in Refs. 14 and 15. These verify the high-order con-
vergence properties and the excellent numerical stability of
the formulation and benchmark the equations against exist-
ing codes. The full 3D nonlinear implementation is expected
to appear during the next calendar year.
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APPENDIX A: TWO-FLUID EXTENSIONS

The primary extension of the resistive MHD model to
the two-fluid model is to change Eqs. �1c� and �1d� to6

�B

�t
= � � �V � B − �J −

1

ne
�J � B − �pe�� , �A1�

�p

�t
+ V • �p + �p � • V = �� − 1���J2 − �:�V�

+
n�

ne
J • �� pe

n�� . �A2�

It is also necessary to add an additional evolution equation
for the electron pressure, pe, although it does not directly
enter into the energy balance. As in the discussion in Sec.
VII, the energy associated with the new terms will vanish
identically up to a surface term because we are effectively
taking the inner product of Eq. �A1� through the weak form
of the projection operators that we use. Thus, the vector iden-
tities needed,

B • � � �−
1

ne
�J � B − �pe��

= J • �−
1

ne
�J � B − �pe�� + ST,

=
1

ne
J • �pe + ST,

=
pe

n2e
J • �n + ST�, �A3�

are satisfied exactly by the weak form. This last term then
combines with the new term in Eq. �A2� �when multiplied by
��−1�−1� to give only a surface term.

The new terms that replace Eq. �1c� by Eq. �A1� are as
follows. To the right side of Eq. �11a� we add

= ¯ −
1

neR2�� 1

R2 �
,
�� + �
�, f�� + �
,F��

+ �f�,F������i + ��
�� 1

R2 ��i,
� + ��i, f���
+ ��
� 1

R2 ��i,
�� + ��i, f��� +
F�

R2 ���i,F
�� − ��i,
���

+
F

R2 ���i,F��� − ��i,
��� −
1

n
pe���i,n�

−
n�

n

��
� 1

R2 ��i,
� + ��i, f��� +
F

R2 ���i,F
�� − ��i,
���

− ��i,pe�� . �A4�

To the right side of Eq. �11b� we add

= ¯ +
1

ne
���


R2 ���i, f�� − ��i,
�� − � F

R2�
�
��i,F

�� +
1

R2 ��i,
�� − ��i,pe�� . �A5�
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APPENDIX B: THE M3D POTENTIALS
AND PROJECTION OPERATORS

In the original C0 M3D code,3 the velocity is expressed
in terms of a different set of scalars U, 	, and V� as

V = R2 � U � �� + RV� � � + ��	 . �B1�

The magnetic vector potential and magnetic field are given
by

A = 
 � � + R � f � �� − F0 ln Rẑ , �B2a�

B = �
 � �� + R−1��f� + F � �

= �
 � �� + R−1 � f� + �F −
1

R
f�� � � , �B2b�

where the auxiliary variable F is here defined by F=F0

−R2� • �1 /R���f .
Projection operators for momentum are

− R � � · � � , �B3�

to extract the U component

R̂ · and · Ẑ �B4�

for ��	, which leads to two equations that still contain terms
with time derivatives of U, and requires an elliptic solve for
	 itself, and

R � � �B5�

for the toroidal component. The evolution of poloidal flux 

is found by applying the projection operator

R2 � � �B6�

to the time derivative of the magnetic vector potential, Eq.
�B2a�. This derivative is determined by Ohm’s and Faraday’s
laws only to within the gradient of an auxiliary scalar �,
which will appear in the 
 equation. The choice of gauge
�� · �1 /R�A=0 implies that this is the electrostatic potential
�to within a sign�, leading to the auxiliary equation

� •
1

R
��� = ��

1

R
· E , �B7�

where E is the electric field given by Ohm’s law. Finally, the
toroidal field evolution may be projected out of Eq. �B2b�
with the same projection operator Eq. �B6�.

APPENDIX C: ORDERINGS

Let R be a typical major radius and a be a typical minor
radius. Define the ordering small parameter �=a /R. Gradi-
ents in the �R ,Z� plane are assumed ordered as ���1 /a,
however, in the toroidal direction we have ���1 /R. It then
follows that we can order the quantities that appear in the
magnetic field and pressure as

f � R�4 f̃ ,


 � R2�2
̃ ,

p � �2p̃ ,

F � R ,

�F � � f̃ ,

�R � 1.

Here f̃ , 
̃, and p̃ are dimensionless quantities of the order of
unity. This gives for the relative magnitude of the three terms
in the magnetic field

�
 � �� : ��f : F � �

� : �3 : 1 + �2,

and for the three terms in the current density

�F� � �� : R−2��
� : ��
 � �

�2 : �2 : � .

This corresponds to the standard low-beta tokamak ordering.
Applying this ordering to the energy terms in Secs. XI and
XII gives the following relations between the diagonal terms
and their corresponding kinetic energies:

�W11�U,U�
R2�U,U�

� �2,
�W22��,��

R2�2 � �2,
�W33�	,	�

1

R4 �	,	�
� 1.

This implies that a plasma motion that is seeking to mini-
mize the perturbed energy must not have a large 	 compo-
nent in the velocity field. Also, we see that the off-diagonal
terms satisfy the following ordering:

�W12�U,���W21��,U�
�W11�U,U��W22��,��

� �2,

�W13�U,	��W31�	,U�
�W11�U,U��W33�	,	�

� �2,

so that the partial energy matrix is diagonally dominant in
this sense.
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