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ABSTRACT

In recent years, the nonlinear 3D magnetohydrodynamic codes JOREK, M3D-C', and NIMROD developed the capability of modeling
realistic 3D vertical displacement events (VDEs) including resistive walls. In this paper, a comprehensive 3D VDE benchmark is presented
between these state-of-the-art codes. The simulated case is based on an experimental NSTX plasma but with a simplified rectangular wall.
There are differences between the physics models and numerical methods, and the VDE evolution leads to sensitivities on the initial
conditions that cannot be avoided as can be done in edge localized modes (ELM) and sawtooth simulations (due to the non-cyclical nature
of VDEs). Nonetheless, the comparison serves to quantify the level of agreement in the relevant quantities used to characterize disruptions,
such as the 3D wall forces and energy decay. The results bring confidence regarding the use of the mentioned codes for disruption studies,
and they distinguish aspects that are specific to the models used (e.g., reduced vs full MHD models). The simulations show important 3D fea-
tures for a NSTX plasma, such as the self-consistent evolution of the halo current and the origin of the wall forces. In contrast to other
reduced MHD models based on an ordering in the aspect ratio, the ansatz-based JOREK reduced MHD model allows capturing many aspects
of the 3D dynamics even in the spherical tokamak limit considered here.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0037115

I. INTRODUCTION

Vertical displacement events (VDEs) are axisymmetric insta-
bilities that arise for elongated plasmas when the control of the ver-
tical position is lost. In future large fusion devices such as ITER,
major disruptions will unavoidably lead to the loss of plasma con-
trol' and a resulting VDE. Such events drive the plasma column
into the wall, causing large thermal and electromagnetic loads to
the plasma facing components and to the vacuum vessel.” During
VDEs, additional 3D MHD instabilities can arise resulting in the
localization of the loads and in net sideway forces. Moreover, it has

In this respect, the development of validated 3D MHD codes
including the effect of resistive walls is crucial to the study of these
loads for future machines. Although axisymmetric codes such as
DINA,” TSC,” or CarMaONL’ allow studying many crucial aspects of
disruptions, they cannot take into account these 3D effects. Moreover,
for VDEs in which the vertical motion precedes the thermal energy
loss (known as hot VDEs), the edge safety factor (q,) is strongly
reduced due to the slow decay of the plasma current during the vertical
motion.” In such cases, axisymmetric codes may impose g, > 1 by
modifying the current profile, otherwise g, drops below unity when

been observed that these forces can rotate toroidally, leading to
large forces on the vacuum vessel and its supporting structures
when the rotation frequency resonates with the natural frequencies
of the vessel.”

the minor radius approximately drops by a factor of 2 (g, ~ a*/I,).
When g, falls below 2 or so, the configuration will no longer remain
axisymmetric.”” Non-axisymmetric modes will grow, producing hori-
zontal forces and stochastic field lines. The minimum g, and the level
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of current density are strongly influenced by MHD activity and paral-
lel dynamics in the stochastic field line region. The dynamics affect the
current density directly and by modifying the electrical resistivity
through the fast temperature reduction.

In recent years, simulations of 3D VDEs have been performed by
Strauss'’ with the M3D code,'' Sovinec and Bunkers'’ with
NIMROD,"” Pfefferlé et al'* with M3D-C' (Ref. 15), and Artola'®
with JOREK.'”'® However, no benchmark for 3D VDEs has been per-
formed among these codes. Except for highly idealized cases, there are
no analytical solutions for events that involve chaotic magnetic field
lines and large vertical displacements. The work presented in this arti-
cle is therefore an essential contribution to the verification and valida-
tion of these numerical codes.

In this work, we present such a benchmark for the codes JOREK,
M3D-C!, and NIMROD. These three codes are among the limited
number of codes capable of simulating 3D MHD instabilities in toka-
mak geometry including resistive walls. The benchmark is addressing
the full 3D dynamics and is partly based on the axisymmetric bench-
mark that was already performed between these three codes.'” The
goal of this work is to demonstrate the consistency among these codes
and to provide the fusion community with a useful benchmark for
MHD simulations of disruptions.

This paper is organized as follows. In Sec. 11, we revisit the models
and the numerics used by the different codes. The setup and the
parameters of the benchmark case are described in Sec. III. The com-
parison of the obtained results and the analysis of the 3D VDE simula-
tions are presented in Sec. I'V. Finally, we summarize our conclusions
in Sec. V.

1. MODELS AND CODES DESCRIPTION

The single fluid MHD model used by the three codes for this
benchmark is given by the following equations:

E=—vxB+y], (1)
1] =V x B, ()
OB

EZ_VXE’ (3)

ov
paz—pv-Vv—VpﬂxBW-z, (4)

B)
8—’?:—V~(pv)+V~(QVP)7 ®)

%:fv-foypVAVnL(V*I)V‘(EVT)JF(“/*1)11VV»

(6)

where E is the electric field, v is the mean flow velocity, B is the mag-
netic field, J is the current density vector, p is the ion density, p is the
total pressure, and T = T, + T; is the total temperature. The other
parameters are the plasma resistivity (1), the stress tensor (t), the par-
ticle diffusion tensor (D), the heat conductivity tensor (k), the vacuum
permeability (1), and the ratio of specific heats (}). The particle diffu-
sion and heat conduction tensors are decomposed into parallel and
perpendicular directions relative to the magnetic field (b = B/|B|),

scitation.org/journal/php

where I is the identity tensor. For the simulations presented in this
paper, the Ohmic heating source, radiation losses and external particle,
momentum and energy sources are not included to keep the setup
simple. Except for the plasma resistivity, for which a Spitzer-like tem-
perature dependence is used (17 oc T;3/?), the other coefficients
(), k1, Dy, D1 ) do not depend on any variable and are spatially con-
stant. The exact values for these coefficients used in our computations
can be found in Table II. The form of the stress tensor for each code is
given in the code-specific Secs. I1 B-II D.

The MHD equations (1)-(6) are solved in a volume delimited by
a resistive wall [see the blue line in Fig. 1(c)]. Inside the resistive wall,
Ohm’s law is simply

E=n,Jw, &)

where 7,, is the wall resistivity, which for this benchmark is spatially
constant, and J,, denotes the wall current density.

A. Boundary conditions

Dirichlet boundary conditions are applied for the fluid variables
at the plasma-wall interface. The temperature and density B.C.s are
simply p = p(t =0) and T = T(t = 0). These conditions do not
capture the density and temperature variations along the plasma-wall
interface that may take place in experiments. The extension of bound-
ary conditions to more comprehensive modeling is the subject of
ongoing work.””*" Although the three codes set a no-normal flow
boundary condition at the plasma-wall interface (v - n = 0, where n
is the normal vector to the boundary), NIMROD and M3D-C! set
all the velocity components to zero (v = 0) whereas in JOREK, only
the components normal to the wall and parallel to the magnetic
field are set to zero (v - n = v = 0). For all three codes, the model-
ing is analogous to the cold-wall fixed thermal-conduction compu-
tations of Sec. IIIC in Ref. 20. There, it is shown that rapid
open-field heat transfer to cold walls keeps the halo region relatively
thin, and the evolution is insensitive to boundary conditions on v.
With the combination of v-n = 0, D # 0, and the fixed-p bound-
ary condition, loss of mass occurs through particle diffusion at the
plasma-wall interface and is decoupled from the magnetic field due
to the temperature-dependent resistivity. The treatment of bound-
ary conditions for the magnetic field is code dependent and is
explained below.

The primary numerical properties of the codes are summarized
in Table I. Sections 11 B-1I D describe the particularities of the models
used in JOREK, M3D-C!, and NIMROD.

B. JOREK

JOREK is a fully implicit non-linear extended MHD code for
realistic tokamak geometries including open field-line regions."”
Although a full MHD model is available in ]ORIEK,"""’3 the extension
for resistive walls has not yet been implemented for that physics
model. For this benchmark, we use a reduced MHD model that is
based on the following ansatz for the magnetic field and the mean

plasma velocity:

B=Vy x Vé + F Ve, 10
D=Dpbob+D (I-bxb) % 1?2 PrRYe ()
k=Kkbob+r (I-bab), @) v:—F—OvmeSJrvH, (11)
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where i is the poloidal magnetic flux, @ is the electrostatic potential, of the equations is ansatz-based and does not result from geometrical

and Fy = RBy is a constant representing the main reduced MHD ordering assumptions. The specific projection of Eqs. (1)-(6) together
assumption, which is that the toroidal field is fixed in time. However, with the ansatz is explained in detail in Ref. 24. The form of the diver-
poloidal currents are not fixed in time and they evolve according to gence of the stress tensor in the poloidal plane projection is V- |
the current conservation and momentum balance equations; only their = R*uV¢$ x Vwy ~ (V?vy,, where p is the dynamic viscosity,
contribution to the toroidal field is neglected. Note that the reduction Wy = mel(l) is the toroidal vorticity, and the subscript “pol” denotes

TABLE I. Summary of the different numerical properties of the code versions used in the present benchmark.

Feature/code JOREK M3D-C' NIMROD

Toroidal discretization Fourier harmonics Cubic Hermite elements Fourier harmonics

R-Z plane elements Quadrilateral isoparametric bicubic Bezier Triangular reduced-quintic Quadrilateral bicubic
Continuity G! c' c

Wall model Axisymmetric thin wall Axisymmetric thick wall Axisymmetric thin wall
Vacuum region Un-meshed Green’s function method Meshed up to outer boundary Meshed up to outer boundary
MHD model Reduced MHD Full MHD Full MHD
Time-advance Implicit (Gears) Split-implicit Implicit leapfrog

"Note that G continuity stands for geometric continuity instead of parametric continuity (C), which implies that derivatives in real space are continuous (e.g., 9y /9R) but that deriv-
atives on the local element coordinates can be discontinuous across the finite elements.
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the directions lying on the poloidal plane. For the parallel direction,
the divergence of the stress tensor is chosenas V - 7| = V2.

The resistive wall and the boundary conditions for the magnetic
field are included by coupling JOREK to the STARWALL code.''**
The coupling is performed by solving the full vacuum domain with a
Green’s function method, and therefore, the vacuum does not need to
be meshed. STARWALL uses the thin wall assumption and discretizes
the wall with linear triangular elements. Although the employed wall
formalism is implemented for 3D thin walls including holes, the used
setup is restricted to an axisymmetric wall. The no-normal flow
boundary condition that is common to the three codes implies that
the boundary conditions in JOREK must be v = 0 and ® = 0. Since
in reduced MHD the poloidal electric field only depends on the electric
potential (Epq = Vpo®@), the no-normal flow condition (® = 0)
implies that the plasma-wall interface acts as a perfect conductor in
the poloidal direction along the boundary (Ep, x n = 0). Note that
this is not the case in M3D-C' and NIMROD, where at the boundary
Epol X n = yJ,q X n# 0. Finally, since the resulting momentum
equation contains third-order derivatives on ®, an additional bound-
ary condition is applied for the toroidal vorticity (wg = 0).

JOREK discretizes the poloidal plane with quadrilateral bicubic
Bezier elements using an isoparametric mapping.”® The variation
along the toroidal direction is represented by Fourier harmonics and
for the time advance typically the Crank-Nicolson or the BDF5 Gears
scheme is used.

C. M3D-C!

M3D-C' is a versatile MHD code with a number of options. It
can be run in the 2D (axisymmetric) mode, a linear-3D mode (for a
single toroidal harmonic), or in a fully 3D nonlinear mode as was used
for this paper. The magnetic vector potential and ion velocity are rep-
resented in terms of scalar quantities as A = V¢ + RV ¢ x Vf
—FyInRVZ and v=R*VU x V¢ + wRV ¢ + R2V,qy. Here,
(R, ¢, Z) are cylindrical coordinates. The function f is constrained to
be regular at the origin so that the constant F is proportional to the
total current in the toroidal field magnets. The code can be run in the
two-variable reduced MHD option where only (i, U) are advanced in
time, in the four-variable reduced MHD option where (i, f, U, w) are
advanced in time, in the full single fluid MHD option (used in this
paper), or in a two-fluid MHD option. Implicit hyper-resistivity terms
can be included in the time advance. In this paper, hyper-resistivities
with spatially constant values of 2.76 x 10~° and 1.10 x 10~? Qm?
were used in the equations for y and f, respectively. The stress tensor
in M3D-C' is £ = u[Vv + Vv!]. Although M3D-C' has the option to
advance the pressure, Eq. (6), in these calculations we advanced the
temperature instead, T, the same as described by Eq. (13) in Sec. II D.

In the resistive wall region, only the magnetic vector potential
variables are advanced in time, with Ohm’s law: E = 5, J, where the
wall resistivity may be a function of space even if it is set to a constant
in this benchmark. In the vacuum region: VxV xA=0 is
enforced. This region is directly meshed and solved by using perfect
conductor boundary conditions [ie., B-n = B - n(t = 0)] at the out-
ermost computational boundary containing the wall and the vacuum
regions. The mesh and outermost boundary are given in the axisym-
metric version of this benchmark (see purple curve of Fig. 1 in Ref.
19). The location of the outermost boundary is such that the VDE
growth rates are close to the no-outer-boundary growth rates."”

scitation.org/journal/php

The code uses an unstructured mesh with triangular elements in
the (R, Z) plane and extruded in a structured manner in the toroidal
direction. The mesh is normally adapted to the geometry and the
problem, so that a finer mesh size is used in locations where large gra-
dients are expected. All scalar variables are expanded in 3D finite ele-
ments that are a tensor product of the Bell”” element in the (R, Z)
plane and Hermite cubic elements in the toroidal angle ¢. This repre-
sentation enforces continuity of each scalar and all of its first-
derivatives across element boundaries. In the 3D nonlinear code, a
split-implicit time advance is used where the velocity variables are
advanced first, followed by the magnetic-field variables, the pres-
sure(s), and then density.

D. NIMROD

The NIMROD code solves fluid-based models for magnetized
plasma in non-reduced form. Unlike JOREK and M3D-C', it directly
evolves the components of magnetic field B and flow-velocity v. A
modified form of Faraday’s law is used to advance B

0B

E =-VxE+ XdithV . B, (12)
where the second term on the right diffusively corrects any numerical
divergence error. In addition, the pressure evolution equation (6) is
replaced by an equivalent temperature equation using the ideal gas law
p = nkgT and Eq. (5)

nkgaa—f: —nkgv-VT—(y=1)pV-v+(y—1)V-(kVT)

+(y—1)z:Vv. (13)

Although many NIMROD computations use fixed thermal diffu-
sivity coefficients y ~ i /n, the computations reported here and in
Ref. 19 use fixed thermal conductivity coefficients i, . for the
benchmarks with JOREK and M3D-C'. NIMROD’s stress tensor is
formed with the traceless rate-of-strain tensor, T = u[Vv + vvT
—(2/3)IV -v].

The VDE modeling uses the thin resistive wall approximation
that is described in Ref. 12 to interface with a meshed external numeri-
cal vacuum response, where the magnetic representation is the same
as in the internal plasma region. The meshed vacuum-field computa-
tion is similar to the approach used in M3D-C', and the shape of the
outer region is chosen to approximate that used in the M3D-C' com-
putations.“) However, NIMROD’s thin-wall model interfaces the
internal and external regions without resolving the wall’s cross section.
The equations conserve toroidal magnetic flux over the sum of the two
regions, and the normal component of the equilibrium poloidal-B at
the outer surface of external vacuum region is fixed for all time. As
noted previously, the cold-wall fixed thermal-conductivity conditions
makes extended-MHD computations insensitive to boundary condi-
tions on v, and we set all components of v = 0 at the resistive wall.

The system is advanced in time with an implicit leapfrog method
that, in comparison with fully consistent implicit methods, requires
smaller but less computationally intensive steps to achieve the same
level of accuracy.”® Like JOREK, NIMROD expands ¢-dependent
fields in toroidal Fourier harmonics. For the poloidal plane, the expan-
sion is 2D C° spectral elements with node spacing based on Legendre
polynomials. The underlying polynomial representation is chosen at
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runtime, and except where noted below, all computations reported
here use polynomials of degree 3. The representation does not satisfy
the magnetic divergence constraint, identically, but the diffusive error
correction term in Eq. (12) is effective at maintaining minimal error
with NIMROD’s high-order spatial representation.”” The NIMROD
computations also use the stabilization method that is described in
Ref. 29 so that the numerical representation reproduces MHD inter-
change with growth rates increasing to the converged value as resolu-
tion is increased.

lll. BENCHMARK SETUP
A. Plasma equilibrium

As mentioned in Sec. I, the benchmark is a 3D version of the axi-
symmetric benchmark that was already published for these three
codes.'” The chosen equilibrium is based on an NSTX experimental
plasma (discharge No. 139536 at t =309 ms) that was reconstructed
with the EFIT code.”” The equilibrium profiles, the separatrix, and the
wall geometries and several scalar quantities describing the equilib-
rium are shown in Fig. 1. The temperature profile is calculated from
the pressure profile (p) given in the gegdsk file with the expression
T, = T; = 946 €V (p/paxis)"*. Note that this file is available in the sup-
plementary material of Ref. 19 as well as the currents and geometry of
the poloidal field coils that are needed to compute the free-boundary
equilibrium. At the plasma-wall interface, the applied Dirichlet
boundary conditions for the temperature and density are T cqe
= 14.6 eV and 71 egee = 2.20 X 108 m~3,

B. Vacuum vessel

For simplicity, a rectangular vacuum vessel is chosen instead of
the complicated geometry of the NSTX vacuum vessel [see Fig. 1(c)].
The rectangular shape is defined by the four vertices (R = 0.24m,
Z=*14m) and (R=1.6m, Z= *1.4m). Note that the wall
corners are not exactly sharp in the simulations because Fourier har-
monics are used to represent the wall contour. The thickness of the
resistive wall is A,, = 0.015 m and the wall resistivity is 7, =3
x107°Q m. Where a thin-wall approximation is used, the effective
thin wall resistivity 17,,/A,, is used.

C. Simulation phases and parameter choice

The simulation is divided into two phases: an axisymmetric (2D)
run and a 3D run. The values for different parameters common to
both phases and specific to each phase are specified in Table II. In the
axisymmetric phase, the X-point drifts downwards until the plasma
becomes limited by the lower part of the wall. The end of this phase
and the start of the 3D phase are therefore determined by the change
of geometry of the last closed flux surface (LCFS) (i.e., it becomes
defined by a limiter point instead of the lower X-point). The 2D phase
is identical to the initial phase for the non-linear benchmark presented
in Ref. 19 but with the wall resistivity, plasma resistivity and particle
diffusion and heat conduction coefficients increased by a factor of 10.
Note that during the full simulation, the plasma resistivity is a factor
10 larger than the Spitzer’s value. Such an increase was required to
reduce the computational cost of the simulations. Although the main
goal of this work is not an experimental comparison, the chosen
parameters lead to vertical displacements of 1 m in a timescale of
10 ms, which is similar to the VDEs observed in experiments” where

scitation.org/journal/php

TABLE II. Physical parameters used for the benchmark case. Note that except for
the plasma resistivity, all the coefficients have spatially constant values.

During all phases

No loop voltage

No Ohmic heating

No radiation

No heating and particle sources

Ton mass: m; = 2Mproton

Ton charge: Z=1

Ton-electron temperature ratio: T.)Ti=1

Dynamic viscosity: = py =516 x 1077 kg (m s)”!
Resistivity: n =n. =175

x1072T, (eV)fS/2 Qm

During the 2D phase (before the plasma becomes limited)

Heat conduction coefficients: x, = 10k = 1.54 x 10" (m §)7!
D, =Dj=1.54m?/s

During the 3D phase (after the plasma becomes limited)

K1 =107k = 2.35 x 10*! (ms)”'

DL :DH :4Om2/s

Particle diffusion coefficients:

Heat conduction coefficients:
Particle diffusion coefficients:

such displacements take place within 5-20 ms. In the 2D phase, the
heat conduction and particle diffusion coefficients are such that the
thermal energy does not decay during the vertical motion. Since the
parallel density transport is typically governed by parallel convection,
for simplicity the parallel diffusion coefficient is set to be equal to the
perpendicular particle diffusion coefficient. In the 3D phase, we signifi-
cantly increase the diffusion/conduction coefficients to smooth the
sharp pressure gradients that arise due to the fast shrinking of the
LCFS. Although for that phase the diffusion/conduction coefficients
do affect the thermal energy decay, it will be shown in Sec. IV A that
the final collapse of plasma energy is governed by the 3D MHD activ-
ity once the magnetic field topology becomes chaotic.

D. Numerical resolution

In JOREK, a polar grid is used with increased resolution in the
region where the plasma becomes limited by the wall. The number of
Bézier elements used in the plasma region is 22 000, and the number of
linear triangular elements to mesh the thin wall is 48 000. For the toroi-
dal direction, 11 Fourier modes were used with n € [0, 10]. A resolu-
tion scan in the number of Fourier modes is shown in Sec. IV B. Time
steps of the order of 5-10 Alfvén times were used during the 2D phase
and time steps of 0.1-0.2 Alfvén times were used for the 3D phase.

The M3D-C' calculation used the unstructured poloidal plane
mesh shown in Ref. 19, which has 17 424 vertices on each plane, each
with 12 degrees of freedom for each scalar field in 3D (6 in 2D). The
3D phase used 16 toroidal Hermite cubic finite elements for each of
the triangular vertices. A time step of At = 0.574 was used, except for
a period of 0.048 ms, starting at time 10.185ms (1.233 ms after the
start of the 3D) when it was halved to At = 0.257,, to avoid numerical
instability. After this time, an “upwind” second-order toroidal diffu-
sion term was added to the scalar convection terms for the pressure,
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density, and magnetic field, equal to 0.125 x éx X vy, where
0x = 0.4 m was the approximate distance between toroidal planes.

The NIMROD computations have been run with 39 000 quadri-
lateral bicubic elements for the region inside the resistive wall. The
meshing is largely rectangular, but a packed layer of smaller elements
is used near the resistive wall and conforms to the curved corners. On
average, the bicubic C° elements have nine distinct nodes when taking
into account the sharing of element-border nodes. Thus, the inner
region has 1 complex degree of freedom per Fourier harmonic for n,
T, and each component of v and B on 351 000 nodes. Like the JOREK
computation, toroidal variations are represented with Fourier harmon-
ics n € [0,10]. Regarding the time-advance, although NIMROD’s
implicit leapfrog uses implicit advection, the temporal staggering tends
to lose accuracy for dynamics if the time step does not satisfy the
Courant-Friedrichs-Lewy (CFL) condition for flow-velocity. Thus,
the time step is adjusted, dynamically, to satisfy this condition. For the
most dynamic part of the 3D computations At > 0.01574, which is
hundreds of times larger than an explicit stability limit. In other parts
of the 3D evolution, time steps are more than an order of magnitude
larger.

IV. RESULTS AND ANALYSIS

In this section, the simulated case is presented, the results are
compared between the three codes, and the physics of the case is ana-
lyzed. In Sec. I'V A, the results for the different phases of the simulation
are shown together with a discussion on MHD stability. In Sec. IV B, a
resolution scan is performed to demonstrate that the case is sufficiently
converged in toroidal resolution. In Sec. IV C, the origin of the wall
forces is explored as well as the influence of the parallel heat conduc-
tivity, the viscosity and the initial asymmetric perturbations on the
results.

A. Simulation phases and code comparison
1. Evolution overview

We compare the vertical position of the magnetic axis, the total
toroidal current (including the halo current) and the total thermal
energy for the three codes in Fig. 2. The total toroidal halo current is
also shown for JOREK and M3D-C'. NIMROD’s post-processing
tools to compute the toroidal halo current have not been developed
yet. As expected for the 2D phase (' =t — t3p gart < 0), the level of
agreement is similar to the axisymmetric VDE benchmark reported in
Ref. 19. The time axis has been shifted so # = 0 when the plasma
becomes limited in the three codes. As was shown in Ref. 19, such syn-
chronization is necessary because the different numerical perturba-
tions initiating the VDE can lead to different timescales even if the
growth rates are in good agreement.

In this benchmark case, the complete thermal quench is induced
by the vertical displacement (see Sec. I'V A 2) and takes place when the
plasma volume has decreased by more than a factor of two
(Vp/Vpo = 0.26 at ' = 1.16 ms in JOREK). Due to this sequence of
events, the case can be classified as a hot VDE, which features the larg-
est wall forces observed in experiments. During the 2D phase, the
plasma current and the thermal energy do not decay due to the high
plasma temperature and the small diffusion/conduction coefficients.
The chosen increase in the diffusion/conduction coefficients at the
start of the 3D phase leads to a loss of a large fraction of the thermal
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FIG. 2. Vertical position of the magnetic axis, plasma current, and thermal
energy (for all plasma domain) and toroidal halo current as function of time for
the three codes. NIMROD’s post-processing tools regarding computations that
separate the open and the closed field line regions (e.g., /aio,¢) are, in particu-
lar, challenging due to the magnetic field representation and are not yet devel-
oped for VDEs.
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FIG. 3. Magnetic energy of the toroidal harmonics n € [1,4] in the three codes as
a function of time. The time traces of the edge safety factor (qos) and the normal-
ized fy in JOREK (black curve) are also shown in the bottom figure.
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energy. Note, however, that once 3D MHD instabilities set in, the
decay rate of the thermal energy is dominated by the 3D effects and
not by the choice of diffusion/conduction coefficients (see fy time
trace in Fig. 3). Such an increase in the diffusion/conduction coeffi-
cients was necessary to prevent the formation of large edge pressure
gradients that arise when the plasma volume decreases. Simulations
without the increase in the diffusion/conduction coefficients showed
that high-n edge localized modes become unstable due to the large gra-
dients. To account for the high toroidal mode numbers adequately,
the numerical resolution would have to have been significantly larger
and additional terms (e.g., diamagnetic flows terms) would have to
have been included in the equations, greatly increasing the complexity

JOREK

D)

l'
oy
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of the benchmark. As this work is a benchmark exercise which primar-
ily aims to compare the 3D wall forces (which are observed to be given
by low-n mode numbers), the high-n edge localized modes are avoided
with the choice of the diffusion/conduction coefficients.

2. MHD stability

Linear stability calculations were performed at different vertical
positions during the 2D phase. All three codes find that the initial
equilibrium is unstable to resistive edge instabilities localized at the
q =3 and g = 4 rational surfaces, but as the equilibrium profiles evolve
due to current diffusion and the vertical motion, these modes are
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FIG. 4. T, mode structure for the toroidal harmonics with the largest amplitude at t —
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stabilized. For example, when performing the stability calculations at
Zasis = —0.15 m, corresponding to ' = —1.4 ms in Fig. 3, no instabil-
ity was found.

In Fig. 3, the magnetic energies of the dominant toroidal har-
monics are shown as a function of time. The magnetic energy of a
toroidal harmonic 7 is defined as W, = (| \B;ol\de) /(2p), where
B}, is the poloidal magnetic field contribution given by the harmonic
n. Figure 3 shows that when go5 has dropped to a value around two,
several toroidal harmonics become unstable. Before this time, a weakly
growing n =1 mode is observed, which is a mix of an external m/n
= 3/1 kink mode and a resistive 2/1 mode. Once the g =2 surface
moves into the open field line region, low-n external kink modes
become unstable. In Fig. 4, the mode structures of n=1, 2, 3 are
shown, and it can be seen that these instabilities are associated with
the q=2 surface since the 2/1, 4/2 and 6/3 structures are dominant.
Note that this is consistent with external kink modes™” that become
unstable when

0<ng, <m, (14)

where g, denotes the cylindrical edge safety factor; in our case
qa = 1.8 < m/n = 2. Higher-n modes are initially excited by non-
linear coupling, and higher #n modes remain sub-dominant over most
of the evolution (see Fig. 5).

All three codes show that the plasma becomes very unstable
between 0.85 and 1.10 ms after the plasma becomes limited (see Figs. 3
and 5). Also, there is agreement on the fact that n =1 is the dominant
mode for all but a short period of time. At the beginning of the satura-
tion phase, the n=2 mode is important and moreover, the n=3
mode energy can exceed the n =1 mode energy during short transient
phases. Although the mode behavior is similar, differences among the
codes of about a factor of 2 are found on the energy saturation level of
the dominant # =1 mode (see also Fig. 7). The growth of the n=1
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FIG. 5. Magnetic energies from the modes n € [1,8] in JOREK, NIMROD, and
M3D-C" over time.
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mode can also be significantly different as can be inferred when com-
paring # = 1 time traces of M3D-C" with the other two codes in Fig, 3.

3. Thermal quench

The evolution of the thermal pressure during the thermal quench
is shown in Fig. 6. The pressure evolution indicates that the external
kink modes grow from the plasma edge and start penetrating into the
plasma core. The latter process can be observed in the Poincaré plots
also shown in Fig. 6. The external modes deform the plasma boundary
and create an ergodic layer from about ¢ = 1.00 ms onward. Since
these modes grow toward the plasma core, several core plasma regions
become areas with open field lines. This can be observed in the zones
with low density of points in the Poincaré plots, which imply that the
field lines typically intersect the wall before completing a full toroidal
turn. The regions with open field lines are the ones losing pressure at a
faster rate and therefore they have a lower pressure. This is because the
thermal energy is quickly lost along the magnetic field lines due to the
fast parallel heat conduction. The fast loss of thermal energy is sensi-
tive to the magnetic topology evolution, and in the simulations, it takes
0.14ms in JOREK, 0.24ms in M3D-C' and 0.18 ms in NIMROD.
Therefore, maximum differences of a factor of about 1.7 are found on
the obtained duration of the thermal quench. This range of times is
consistent with NSTX disruptions where the loss of core confinement
occurs in a timescale of ~0.2 ms.”

4, Wall forces

In JOREK and N{MROD, the total wall force is calculated with
the expression given by

1 B
FEJ ]deV:—Ei; (B-m)B——-nJdS, (15
wall Ho Jwalr+ 2

where n is the normal vector to a closed toroidal surface enclosing the
wall. The force in M3D-C' is calculated directly with the integral over
the vessel elements (j] x BdV). In Fig. 7, the total vertical force, the
total horizontal force and the toroidal phase of the horizontal force in
the three codes are shown as a function of time (including the mag-
netic energy of the n =1 mode for reference). The vertical force (F,) is
already significant before the onset of the non-axisymmetric instabil-
ities, indicating that it is dominated by 2D effects. The magnitude and
the time evolution of this force are in fair agreement among the codes.

The maximum horizontal force F, =, /F} + F; among the codes

varies from 1.3kN to 3.5kN and the time of the peak value varies by
0.2 ms. Although the horizontal force Fj, appears together with the rise
of the n=1 magnetic energy, their correlation is not obvious. For
example, JOREK shows a horizontal force a factor approximately 2.7
larger than NIMROD although the maximum 7 = 1 magnetic energy
is similar. The toroidal phase of the horizontal force indicates that Fj,
is not able to complete a full toroidal turn in any of the codes after the
thermal quench, showing that the force is rotating only very slowly
during the phase when asymmetric forces develop.

5. 3D halo currents

One of the main features that these codes offer is the capability to
calculate self-consistent 3D halo currents. In Fig. 8, the current density
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FIG. 6. Evolution of the pressure at the plane ¢ = 0 in JOREK (top), M3D-C' (middle), and NIMROD (bottom) in arbitrary units. The pressure plots are overlaid with corre-
sponding Poincare plots showing the magnetic field topology. M. Hoelzl, G. T. A. Huijsmans, S. J. P. Pamela, M. Becoulet, E. Nardon, F. J. Artola, B. Nkonga et al., “The
JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas,” Nucl. Fusion (acc (2021).

Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC BY) license.

normal to the wall is shown as a function of the toroidal angle (¢) and
the R coordinate on the bottom side of the rectangular wall (Z = —1.4
m). At time t=1.04 ms filamentary structures appear implying that
the n > 1 harmonics are important to determine the 3D halo current.
In particular, a strong n =3 mode structure is present in the normal
current density as this mode has the largest energy at this time in
JOREK (see Fig. 5). Note that across the limiter point (R ~ 0.8 m), the
current filaments are strong enough to change the sign of the n=0
current density. Later, when the horizontal force reaches a maximum

(t=1.12ms), the halo currents show a dominant n=1 structure.
Although NIMROD and M3D-C' plots are not displayed, they quali-
tatively show the same behavior.

6. Toroidal plasma current asymmetries

Asymmetric VDEs are often characterized by the toroidal asym-
metries of the plasma current (I,). Experimental evidence shows that
when measuring I, at different toroidal locations” (e.g, using
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FIG. 7. Time traces of the n=1 magnetic energy, the vertical force, the total hori-
zontal force, and the toroidal phase of the total horizontal force. M. Hoelzl, G. T. A.
Huijsmans, S. J. P. Pamela, M. Becoulet, E. Nardon, F. J. Artola, B. Nkonga et al.,
“The JOREK non-linear extended MHD code and applications to large-scale insta-
bilities and their control in magnetically confined fusion plasmas,” Nucl. Fusion M,
M (2021). Copyright 2021 Authors, licensed under a Creative Commons Attribution
(CC BY) license.

Rogowski coils at different toroidal sectors), VDEs can cause asymme-
tries on the plasma current of the order of 10%-20% (AI,/I,). In
Fig. 9, the plasma current is computed at ten equidistant poloidal
planes (¢ = 2nk/10 with k=0,1,...,9) in the three codes. In
NIMROD, the maximum I, asymmetries are of the order of 1.5%-2%,
in M3D-C! they are on the order of 1%-1.4%, and in JOREK they are
smaller than 0.01%.

Although it does not seem to affect key quantities such as the
wall forces, the fact that JOREK shows no I, asymmetries has been
investigated as part of this work. The coupling with the resistive wall
code'® does not include the effect of halo currents. This implies that
there is a jump of the normal current density across the plasma-wall
interface. Although the normal current density arriving to the interface
is finite (J - n|,, # 0) as shown in Fig. 8, the normal current density
leaving the interface is zero (J - n|,, = 0). Due to V - J = 0, the fact
that J - n| ,, = 0 automatically implies that JyI, = 0. The jump on
the normal current density is compensated by tangential surface cur-
rents flowing on the JOREK’s plasma-wall interface that are hidden in
the formalism. These currents are not force-free, and therefore, they
produce an important contribution to the wall forces (i.e., the halo cur-
rent contribution).

B. Resolution scans

The JOREK simulation was repeated with a larger number of
toroidal harmonics, n € [0,20] instead of n € [0, 10]. The results are
shown in Fig. 10, which indicate that high-n mode numbers do not
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FIG. 8. Normal current density at the bottom side of the rectangular wall
(Z = —1.4 m) as function of the toroidal angle ¢ for two times during the thermal
quench in JOREK.
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FIG. 10. Magnetic energy of the n =1 mode, plasma current, thermal energy, verti-
cal and horizontal force for two JOREK and NIMROD runs with different number of
toroidal harmonics. The NIMROD computations shown here have been run with 2D
resistivity and increased parallel viscosity—see the text.

significantly change the evolution of the important figures of merit
(such as the plasma current, the thermal energy and the wall forces).
NIMROD simulations with n € [0, 10] and n € [0, 21] are also shown
in the figure. They also indicate convergence with respect to toroidal
representation, but we note that this comparison had been completed
with resistivity depending only on the n =0 component of T and with
parallel viscosity, that is, a factor of 100 larger than the scalar viscosity
value. While another NIMROD computation with n € [0,21] and
having all the parameters of the three-code comparison shows a simi-
lar level of convergence for the NIMROD computations well into the
thermal-quench phase, it has not been run sufficiently far to display.
We also observe that although the wall force converges with toroidal
resolution within each code, the force does not converge between
codes.

A check on poloidal resolution is most easily accomplished with
NIMROD, where the degree of the spectral-element polynomials can
be changed while keeping the same mesh of elements. A lower-
resolution computation of the 3D phase with biquadratic elements
(156 000 nodes) and the parameters of Sec. IV A produces a peak
n=1 energy that is 37% larger but a peak horizontal force that is only
2.2% larger than the bicubic results.

C. Additional physics studies
1. Origin of the wall forces

In this section, we study the origin of the wall forces with JOREK.
As it was indicated in Sec. I'V A 6, normal electric currents do not enter
the resistive wall (J - n|,; = 0) and, instead, flow along the plasma-
wall interface in JOREK. In this sense, the plasma domain’s boundary
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is not force-free. This feature allows one to clearly separate between
halo and eddy currents. Since only eddy currents flow on the JOREK-
STARWALL wall, the wall force caused by eddy currents can be com-
puted with

Feddy =F — Fhao = %

wall+

fds — iﬁ £ds, (16)
wall—

where f = [(B - n)B — nB?/2]/1, is the magnetic stress tensor pro-
jected in the normal direction to the wall. We have used the previous
formula to calculate the different contributions to the total wall force
as shown in Fig. 11. Although the eddy currents have a significant con-
tribution, the horizontal force (mainly given by F,) is governed by halo
currents. Moreover, the eddy current force is in the opposite direction
with respect to the halo current force, and thus it reduces the total hor-
izontal force. In the case of the vertical force, both halo and eddy cur-
rents have a similar contribution before the thermal quench. After the
thermal quench, the plasma resistivity is significantly increased due to
the drop in the plasma temperature. As a consequence, the core
plasma current decays and it induces halo currents in the open field
line region, which has appreciable temperature due to the imposed
B.C. T, ede = 14.6 €V. As the induction of halo current and its associ-
ated wall force increases at a higher rate than the total wall force
(which varies on the resistive wall time), the eddy current contribution
to the total force must decrease as observed in Ref. 36. As a general
conclusion for both forces, the JOREK simulation shows that the max-
imum forces are due to halo currents.

2. Effect of parallel heat conductivity and viscosity

In this section, a case with increased parallel thermal conductivity
and a case with decreased viscosity are presented. The results shown in

3 —— Total
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g —— Eddy
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FIG. 11. Cartesian components of the total wall force in the JOREK simulation. The
different legends denote the total wall force and the separate contributions of halo
and eddy currents.
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Fig. 12 indicate that the viscosity plays a minor role for the evolution
of I, and of the thermal energy. Although not large, reducing the vis-
cosity produces perceptible effects on the wall force. Increasing the
parallel conductivity produces a more dramatic effect on the results.
The dynamics become faster and the loss of thermal energy takes
0.043 ms instead of 0.14 ms. Although it is expected that the increase
in x) leads to a faster thermal quench (the heat is conducted faster
along the open field lines), it is not clear that the thermal quench time
has a linear dependence with the parallel heat conduction coefficient
due to the effect of the thermal pressure on the field line topology. In
this case when x| was increased by a factor of 10 the thermal quench
time was reduced by a factor of 3. The magnitude of the horizontal
force is significantly larger during the thermal quench although the
maximum forces measured are similar (3.5-4.2 kN).

3. Effect of 3D perturbation amplitude

The three codes use different asymmetric perturbations at the
start of the 3D phase to excite n > 1 activity. JOREK and NIMROD
use spatially smooth perturbations, whereas M3D-C' uses mesh-scale
random noise. Thus, even with perturbations of roughly the same
amplitude, the projections onto any growing modes differ. Moreover,
initial asymmetric perturbations of steady symmetric fields are typi-
cally considered arbitrary in MHD computations, as long as they are
sufficiently small. In this application, however, the VDE continually
changes the symmetric state, hence the response of the asymmetries.
To investigate how the perturbations affect the outcome of our simula-
tions, the NIMROD and JOREK computations have been repeated
with amplitudes of the perturbations increased, relative to the compu-
tations described in Secs. [V A, [V B, [V C1,and [V C2.

Figure 13 compares the evolution of the plasma current, thermal
energy, n =1 and 2 magnetic energies, and the magnitude of horizon-
tal force from NIMROD computations with perturbations at the start
of the 3D phase that differ in amplitude by 1000. The small-
perturbation case is the one described throughout Sec. IV A. The com-
parisons show both qualitative and quantitative differences in the
results. With the large perturbation, the (2,1) mode reaches large
amplitude before other toroidal harmonics become unstable.
Therefore, the MHD activity is dominated by the (2,1) mode and its
helical harmonics, unlike the small-perturbation case, which shows
multi-helicity activity. This is evident in Fig. 14, which shows pressure
in the ¢ = 0 plane, at 1.01 ms of the large-perturbation case and at
1.05 ms of the small-perturbation case. JOREK results also show the
dominance of the (2,1) mode structure instead of the multi-helicity
activity when starting with large n > 1 perturbation amplitudes, as
confirmed by the comparison in Fig. 14. Apart from the timing of the
thermal quench, the quantitative impacts of starting from the large
perturbation in the NIMROD computations include peak # =1 mag-
netic fluctuation energy being seven times larger, the thermal quench
taking 0.12 ms instead of 0.18 ms, and the peak magnitude of the hori-
zontal force being 80% larger.

We note that both sets of perturbations at the start of the 3D
phase are small enough to avoid immediate nonlinear effects. The
early-time growth rates of 774 &~ 6 x 1072 for the n =1 mode differ
by ~20.1%. Using this growth rate with 74 = 1.2 i s, we estimate that
in the absence of the VDE evolution, even the large perturbation case
would not reach saturation amplitude until at least 2.5ms after the
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FIG. 12. Results from a JOREK computation run with 10 times larger parallel ther-
mal conductivity (green curves) and from another run with three times smaller vis-
cosity (red curves). The baseline benchmark case (blue curves) is also plotted for
reference. The quantities shown are the total toroidal current (/,), the total thermal
energy (W), and the total horizontal wall force. The cases represented by the
green and red curves were not run for the entire time span to reduce computational
costs.
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FIG. 13. Comparison of plasma current, thermal energy, magnetic perturbation
energy, and horizontal force from NIMROD computations with perturbations at the
start of the 3D phase differing by 1000 in amplitude. The small-perturbation case is
the one described in Secs. IVA, IVB, IVC 1, and |V C 2.
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FIG. 14. Comparison of pressures from NIMROD and JOREK computations with
small-amplitude [(a) and (c)] and large-amplitude [(b) and (d)] n > 1 perturbations,
just prior to initial saturation of the (2,1) mode in each case. The plots display the
¢ = 0 plane except for figure (d) where ¢ = 1.127 was chosen to compare the
3D plasma state in the same phase.

start of the 3D phase. The increasing growth rates with the VDE evo-
lution and the large destabilization that occurs when gos decreases
below two after 0.85 ms make the timing of the disruption somewhat
insensitive to the initial perturbation. Nonetheless, our results show
that the treatment of asymmetric perturbations can be an important
consideration for asymmetric VDE computations. In physics studies,
3D perturbations would normally be present in a self-consistent way
either arising from preexisting MHD like neoclassical tearing modes
and/or the injected material from a disruption mitigation system such
that a dependency on arbitrary initial conditions is not present.

V. CONCLUSIONS

A benchmark case for a three-dimensional vertical displacement
event in an NSTX plasma has been presented. The case has been run
with the MHD codes JOREK, M3D-C!, and NIMROD for a three-
code comparison. The full run is divided into two phases: an axisym-
metric run (2D) and a 3D run. Good agreement was found during the
2D phase for several figures of merit such as the plasma current, the
thermal energy and the vertical position (as it was already checked in
Ref. 19). The 3D phase was initiated when the plasma became limited
by the wall instead of the lower X-point.

In spite of pronounced differences between physics models and
numerical methods, a wide range of 3D features predicted by the three
codes are in qualitative agreement. For example, the three codes pre-
dict that the plasma becomes unstable to low-n external kink modes
0.85-1.1ms after the plasma becomes limited by the wall. This hap-
pens when the g value at the last closed flux surface falls below 2. The
growth of these modes lead to the stochastization of the magnetic field
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lines causing a loss of thermal energy on a timescale of 0.14ms in
JOREK, 0.24 ms in M3D-C' and 0.18 ms in NIMROD. During the
thermal quench, similar filamentary structures can be observed in the
pressure plots for the three codes (see Fig. 6). The total vertical force
on the wall is in excellent agreement between the codes, and they all
find the predicted maximum 3D horizontal force to be an order of
magnitude smaller, in the range of 1.3-3.5kN. Moreover, the horizon-
tal force is only slowly rotating (less than one toroidal turn) after the
thermal quench. Additional JOREK studies reveal that when the forces
reach their maximum, they originate from halo currents.

The halo currents show mid-» filamentary patterns with large
enough amplitude to reverse the sign of the normal current (J - n)
given by the n =0 component (see Fig. 8). At the moment when the
force reaches its maximum, the # =1 component becomes dominant.
A scan in the number of Fourier harmonics used indicated that the
wall force is sufficiently converged in toroidal resolution # € [0, 10] to
provide an adequate description of the modeled physics processes.
Additional simulations show that the wall forces are weakly dependent
on viscosity and that the choice of the parallel heat conductivity
strongly influences the duration of the thermal quench but not the
magnitude of the forces.

The nature of VDEs implies that the entire profile and its sta-
bility properties evolve over the course of the event. We have found
that this leads to both qualitative and quantitative sensitivities to
the asymmetric perturbations that are applied to excite n > 1 activ-
ity. In this case, large perturbations at the start of the 3D phase lead
to (2,1)-dominated saturation before other modes are strongly
destabilized, whereas small perturbations leave the (2,1) sufficiently
small that saturation is a multi-helicity process. This type of sensi-
tivity differs from other nonlinear tokamak stability problems,
where the background profile is held relatively constant. The
NIMROD and JOREK results that test sensitivity to initial pertur-
bation show the same trends, but we infer that such details at the
start of the 3D phase may contribute to the quantitative discrepan-
cies in the peak fluctuation energy and horizontal force that occur
much later in the VDE evolution. For physics studies outside this
benchmark scenario, initial 3D perturbations would be given by
preexisting MHD activity or disruption mitigation such that the
results do not depend on somewhat arbitrary initial conditions.

Finally, important differences were observed for the toroidal
asymmetry of I,. The present plasma-wall coupling”* of the JOREK’s
model is not able to reproduce any I, asymmetries, which are of the
order of a few per cent in NIMROD and M3D-CL. Nevertheless, the
ansatz-based reduced MHD model is able to capture many of the 3D
features correctly, even for the large § spherical tokamak plasma con-
sidered here.

The consistent results among the three codes bring confidence
for their use in disruption studies. Moreover, important post-
processing diagnostics were developed and validated during this work.
Future efforts will focus on benchmarks of more complex simulations
including Ohmic heating, radiation, realistic Spitzer resistivity, impu-
rity injection, neutral particles, and more advanced boundary condi-
tions. We note that in order to have predictive capabilities and to
validate the model predictions against the experiment, so that they can
be applied with confidence to ITER, these additional effects need to be
included (especially radiation and Ohmic heating). Nonetheless, the
present work is an important step toward realistic simulations.
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