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1. Downloading and Compiling 

1.1 Accessing PPPL Machines 
Once you obtain a PPPL Unix user account, please visit the website:   http://researchcomputing.pppl.gov 

There, you will find instructions for installing NX virtual Desktop. 

In PPPL machine, first get an interactive session for a single processor on the “portal” computer.    The 

M3DC1 code is located in the Github repository: PrincetonUniversity/M3DC1. Access to this repository 

requires a Github account and permission from nferraro@pppl.gov.   Note that Section 1.5 describes 

how to use pre-compiled versions of M3D-C1 so you do not need githup access. 

1.2 GITHUB 
Retrieve the current version of M3D-C1 from the GIT repository.  For the first time, to check out the 
sources do: 

Initial access is with the “clone” command.   This copies the source code from the master file into a 
working directory on your machine.   You only do this once on each computer you work on. 
module load git 
git clone https://github.com/PrincetonUniversity/M3DC1 

 
Subsequent GIT commands used to commit: 

add/commit/push you add files to a list of files to update, commit the changes to your branch, and 
then push the changes to the master branch 
git commit –m “message describing changes”  (adding –a commits all changes) 
 
diff lists the changes you made from the last commit, even if you haven’t pushed your commits to 
github.    To see how your files differ from what’s on github, you can do: 
  git fetch origin master 
  git diff origin/master 
 
status compares your branch with the “master branch” 
 
pull updates your local branch to the current master branch 
 may need to origin master 
 
stash takes uncommitted changes, saves them for later use, and reverts files in working directory 
 stash list stash drop stash apply stash pop (apply+drop) 
 
stash pop removes changes from your stash and reapplies them to working copy 
 
stash apply keeps changes in stash, but reapplies them to working copy 
 
reset –hard discards any changes to local branch since last commit 
 
branch tells you what branch you are in 
 
log (--oneline) (--after 2017-12-31) lists all the commits for the checked-out branch after that date 

http://researchcomputing.pppl.gov/
mailto:nferraro@pppl.gov
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 log –pretty=format:” %h - %an, %ar : %s” 
 
checkout b8d17c0 switches to commit branch b8d17c0 
 

1.2.1 Branches in git 

To make a new branch called fp_phase2 

====================================== 

> git checkout master                      # switch to the master branch 

> git pull                                 # make sure the master branch is up-to-date 

> git checkout -b fp_phase2                # The "-b" create a new branch 

                                           #   this will be identical to master to start 

> git push --set-upstream origin fp_phase2 # push this new branch to the remote repo so others can 

access it 

 

 

Committing changes (e.g., newpar.f90) 

====================================== 

> git pull                           # Always do this before you start committing 

                                     #   if you forget, you risk diverging your local branch from remote 

> git add newpar.f90                 # This stages the current changes in newpar.f90 for commit 

                                     #   you could then make more changes before committing, 

                                     #   but you'd have to add again to get those into the commit 

> git commit -m "Changed newpar.f90" # Commit changes to your local branch  

> git push                           # Push commits to the remote repo 

                                     #   --set-upstream only needs to be done the first time 

 

Merge changes on master into fp_phase2 (e.g., some important bug fix) 

====================================================================== 

> git checkout master    # switch to the master branch 

> git pull               # get the latest commits on the master branch 

> git checkout fp_phase2 # switch back to fp_phase2 (no need for -b now) 

> git pull               # get latest commits on fp_phase2 to avoid conflicts 

> git merge master       # merge any new commits into fp_phase2 

                         #  - this makes a commit 

                         #  - you may need to resolve conflicts 

> git push               # push the merge commit to remote repo 

 

Inverting fp_phase2 and master here would merge the development branch into master 

locally, then the push would send the merge to the remote master. 



7 
 

1.3 On-line Documentation 
An extensive document that describes equations solved by the code and the input variables in C1input is 

in the GIT repo. Please refer to: 

…./trunk/unstructured/doc/doc.pdf 

Machine-specific instructions for portal, perseus, Edison, Cori are in:  …/trunk/unstructured/README 

Additional documentation is available on the site:  w3.pppl.gov/~nferraro under the “M3D-C1” tab. 

The latest copy of his document is available at: http://m3dc1.pppl.gov 

1.4 Compilation 

1.4.1 Load modules 

PPPL RHEL6 machines (portal.pppl.gov)  

[openmpi-1.8.4] 

Load the following modules and copy sunfire.openmpi-1.8.4.mk to sunfire.pppl.gov.mk 

openmpi/1.8.4  intel/2015.u1  gsl/1.16   szip/2.1       hdf5-parallel  
hdf/4.2r1  scalapack  fftw    

See README/readme.portalr.openmp-1.8.4 for detailed instructions and an example job script 

[openmpi-1.10.3] 

Load the following modules and copy sunfire.openmpi-1.10.3.mk to sunfire.pppl.gov.mk 

openmpi/1.10.3 intel/2015.u1  gsl  szip                      hdf5-parallel/1.8.17  

See README/readme.portal.openmp-1.10.3 for detailed instructions and an example job script. 
 
[openmpi-4.0.1] 

Load the following modules and copy sunfire.openmpi-4.0.1.mk to sunfire.pppl.gov.mk 

openmpi/4.0.1  intel/2019.u3  gsl  szip                      scalapack  

See README/readme.portal.openmp-4.0.1 for detailed instructions and an example job script 
 
 
[openmpi-4.0.3] 

Load the following modules and copy sunfire.openmpi-4.0.3.mk to sunfire.pppl.gov.mk 

openmpi/4.0.3  intel/2019.u3  hdf5-parallel/1.10.5  

fftw/3.3.8  superlu/5.2.1 
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See README/readme.portal.openmp-4.0.3 for detailed instructions and an example job script 
 

 

PPPL RHEL7 machines (portalc7.pppl.gov)  

Load the following modules and copy centos7.mk to sunfire.pppl.gov.mk 

openmpi/4.0.3  intel/2019.u3  hdf5-parallel/1.10.5 fftw  

See README/readme.centos7 for detailed instructions and an example job script. 
 

cori.nersc.gov  

See README/readme.cori and README/readme.corigpu for detailed instructions and an example job 

script. 

 
perseus.princeton.edu 

Follow the instructions in 5.1.1 in first setting up idl  

Load the following modules: 

intel/18.0/64/18.0.3.222  intel-mpi/intel/2018.3/64  gsl/2.4 

hdf5/intel-17.0/intel-mpi/1.10.0 fftw/intel-16.0/intel-mpi/3.3.4 

See README/readme.perseus for detailed instructions and an example job script. 

For help regarding perseus, send email to:  cses@princeton.edu 

 

perseus-amd.princeton.edu 

Load the following modules: 

intel/18.0/64/18.0.3.222  intel-mpi/intel/2018.3/64  gsl 

hdf5/intel-17.0/intel-mpi/1.10.0 fftw/intel-16.0/intel-mpi/3.3.4 

See README/readme.perseusamd for detailed instructions and an example job script. 

For help regarding perseus, send email to:  cses@princeton.edu 

 

stellar.princeton.edu 

 

See README/readme.stellar for detailed instructions and an example job script. 
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For help regarding stellar, send email to:  cses@princeton.edu 

 

traverse.princeton.edu 

Load the following modules: 

pgi/19.9/64  openmpi/pgi-19.9/4.0.3rc1/64   hdf5/pgi-19.5/openmpi-4.0.2rc1/1.10.5 

fftw/gcc/ openmpi-4.0.1/3.3.8  cudatoolkit/10.1 

See README/readme.traverse for detailed instructions and an example job script. 

For help regarding traverse, send email to:  cses@princeton.edu 

 

1.4.2 Make 

The sources are located in the directory:  …/trunk/unstructured”. 

By default, M3D-C1 is linked with PETSc and release version of SCOREC libraries. 

• For a 2D nonlinear version of the code:    make OPT=1 MAX_PTS=25 

• For a linear version of the code:                 make OPT=1 COM=1 MAX_PTS=25 

• For a 3D nonlinear version of the code:      make OPT=1 3D=1 MAX_PTS=60 

• For the stellarator version of the code  make OPT=1 3D=1 MAX_PTS=60 ST=1 

• To compile all 4 versions do “make all” 

 

To compile M3DC1 with debug version of SCOREC libraries for lots of sanity checks and informative print 

statements, add “SCORECVER=debug” to the make command. Note that debug versions are available 

only on PPPL and NERSC Cori. 

The executable files are located in a sub-directory that is named with an underscore followed by the 

host name and compile options. For a host name “xxxx”, these commands will generate a folder and an 

executable file as the following, respectively. 

• _xxxx-opt-25/m3dc1_2d 

• _xxxx-complex-opt-25/m3dc1_2d_complex 

• _xxxx-3d-opt-60/m3dc1_3d 

A Tip for “MAX_PTS”:  All the M3D-C1 control parameters are described in the file “C1input” and the file 

“C1input” should exist in the work folder where the simulation runs. The C1input parameters 

“int_pts_main”, “int_pts_aux”, and “int_pts_diag” must be the same or less than MAX_PTS. 
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1.5 Using pre-installed release versions 
An alternative to compiling the code yourself, you can use a pre-installed release version of M3D-C1.    

The following instructions for using the modules are taken from the “Tutorial” document linked from 

https://w3.pppl.gov/~nferraro/m3dc1.html 

On the PPPL cluster, load the following modules: 

module use /p/m3dc1/modules 

module load m3dc1/1.11 

 

Release versions of m3D-C1 have also been installed on a number of other systems.   The location of the 

M3D-C1 modules for each of these systems is: 

 PPPL Cluster: module use /p/m3dc1/modules 

 NERSC Cori: module use /project/projectdirs/mp288/C1/modules/cori 

  Phase 1: module load m3dc1/1.11-haswell 

  Phase 2: module load m3dc1/1.11-knl 

 Princeton stellar: module use /home/nferraro/modules 

 GA Iris:  module use /fusion/projects/codes/m3dc1/modules 

1.6 Regression Tests for Personal Version (example for cori_knl) 
1. compile all versions from …/unstructured  (OPT=1, OPT=1 COM=1, OPT=1 3D=1 MAX_PTS=60) 

2. export M3DC1_MPIRUN=srun M3DC1_VERSION=local M3DC1_ARCH=cori_knl 

 (other M3DC1_MPIRUN=mpiexec, other M3DC1_ARCH=stellar, centos7,m3dc1 ,cori) 

3. from …/unstructured  “make bin” 

4. PATH=$PATH\: ……./unstructured/_$M3DC1_ARCH/bin 

5. cd regtest 

 ./clean cori_knl 

 ./run cori_knl 

 (wait until jobs finish) 

 ./check cori_knl 

 

NOTE:  On some machines, such as cori, there is a limit as to the number of jobs that can be submitted 

to the debug queue.   In this case, you need to wait until one job finishes, and submit the remaining 

job(s) manually by the command (for KPRAD_restart): 

./run cori_knl KPRAD_restart 

2. Mesh Management 
 

The M3D-C1 requires a geometric model and a mesh that are the representation of the analysis domain.  

https://w3.pppl.gov/~nferraro/m3dc1.html
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• PUMI is a parallel mesh infrastructure toolkit developed at SCOREC, RPI. For more information, 

visit http://www.scorec.rpi.edu/pumi 

• Simmetrix provides a set of tools and libraries for engineering simulation including a state-of-art 

mesh generation. For more information, visit http://simmetrix.com. 

[The model file extensions referred in this document] 

• .smd: Simmetrix-readable binary format model file 

o The model generated with Simmetrix is saved in this format. 

• .dmg: PUMI-readable binary format model file 

o The model generated from PUMI mesh 

• .txt: M3D-C1-readable ascii format model file  

o The model is generated from mesh generation tool (See Section 2.2) 

• arbitrary filename: M3D-C1-readable ascii format model file  

o The first line of the file should contain five doubles (See Section 2.1) 

 

[The mesh file extensions referred in this document] 

• .sms: Simmetrix-readable binary format mesh file 

o The mesh generated with Simmetrix is saved in this format. 

o If a mesh is serial (1-part), the mesh file doesn’t have a number before the extension 

o If a mesh is distributed (P-part, P>1), the mesh file has a number before the extension 

to represent the global part ID. 

• .sms: ASCII format mesh file used in old PUMI stack 

o This format is not supported from January 2015 

o If a mesh is serial (1-part), the mesh file doesn’t have a number before the extension 

o If a mesh is distributed (P-part, P>1), the mesh file has a number before the extension 

to represent the global part ID. 

• .smb: PUMI-readable binary format mesh file 

o This format is used in the current M3D-C1 

o No matter if a mesh is serial (1-part) or distributed (P-part, P>1), the mesh file has a 

number before the extension to represent the global part ID. 

• .vtu/pvtu: binary format mesh file for visualization with paraview. For more information, visit 

http://paraview.org. 

 

[Model/Mesh requirements for M3D-C1]: 

• The model and mesh shall be generated as described in Section 2.1 and Section 2.2. 

• The mesh file must be PUMI-readable .smb file. Note that a mesh file contains a “number” 

before the extension (.smb) to denote a global part ID. 

http://www.scorec.rpi.edu/pumi
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• The model and mesh file must be present in the work directory 

• The name of model and mesh file must be specified in “C1input” file in the work directory 

o mesh_model = model_file 

o mesh_filename = mesh_file.smb (NOTE: do not specify a number before the file 

extension) 

• In a 2D run with P processes,  

o there should be P mesh files with part ID from 0 to P-1 

• In a 3D run with P*N processes where 2D mesh is distributed to P parts,  

o there should be P mesh files with part ID from 0 to P-1 

o in “C1input” file, specify “nplanes” to N (e.g. nplanes=8), where “nplanes” describes how 

many 2D mesh copies to be loaded 

o the M3D-C1 code should be compiled with “3D=1, MAX_PTS=60”. 

• The previous releases of M3D-C1 supported the ASCII format .sms mesh files, which are not 

supported any more. Therefore, any existing ASCII format .sms mesh files shall be converted to 

binary format (.smb). See Section 2.3 for how to convert the mesh format. 

The rest of this section is organized as follows: Section 2.1 describes a simple mesh generation tool 

without Simmetrix libraries. Section 2.2 describes a mesh generation tool with Simmetrix libraries. 

Section 2.3 describes how to convert old PUMI mesh file (.sms) to the current mesh format (.smb). 

Section 2.4 presents how to split a mesh into a bigger number of parts.  

2.1 Simple Mesh Generation (not recommended) 
 

This section describes simple model and mesh generation without Simmetrix libraries.   Note that this is 

NO LONGER RECOMMENDED as the Simmetrix libraries produce superior meshes. 

 

[Steps] 

1. Create an ascii file of arbitrary name that contains space delimited five doubles to define vacuum 

wall: X0   X1   X2   Z0   Z1 such that 

X = X0 + X1 cos(theta + X2*sin(theta)) 

Z =  Z0 + Z1 sin(theta) 

2. run “create_smb” to generate .smb mesh file 

• argv[1]: the ascii file created in Step 1 

• argv[2]: relative mesh size, which is desired mesh edge length divided by the longest edge of the 

bounding box of the model. 

• the file “seed0.smb” should be present in the work directory 

• the output mesh is saved in PUMI (.smb) and Paraview (.pvtu) 

3. In order to load the model and mesh, locate them in your work directory and modify C1input 

parameters 

• mesh_model = the ascii file created in Step 1 

• mesh_filename = PUMI-readable mesh file (.smb)  

o NOTE: do not specify the part ID in the mesh filename 
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[Location of ”create_smb” and ”seed0.smb” ] 

• on portal.pppl.gov: /p/tsc/m3dc1/lib/SCORECLib/rhel6/intel_ver- openmpi_ver/petsc_ver/bin 

• on portalc7.pppl.gov: /p/tsc/m3dc1/lib/SCORECLib/rhel7/intel_ver-openmpi_ver/petsc_ver/bin 

• on cori.nersc.gov:  /global/project/projectdirs/mp288/cori/scorec/knl|hsw-petsc_ver /bin 

• on hydra. gate.rzg.mpg.de: /u/m3dc1/scorec/utilities/create_smb 

  

[Example] ./create_smb  AnalyticModel  0.1 

Output: AnalyticModel0.smb, AnalyticModel0.vtu and AnalyticModel.pvtu 

Note: the file ”seed0.smb” is required to present in the work directory 

 

See ”readme.create_smb” for detailed instructions and trouble shooting tips. 

Please be noted that we recommend to use ”m3dc1_meshgen” for the mesh generation (Section 2.2) as 

it provides more advanced controls and features 

 

2.2 Unstructured Mesh Generation with Simmetrix Libraries 
This section describes a mesh generation program “m3dc1_meshgen” that runs with the Simmetrix 

libraries. It is currently available on the following location on PPPL portal: 

- /p/tsc/m3dc1/lib/SCORECLib/rhel7/intel2019u3-openmpi4.0.3/petsc-3.13.5/bin 

 

See ”readme.m3dc1_meshgen” for detailed instructions and trouble shooting tips. 

[Steps] 

1. Set environment variables for Simmetrix: 

module load intel/version openmpi/version 

module load  simmodsuite/14.0-190402dev simmodeler/7.0-190402dev 

module load paraview (for mesh visualization with .vtk files) 

 

2. Create an ascii file of arbitrary name that contains input parameters for model and mesh 
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• modelType: 0, 1, 2, 3, or 4 
o Type 0: a parameterized vacuum region defined by five doubles for analytic 

expression. For five doubles X0   X1   X2   Z0   Z1, vacuum boundary is defined by  
X = X0 + X1 cos(theta + X2*sin(theta)) 
Z =  Z0 + Z1 sin(theta) 

o Type 1: a vacuum region defined by piece-wise linear points 
o Type 2: a vacuum region defined by piece-wise polynomials 
o Type 3: spline-fitted 3-region model (plasma, wall and vacuum) 
o Type 4: spline-fitted 3-region model (plasma, wall, and vacuum) with inner 

& outer boundary points to set resistive wall 
• reorder: if 1, reorder PUMI mesh based on adjacency (default: 

0) and generate vtk folders for mesh visualization. The mesh 

before and after reodering is saved in “original-mesh.vtk” 

and “reordered-mesh.vtk”, respectively. Note that the element 

order of Simmetrix mesh is not affected. 

• inFile: (modelType 0) not required 
(modelType 1 and 2) geometry file describing the vacuum 

(modelType 3 and 4) geometry file describing the inner plasma 

wall 

• bdryFile: (modelType 0-3) not required 
 (modelType 4) geometry file describing the outer plasma wall 

• outFile: output file name to save model and mesh 
• meshSize: relative mesh size for each region (default 0.05) 

o for modelType 3, set three doubles for plasma, 

resistive, vacuum, respectively 

• useVacuumParams: for modelType 0 or 3, if 1, use 

parameterized vacuum wall (default 0) 

• vacuumParams: five doubles to describe parameterized vacuum 

wall. Required if useVacuumParams=1. 

• adjustVacuumParams: for modelType 0 or 3, if 1, multiply 

coordinates and parametric values of nodes on vacuum wall by 

vacuumFactor. Valid only if useVacuumParams=1 (default 0) 

• vacuumFactor: for modelType 0 or 3, an optional double value 

used to multiply coordinates and parametric values of nodes 

on vacuum wall when adjustVacuumParams=1. Valid only if 

adjustVacuumParams=1 (default 2*PI) 

• numVacuumPts: optional # interpolation points on 

parameterized vacuum wall. Valid only if useVacuumParams=1 

(default 20) 

• meshGradationRate: for modelType 3 or 4, optional mesh 

gradation rate (default: 0.3) 

• resistive-width: for modelType 3, the width of resistive 

wall. If resistive-width=0, only plasma region is created 

(default 0.02) 

• plasma-offsetX: for modelType 3, the offset in x direction to 

the left (default 0.0) 

• plasma-offsetY: for modelType 3, the offset in y direction to 

the bottom (default 0.0) 

• vacuum-width: for modelType 3 or 4, the width of vacuum 

region (default 2.5) 
vacuum-height: for modelType 3 or 4, the height of vacuum 

region (default 4.0)  
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Four input files are available for your reference:  

o analytic-input (modelType 0) 

o poly-input (modelType 2) 

o circle-input (modelType 3) 

o bdry-input (modelType 4) 

 

3. Run “m3dc1_meshgen” – input file, inFile, and bdryFile (if applicable) should be in the work folder 

• argv[1]: the ascii file created in step 2 

• The output model is saved in three formats 

o M3D-C1-readable “.txt” 

o simmetrix-readable file “.smd” and  

o PUMI-readable “.dmg” 

For modelType 0-2, the model is saved in outFile.* 

For modelType 3 with resistive width R, vacuum-width W and vacuum-height H, the 

model is saved in outFile-R-W-H.*. 

For modelType 4 with vacuum-width W and vacuum-height H, the model is saved in 

outFile- W-H.*. 

• The output mesh is saved in three formats 

o Simmetrix-readable “.sms” 

o M3D-C1/PUMI readable “.smb” 

o Paraview  

For modelType 0-2 with # mesh faces F,  

o if F >1000, the mesh is saved in outFile-(F/1000).* 

o if F<1000, the mesh is saved in outFile-F.* 

For modelType 3 with # mesh faces F, resistive width R, vacuum-width W, vacuum-height H, 

o if F >1000, the mesh is saved in outFile- R-W-H -(F/1000).* 

o if F<1000, the mesh is saved in outFile- R-W-H F.* 

For modelType 4 with # mesh faces F, vacuum-width W and vacuum-height H, 

o if F >1000, the mesh is saved in outFile- W-H -(F/1000).* 

o if F<1000, the mesh is saved in outFile- W-H F.* 

 

4. If the initial mesh is not good enough, run “simmodeler" to generate a mesh with more meshing 

controls.  

• Save mesh in .sms. 

• To convert Simmetrix mesh (.sms) into M3D-C1 readable mesh (.smb), run 

“convert_sim_sms” 

o argv[1]: Simmetrix model file generated in Step 3 (.smd) 

o argv[2]: Simmetrix mesh file generated in Step 4 (.sms) 
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o argv[3]: output PUMI mesh file name (.smb) 

o argv[4]: optional integer to turn ON/OFF adjacency-based mesh reordering in PUMI  

mesh file (default: 0/OFF). 

• See Section 17 for detailed instructions 

5. In order to load the model and mesh, locate them in your work directory and modify C1input 

parameters  

• mesh_model = M3D-C1 readable model file (.txt)  

• mesh_filename = PUMI-readable mesh file (.smb)  

o NOTE: do not specify the part ID in the mesh filename 

 

2.3 Mesh File Conversion 
As of approximately 1/27/2015, M3D-C1 doesn’t support old PUMI mesh files, which are ASCII formatted 

“.sms” files. Therefore, all the existing ascii-formatted “.sms” files need to be converted to binary-

formatted “.smb” files. Please email to seols@rpi.edu if you have old PUMI mesh files to convert.  

 

2.4  Mesh Re-Partitioning from P parts to N parts (P<N) aka Splitting 
Given P-part input mesh, the program “split_smb” increases # parts to N (P<N). 

• Location:  see $SCOREC_UTIL_DIR in host.mk 

 

Usage: mpirun –np N ./split_smb input-mesh.smb output-mesh.smb X  

 

• input-mesh should be .smb  

• output-mesh should be .smb 

• N is the number of parts in the output mesh 

• For a P-part input mesh, X must be N/P 

• For both input and output mesh, do not specify a number before the file extension 

• “split_smb” will insert a number in the output mesh file. The number represents a global part 

ID. 

• Make sure that the output mesh doesn’t have any empty part. Otherwise, the program 

crashes with the following error message: 

APF warning: 1 empty parts 

split_smb: /u/sseol/develop/core/mds/mds.c:614: check_ent: Assertion `e >= 0' failed. 

 

 

[Examples] 

Example 1: mpirun –np 6 ./split_smb  struct-curveDomain.smb part.smb 6 

• Input mesh: struct-curveDomain0.smb  
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• Output mesh: part0.smb, part1.smb, part2.smb, part3.smb, part4.smb, part5.smb 

Example 2: mpirun –np 6 ./split_smb struct-curveDomain.smb part.smb 3 

• Input mesh: struct-curveDomain0.smb, struct-curveDomain1.smb 

• Output mesh: part0.smb, part1.smb, part2.smb, part3.smb, part4.smb, part5.smb 

Example 3: mpirun -n 16 ./split_smb in.smb out.smb 4 
# input mesh parts is 16/8 = 4 
This will split 4-part input mesh to 16 parts. 
 

Example 4: mpirun -n 8 ./split_smb in.smb out.smb 2 
# input mesh parts is 8/2 = 4 
This will split 4-part input mesh to 8 parts. 
 

Example 5: mpirun -n 8 ./split_smb in.smb out.smb 8  
# input mesh parts is 8/8 = 1 
This will split 1-part serial input mesh to 8 parts. 

 

 

2.5  Mesh Re-Partitioning from P parts to N parts (P>N) aka Merging 
Given P-part input mesh, the program “collapse” decreases # parts to N (P>N). 

• Location:  see $SCOREC_UTIL_DIR in host.mk 

 

Usage: mpirun –np P ./collapse input-mesh.smb output-mesh.smb X  

 

• input-mesh should be .smb  

• output-mesh should be .smb 

• P is the number of parts in the input mesh 

• For a N-part output mesh, X must be P/N 

• For both input and output mesh, do not specify a number before the file extension 

• “collapse” will insert a number in the output mesh file. The number represents a global part 

ID. 

 

[Examples] 

Example 1: mpirun -n 4 ./collapse in.smb out.smb 4 
• Input mesh: in0.smb, in1.smb, in2.smb, in3.smb 

• Output mesh: out0.smb 

Example 2: mpirun -n 16 ./collapse in.smb out.smb 4 
# output mesh parts is 16/4 = 4 
This will change a 16-part input mesh into a 4-part mesh. 
 
Example 3: mpirun -n 8 ./collapse in.smb out.smb 2 
# output mesh parts is 8/2 = 4 
This will split 8-part input mesh to 4 parts. 
 

Example 4: mpirun -n 8 ./collapse in.smb out.smb 8 
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# output mesh parts is 8/8 = 1 
This will change 8-part input mesh into 1-part serial mesh. 
 

2.6 Mesh Adaptation 

 
There are two ways to run mesh adaptation inside M3D-C1 .  

 
1. by post processed magnetic flux field before time steps or   
2. by error estimator at the end of every N time step (N>0) 
 

See Section 16.2 for the details of mesh adaptation. 
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2.7 Element Order Visualization with Paraview 
The element order information is provided with vtk files generated with “m3dc1_meshgen”. This section 

describes the steps to visualize element order using Paraview. For the topics not described herein, such 

as visualizing ghost elements, mesh parts, etc., please email to seols@rpi.edu or visit 

https://www.paraview.org/paraview-guide. 

 

[Steps] 

1. Launch paraview 

module load paraview  

 

Figure 1 Initial Paraview Window with “White” background 
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2. To change the background color of Render View, go to the menu “Paraview  Preferences” and 

select the “Color Palette” tab. 

 

Figure 2 Paraview Settings 

3. Using “Open” icon on the top left corner or the menu “File  Open”, open a .pvtu file and then 

click the “eye” sign in “Pipeline Browser” on the left. You can open multiple files at the same time and 

select one to visualize. When a file is opened, all available attributes are listed in “Cell/Point Array 

Status” panel. 

 

Figure 3 Select .pvtu file to open 
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Figure 4 Click an "eye" from opened file list in the Pipeline Browser panel 

4.  Select “Surface with Edges” to visualize the mesh edges. Use a mouse to zoon in/out (dial in the 

middle) or move/rotate the mesh (left button).  

 

Figure 5 Select "Surface with Edges" for 2D Mesh and click “Apply” in the Properties panel 
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5. To visualize the element ID, select “elem_1” from the attribute list for Coloring.  

 

Figure 6 Select "elem_1" from Coloring Property 



23 
 

 

Figure 7 To change colors, click the "heart" button in Coloring panel and select from preset colors 
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Figure 8 A 2D Mesh without (left) & with (right) adjacency-based ordering 

3. Importing Equilibrium Files 
 

3.1 Running from GEQDSK File Equilibrium 

In addition to the files: 
 
AnalyticModel 

C1input 

m3dc1 
part0.smb part1.smb ….. 
 
You must have a geqdsk file called “geqdsk” in your directory.  This is read with the input 
file option: 
 
iread_eqdsk = 1 
inumgs = 0 
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3.2 Running from JSOLVER Equilibrium File1 

 
1. Compile the program “read_jsolver” that reads jsolver  equilibria 

• Due to it requires the library “pspline”, compilation is available only on Edison or Portal 

• On Edison, load the module “pspline” and change “NTCCHOME” to “PSPLINE_DIR” in makefile 

• On Portal, load the module “ntcc” 

• Then run “make read_jsolver” 

 

2. Run "read_jsolver" in the directory where the file “fixed” is located then the program will generate a 

file “POLAR”. 

 

3. Run “convert_polar” to generate a model and mesh file from where the file “POLAR” is located 

• on portal.pppl.gov: /p/tsc/m3dc1/lib/SCORECLib/rhel7/intel_ver-openmpi_ver/ 

simmodsuite_ver/bin 

• on cori.nersc.gov:  NOT AVAILABLE 

• on hydra.gate.rzg.mpg.de: NOT AVAILABLE 

 

Given the input file “POLAR”, the utility “convert_polar” generates the following files: 

• model.dmg: PUMI-readable model file 

• model.txt: M3DC1-readable model file 

• mesh0.smb: PUMI/M3DC1-readable mesh file 

• mesh.vtk: Paraview data files 

• norm_curv: ascii file containing nodes' normal/curvature information 

 

4. Split the initial mesh to N parts and save into part.smb as described in Section 2.4: 

 

mpiexec –np N ./split_smb model.dmg mesh.smb part.smb N 

 : 

5. Then, set the following C1input parameters: 

iread_jsolver=1 
ifixedb=1 
nonrect=1 
inumgs=0 
mesh_filename = part.smb 
mesh_model = model.txt   

 

 

See ”readme.convert_polar” for detailed instructions and trouble shooting tips. 

 

 
1 The JSOLVER inequ file must have isym=0 (no up-down symmetry imposed) 



26 
 

3.3 Running from DSKGATO Equilibrium File 
 

1.  Compile the program “readgato” that reads dskgato  equilibria 

• It requires the library “pspline”, compilation is available only on Edison or Portal 

• On Edison and portal, load the module “pspline” and change “NTCCHOME” to “PSPLINE_DIR” in 

makefile 

• Then run “make readgato” 

 

2.    Run "readgato" in the directory where the file “dskgato” is located then the program will generate 

files “POLAR”, “profiles-p”, and “profiles-g”. The profile files must be present where M3D-C1 runs. 

 

3.    Run “convert_polar” to generate a model and mesh file from the file “POLAR” 

Location of ”convert_polar”: 

• on portalc.pppl.gov: /p/tsc/m3dc1/lib/SCORECLib/rhel7/intel_ver-openmpi_ver/petsc-

3.13.5/bin 

 

Given the input file “POLAR”, the utility “convert_polar” generates the following files: 

• model.dmg: PUMI-readable model file 

• model.txt: M3DC1-readable model file 

• mesh0.smb: PUMI/M3DC1-readable mesh file 

• mesh.vtk: Paraview data files 

• norm_curv: ascii file containing nodes' normal/curvature information 

 

4.  Split the initial mesh to N parts and save into part.smb as described in Section 2.4: 

 

mpiexec –np N ./split_smb model.dmg mesh.smb part.smb N 

 : 

5.  Then, set the following C1input parameters: 

ifixedb=1 
nonrect=1 
inumgs=1 
mesh_filename = part.smb 
mesh_model = model.txt   

 

See ”readme.convert_polar” for detailed instructions and trouble shooting tips. 

4. Running Jobs 

4.1 Running 2D or Linear 
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In 2D, the run can be either linear or nonlinear, depending on the C1input parameter “linear”: 

linear=0  (non-linear run:   must compile with the option RL=1) 

linear=1 (linear run:  must compile with the option COM=1) 

 

In both cases, set:  nplanes=1.    For the linear case, set the toroidal mode number with ntor=nn 

 

In your batchfile for job submission, create a local directory and copy the following files over: 

m3dc1_2d (non-linear) or m3dc1_2d_complex (non-linear) 
C1input 
AnalyticModel    (or MultiEdgeAnalyticModel) 
struct-dmg.sms   
(and geqdsk if using option 3.1) 
 

To run non-linear 

“mpiexec –np 8  ./m3dc1_2d”       (to run on 8 processors at PPPL). 

  

To run linear  

 “mpirun –np 24  ./m3dc1_2d_complex -pc_factor_mat_solver_package mumps”   (to run on 24 

processors on Edison) 

 

[NOTES] 

• To add PETSc options:   -ipetsc    (to run petsc) 

    -ipetscsuperlu (to run superlu via petsc)    

• To add the option to use pdslin instead of  SuperLU:     –pdslin 

 

4.2 3D Nonlinear 
 

For the 3D nonlinear run, set linear=0 and set “nplanes” equal to the number of toroidal planes.   The 

number of bjacobi blocks in the PETSc options file must also be equal to nplanes  (see Section 7).   The 

total number of processors to request must be the product of nplanes and M (the number of processors 

per plane).   

Files required to be copied to the local directory are:  

m3dc1 

C1input, 

partnn.smb     (one for each poloidal plane partition) 

options_bjacobi 

m3dc1.xml   (if using ADIOS) 
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geqdsk (if using option 3.1) 

 

“mpiexec –np 16 ./ m3dc1 –ipetsc –options_file options_bjacobi”  (to run 16 processes at PPPL) 

 

See Section 7 for the format of the PETSc option file. 

 

4.3 Batch Files 
(submit from portal) 

#!/bin/bash -vx 

#SBATCH --partition=mque 

#SBATCH --nodes=1 

#SBATCH –ntasks-per-node=8 

#SBATCH –mem-per-cpu=6000mb 

#SBATCH –J myjob 

#SBATCH -t 10:05:00 

#SBATCH --mail-type=END 

#SBATCH --mail-user=<username>@pppl.gov 

 

Other partitions and maximum parameters 

--partition= --nodes= --ntasks-per-node= --mem-per-cpu 

kruskal 36 32 2000mb 

dawson 132 16 2000mb 

ellis 10 4 4000mb 

mque 13 32 6000mb 

 

Initiate mpi in batch script: 

#2D complex 

mpiexec --bind-to none -np 8 m3dc1_2d_complex -pc_factor_mat_solver_package mumps > m3dc1_out  
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#2D real 

mpiexec --bind-to none  -np 8 m3dc1_2d 

 

#3D real 

mpiexec --bind-to none  -np 32  ./m3dc1_3d -ipetsc -options_file options_bjacobi 

 

NOTE:  --bind-to-none enables subsequent jobs to run on separate processes 

 

Submit job 

        sbatch jobscript 

or:   sbatch  --dependency=afterok:123    jobscript 

 

List all curent jobs for a user 

        squeue -u <username> 

 

Delete a job 

        scancel <jobid> 

 

Interactive Jobs      

      There is a “salloc” command on portal, that includes the different  partitions  

      To submit an interactive job to slurm, you can first use the command "salloc": -- see example 

         salloc  --ntasks=16  --mem=96000  --nodes=1  --partition=mque  --time=48:00:00 

      And, from the head kruskal node allocated, run the command "srun": 

 srun /path/to/your_code 
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Changing the time limit of a running job 

scontrol update Jobid=###### TimeLimit=3-08:00:00 

 

Checking that the change worked 

scontrol show job ###### | grep TimeLimit 

 

4.4 Graphics Files 
 

The graphics files are of two types.    There is a single file called:   C1.h5 that contains all the time-

dependent scalar information.    This must be saved and be present in the directory of a job so that it 

can be added to. 

In addition to this file, each plot cycle will produce a file:   time_nnn.h5, where nnn is the plot cycle 

number.  The equilibrium is written into a file called equilibrium.h5.   These must be stored in the same 

directory as the C1.h5 file. 

 

4.5 Restart Files 

4.5.1 Writing restart files 

As of 6/23/2017, the parameter iwrite_restart is deprecated and hdf5 files are written in every time 

step. Therefore jobs can be restarted from the hdf5 “plot file”, the same one that is used by the idl 

routines to make plots.  

 

By default, the hdf5 files are written in single precision. If idouble_out is set to 1, hdf5 files are written in 

double precision. 

 

4.5.2 Reading restart files for 2D real, 2D complex, or 3D real 

As of 6/23/2017, you must restart from the C1.h5 files by setting “iread_hdf5=1” (default) in the C1input 

file. Restart with adios or Ascii files “C1restart*” is not supported any longer. 

To start a normal simulation with the hdf5 files, set the C1input parameter “irestart” to 1.      

However, the files C1.h5 and the final time_nnn.h5 file must be in the working directory.   You may also 

restart from an intermediate time by setting irestart_slice=nn where nn is the nnth plot file.   If this is not 

set, it will restart from the final plot file.  
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4.5.3 Reading real restart files to initialize 2D complex calculation 

• Run 2D linear=0 

• Copy 2D C1.h5 and the final time_nnnn.h5 to the working directory 

• Run 2D (complex) linear=1.   In the initial restart, the time and cycle number will start from t=0 

and N=0 for the complex run 

4.5.4 Running 3D real simulation from 2D real restart files 

To start a 3D simulation with 2D restart files, do the following: 

• Run 2D  

• Copy 2D C1.h5 and the final time_nnn.h5 to the working directory 

• In 3D work folder, set the C1input parameter “irestart= 1” 

Regardless of the time step when the restart files were written, the 3D simulation starts with time step 

1.   

4.5.5 Running 3D real simulation with the number of planes multiplied by F 

To start a 3D simulation with 3D restart files with the number of planes multiplied by F, do the following: 

• Run 3D with P processes 

• In 3D work folder, set the C1input parameter “irestart_factor=F” 

• Run 3D with P *F processes on N*F planes 

As of 3/29/2020, this feature is not supported. 

 

4.6 Monitoring Jobs 
You can monitor the progress of your running job in several ways: 

A.  C1ke file.   Each time step, one line will be added to the ASCII C1ke file in the run directory that you 

can open with a text editor.   The first 4 fields are: 

cycle time kinetic_energy growth_rate 

B. C1.h5 file:  You can monitor a time dependent run by using the idl utility described below.   

Especially useful is the “plot_scalar, ‘ke’ “ command and also “plot_scalar,’ke’,/growth”. 

C. You can use a text editor to monitor the log file slurm-nnnn.out file (where nnnn is the job number 

assigned by SLURM) 

 

4.7 Exporting Node/Vector/Matrix  
 

(Developers only) 
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In order to write the node, vector, or matrix data into a file, add the following API’s in M3D-C1. 

• To write nodes’ global ID and XYZ coordinates, call 
int m3dc1_node_write(const char* filename, int* s); 

 

o Each process i writes local node information into a file “filename-i”.  

o Each line of the file consists of node’s global ID and three double values representing XYZ 

coordinates.  

o Global node ID starts from s.  

o For a process i with N nodes, filename-i contains N lines. 

 

 

• To write vector, call 
int m3dc1_field_write(int* field_id, const char* filename, int* s); 

 

o Each process i writes local vector information into a file “filename-i”.  

o Each line of the file consists of node’s global ID and dof value.  

o Global node ID starts from s.  

o For a process i with N nodes and D dofs per node, filename-i contains N*D lines. 

 

• To write PETSc’s globally assembled matrix, call 
int m3dc1_matrix_write(int* matrix_id, const char* filename, int* s); 

 

o Each process i writes local PETSc matrix information into a file “filename-i”.  

o The first line of the file consists of #rows, #columns, and #non-zero values.  

o From the second line, each line consists of global row index, global column index and a double 

value representing the non-zero matrix value at the corresponding location.  

o Global row/column index start from s.  

o Only globally assembled matrix is written. 

 

• To write Trilinos Epetra matrix, call 
int m3dc1_epetra_write(int* matrix_id, const char* filename, int* 

no_zero, int* s); 

 

o Before global assembly, each process i writes local Epetra matrix information into a file 

“filename-i”.  

o After global assembly, each process i writes local Epetra matrix information into a file 

“assembled-filename-I”.  

o The first line of the file consists of #rows, #columns, and #values on each process.  

o From the second line, each line consists of global row index, global column index and a double 

value representing the matrix value at the corresponding location.   

o If the input no_zero is equal to 0, all matrix values are written. Otherwise, only non-zero values 

are written.  

o Global row/column index start from s.  

The following illustrates an example code snippet that writes node, solution vector and matrix inside the 

routine gradshafranov_solve (see gradshafranov.f90). 
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subroutine gradshafranov_solve 

   … 

  integer :: start_index, non_zero 

  character(len=1)::node_filename, vector_filename, matrix_filename 

   … 

  ! solve equation 

  call newsolve(gs_matrix,b1vecini_vec%vec,ier) 

  ! set starting global ID to 1 

  start_index=1 

  ! write node coordinates 

  call m3dc1_node_write(node_filename, start_index) 

  ! write solution vector 

  call m3dc1_field_write(b1vecini_vec%vec%id, vector_filename, start_index) 

 

  ! write only non_zero matrix values 

#ifdef M3DC1_TRILINOS   ! if Trilinos 

  non_zero=1 

  call m3dc1_epetra_write(gs_matrix%imatrix, matrix_filename,non_zero, 

start_index) 

#else                   ! if PETSc 

  call m3dc1_matrix_write(gs_matrix%imatrix, matrix_filename, start_index) 

#endif 

   … 

end subroutine gradshafranov_solve 

 

For an example mesh on process 0 with Trilinos ( 122 nodes, 12 dofs per node, global ID starting from 1, 

the result is the following: 

- the node file has 122 lines 

3d/16p> wc node-0 (node file on process 0) 

 122  488 3716 node-0 

3d/16p> head node-0 

1 4.200000 0.000000 0.000000 

2 3.001330 1.300000 0.000000 

3 3.800380 0.919239 0.000000 

4 3.700000 0.000000 0.000000 

5 3.100670 0.650000 0.000000 

6 4.091910 0.497488 0.000000 

7 3.406430 1.201040 0.000000 

8 2.654090 1.201040 0.000000 

9 3.450000 0.000000 0.000000 

10  3.950000 0.000000 0.000000 
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- the vector file has 122*12=1464 lines 

3d/16p> wc v-0 (vector file on process 0) 

 1464  2928 24360 v-0 

3d/16p> head v-0 

1 0.000000E+00 

1 -1.865168E-01 

1 0.000000E+00 

1 1.222315E-01 

1 3.701650E-04 

1 0.000000E+00 

1 0.000000E+00 

1 0.000000E+00 

1 0.000000E+00 

1 0.000000E+00 

 

- If no_zero=0, the matrix file before assembly contains 1464*1464+1=2143297 lines and the first line of 

the file is “1464   1464   2143296”. 

$ wc m-zero-0 (matrix file on process 0 with no_zero=0) 

 1464  1464 2143296 m-zero-0 

 

- If no_zero=1 and #non-zero values in the local matrix is N, the matrix file before assembly contains N+1 

lines and the first line of the file is “1464   1464   N”. 

3d/16p> wc m-0 (matrix file before assembly on process 0 with no_zero=1) 

11902  35706 252774 m-0 

3d/16p> head m-0 

1464 1464 11901 

1 1 1.000000E+00 

2 1 7.733400E-02 

2 2 -4.999638E-03 

2 4 4.599472E-05 

2 5 -3.387551E-12 

2 6 2.977057E-06 

2 277 -3.546837E-02 

2 278 -3.943023E-04 

 

 The number of owned nodes on process 0 is 61. Therefore, the number of rows in the global matrix on 

process 0 is “61*12=732”.  

3d/16p> wc assembled-m-0 (matrix file after assembly on process 0 with 

no_zero=1) 

12982  38946 276502 assembled-m-0 

3d/16p> head assembled-m-0 

732 2808 12981 

1 1 1.000000E+00 

2 1 7.733400E-02 

2 2 -4.999638E-03 
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2 3 1.715507E-10 

2 4 4.599472E-05 

2 5 -3.387551E-12 

2 6 2.977057E-06 

2    277 -3.546837E-02 

2    278   -3.943023E-04 

 

The example files are available 

in/global/project/projectdirs/mp288/seol/tests/3d/16p (NERSC Edison) 

 

4.8 Archiving Data at PPPL 
 

Data that is being used in current projects can be stored on the project disk /p/tsc or at /p/m3dc1. 

4.9 NERSC:  Hung NX 
 

A particularly useful method of accessing NERSC is the “NX” program that can be downloaded from the 

NERSC web site.    Occasionally, this fails or hangs.  To fix it (for user u431):  ssh nx.nersc.gov (or 

nerscnx.nersc.gov) 

 

ps –ef|grep nx| grep u431 

kill -9 process# 

 

4.10 NERSC: Project Quotas 
 

To check your disk quotas for individual and project, run: 

myquota 

prjquota mp288   (for repo mp288)  
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5. Viewing Results and Post-Processing 
All of the graphics postprocessors read data from the C1.h5 file and the equilibrium.h5 and  

time_nnn.h5 files. 

 

5.1 IDL 

5.1.1 Compiling and running 

To run idl, you should create a directory “idl” in your home directory.   In that directory, create a single 

file named “.startup” that contains the following line: 

 
  device, retain=2, decomposed=0, true_color=24 
 
You also need to include in your .login,  .bashrc file (or .cshrc file) the line: 
On portal: 
export  IDL_STARTUP=/u/username/idl/.startup    (substitute your unix username for “username”). 
 
At NERSC: 
export IDL_STARTUP=/global/homes/u/username/idl/.startup  (again replace “username”)  
  
After you are in idl and the programs are compiled, you can then use the graphical interface by typing 
“c1view” or use the command line interface.  There are over 15 (and still counting) basic idl  commands, 
with required and optional arguments: 
 

5.1.2 idl plot commands 

For a more complete list, see:   http://w3.pppl.gov/~nferraro/m3dc1.html  (click on “IDL Reference) 

(Note:  to increase size of labels in subsequent plots use:   !p.charsize=2 ) 

plot_field,’psi’,1,file=’fname’, points=200, {/lines,clevels=…}, {nlevels=…}, {/iso}, {/linear}, {/mesh}, 

{/lcfs}, {/xlim}, {/mks},  (here “1” is the time slice (can also use /last), also works for phi, v, chi, I, jphi, jy, 

jy_plasma, cs, p, den,eta,visc, pforce, pmach).   You can also include 2 filenames, 

filename=[“fname1”,”fname2”], and /diff to plot the difference in the files, or [1,2] and /diff to plot the 

difference between time slices 1 and 2 of the same file.  (for a 3D run, include “,phi=ang” where ang is 

the angle in degrees.  (you can also include cutz=0 to get a profile plot across the midplane.   Adding 

outfile=’p_vs_x’ will create an ASCII file). 

 

You can also specify an operation with op=#.   Currently, the possible “op” values (for psi) are: 

1) psi,   2) psi_R,  3) psi_Z,  4) psi_RR,  5 )psi_ZZ, 7) psi_RR+psi_ZZ.   Adding 10 to any of these will add 

one toroidal derivative.   Adding 20 will add two toroidal derivatives.   Adding “,q_con=1” will plot the 

q=1 contour. 

http://w3.pppl.gov/~nferraro/m3dc1.html
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For instance, to visualize psi field in time step 0, enter “plot_field,'psi',file='C1.h5',0,/iso” 

 

Note 1:   You can get a multicolor color map by specifying, range=[min,max] where min and max are of 

opposite sign. 

Note 2:   Some of the name conventions are as follows.    In M3D-C1, the velocity, magnetic, and current 

density fields are given as follows: 

 

2 2 2

2

0

* *

2

2 2

0

ˆln

1

*

R U R R

R f F R z

f F

F
R

F F R f F f

   

  

  

   

−

⊥

⊥

⊥

=   +  + 

=   +  −

=   − + 

=   +  − 

 +  = +

V

A

B

J

  

‘phi’  = U  , ‘v’=  , ‘vz’= ẑ V  ,’chi’=   , ‘psi’=  , ‘I’= F  , ‘f’= f  , ‘jphi’=
*  ,’ jy’= 

* / R−  : 

Note 3: 

1.  If there are coils in the grid, ‘jy_plasma’ will plot just the current due to the plasma current. 

2.  If you have a wall, adding /bound will draw the contours of the wall. 

3. You can get a red-white-blue color scheme with’ table=-1’.   Adding ‘/csym’ will ensure that zero is 

white.  

 

plot_field_vs_phi,’te’,file=’filename’,rrange=[,],cutz=,,,,slice=..,op=.. 

 

movie_field, ‘te’, file=’filename’,nn,range=[min,max],rrange=[rmin,rmax], ext=’avi’ 

this will produce a movie in .avi format of the first nn frames.  rrange can be used to control aspect ratio. 

Other formats:  flv gif matroska mjpeg mov mp4 swf wav webm 

 

plot_scalar, ‘ke’, {xrange=[,]},{yrange=[,]}, {filename=[“fname1”,”fname2”]}, {/growth}  
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Magnetic Energy “me”,  kinetic energy “ke” 

toroidal current ‘it’,   plasma current  “ip”,   Loop Voltage  “vl”, 

wall current “iw”   total current “itot”,   

beta toroidal is ‘bt’,   poloidal beta “bp”,  normal beta “bn”, 

total beta “beta”,  

“psibound”,    “psimin”,    “psilim”,  

timestep  “dt”   ”volume”    “toroidal flux”, 

 “reconnected flux”,   maximum electron temperature “temax” 

thermal energy “p”,   electron thermal energy “pe”, 

particle number “n”,  particles_in_plasma”n_p” electrons “ne”, 

angular momentum,   “vorticity”, 

parallel viscous heating ”bwb2”,     “flux” 

Internal inductance ”li”, “li3”, 

”xmag”,   ”zmag”,    ”runaways”,   

Radiated power “radiation” Ohmic Heating Power “Pohm” 

pellet rate “pelr”,   pellet var  “pelvar” 

pellet radius “pelrad”,     pellet R position  “pelrpos”,  pellet Z position  “pelzpos”,   

“wall_force_n0_x”  Total n=0 JxB force on wall in R direction 

“wall_force_n0_y”  Total n=0 JxB force on wall in direction 

“wall_force_n0_z”  Total n=0 JxB force on wall in Z direction 

“wall_force_n1_x”  Total n=1 JxB force on wall in x=R cos() direction 

“wall_force_n1_y”  Total n=1 JxB force on wall in y=R sin () direction 

m_iz   Integral Z x J 

m_iz_co  Integral Z x J cos Noll Force 

m_iz_sn  Integral Z x J sin      “ 
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Can also add color=[255,135]) Adding outfile=’ke_vs_t.txt’, etc. will create an ASCII file. 

 

To get the real frequency for linear calculations, use the command: 

plot_scalar, ‘psi0’, /power_spectrum, /ylog, /mks 

The time axis will be radians/sec. 

 

 

   

plot_energy, ‘flux’ {/ylog} (also works for ‘energy’ instead of ‘flux’) 

 

plot_flux_average,’q’,-1, /minor_radius, /xlim {,points=200, bins=100}  (also ‘p’, ‘beta’) 

  (-1 indicates equilibrium, /minor radius as opposed to poloidal flux.   Also can use /norm for normalized 

poloidal flux.) 

 

You can use this command to write out a thermal conductivity profile that keeps the pressure fixed 

when read in with ikappafunc=11.  As follows: 

’kappa_implied’,0,filename=’C1.h5’,points=400,bins=400,/norm,outfile=’profile_kappa’ 

Then, copy this file profile_kappa to your run directory. 

 

plot_pol_velocity,1, file=’fname’{,points=50, maxvel=.01,/lcfs} 

 

plot_timings, file=’fname’ 

 

plot_mesh, file=’fname’ 
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plot_hmn,file=’fname’, yrange=[xxx,xxx], maxn=xxx, {/ylog} ,{/growth} ,{/ke},{/me}This will plot each  of 

maxn Fourier harmonic {or their growth rate} of the kinetic energy {/ke} or magnetic energy {/me} as a 

function of timestep.        (assumes ike_harmonics .ne. 0 and ibh_harmonics.ne.0  in C1input) 

 

plot_kspits, file=’fname’.    This will plot the number of PETSc iterations for matrices 5 (velocity), 

17(pressure), and 6(magnetic field) 

 

plot_perturbed_surface, 3., slice=1, fac=10., file='fname' .    This will plot the perturbed q=3 surface with 

the normal displacement scaled by a factor of 10.    What is actually being plotted is xi = -Te1 / 

|grad(Te0)| where Te1 and Te0 are the perturbed and equilibrium parts of the electron temperature. 

 

plot_mag_probes, file=’fname’. This will plot a time series of the magnetic probe signals specified by 

imag_probs 

/compensate_renorm Scales the time series to eliminate discontinuities introduced by renormalization 

in linear stability calculations 

/deriv Plot derivative of signal (i.e. B) 

/mks Plot values in SI units 

/power_spectrum Plot the square of the fourier transform of the series 

 

plot_flux_loops, file=’fname’. This will plot a time series of the flux loop signals specified by iflux_loops. 

/compensate_renorm Scales the time series to eliminate discontinuities introduced by renormalization 

in linear stability calculations 

/deriv Plot derivative of signal (i.e. voltage) 

/mks Plot values in SI units 

 

plot_at_boundary, ‘I’,file=’fname’,slice=nn,/ynozero.   Also works for ‘jnorm’ instead of ‘I’.   just adding 

fname and /iso shows where ‘length along boundary’ parameter actually falls on boundary.   Note: sample 

points can be increased and result smoothed, eg:  points=2000, smooth=10 

 

plot_equation,’gradshafranov’,file=’fname’.  Plots the different terms in the Grad-Shafranov equation and 

their sum  
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5.1.3 Summary table of plot field variables 

 

psi   - toroidal comp. of A  jphi * RJ = −  

f f - “small f” in A and B  jy Toroidal current density J
 

I F =R * B_toroidal  jy_plasma J  in plasma region only 

phi Velocity variable U    vz Z component of velocity 

v Angular velocity     vor Vorticity *U   

chi Velocity variable     com Compressibility 2   

p Total pressure  torque_em  

pe Electron pressure  torque_ntv  

den Normalized density  bdotgradp  

te Electron temperature  bdotgradt ( )/n p n= •B   

ti Ion temperature  sigma nS  in density equation 

eta Resistivity     force_phi  

visc Viscosity     heat_source 
eS  in energy equation 

visc_c Compressible viscosity  cd_source *... ( cd_source)  = +  −   

visc_e 42 /eR F n  −  •    E_R ( )ˆ (1 )R eE R ne p= • −  + +  −  V B J J B   

kappa Iso thermal con:      E_PHI ( )ˆ (1 ) eE ne p  = • −  + +  −  V B J J B   

vpar V • B / |B|  E_Z ( )ˆ (1 )Z eE Z ne p= • −  + +  −  V B J J B   

pmach ( )/ C 1/ /S PV B B⊥    eta_J  ˆE  = • J   

vdotgradt2 ( 1)n T nT− • − −  •V V   pforce 
2 2 2(1 ) / [( ) ]N

ca d d  −  − +  

eta_jsq2   ( ) 21 eJ S  − +     deldotq_perp2 
eT⊥ ⊥• = −• q   

adv12 U part of vdotgradt  deldotq_par2 
|| || eT• = −• q bb   

adv32  part of vdotgradt  adv22  part of vdotgradt 

n_re Number density of runaway 

electrons (for irunaway-1) 

 vn /  V   “normal velocity”   

Potential22 :   Scalar Electrical Potential   f1eplot2 ( )2R  −      J   

f3vplot2 ( 1)( ) ( ) − −i e eT T n QD    f2eplot2 −   −e e e neT D n T S   

potential1 Electric potential   f3eplot2 2

|| eJ S⊥− − + +q q   

eta_jdb1  •J B    psidot1 ( )ˆ (1 ) ene p  • −  + +  − + V B J J B  

bdgp1 − B    veldif1 ̂  • −  + V B  

jdbobs2 2/ B•J B    vlbdgp1 ( / 2 )LV  •B   

rad_source
2 

Total radiated power  Jxb_z Wall force in z-direction 

1only for jadv=0,   2must have itemp_plot=1 
RHS of Te equation = eta_jsq + vdotgradt + deldotq_perp + f3vplot + deldotq_par + f2eplot  
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If (ikprad=1) we have the additional fields associated with impurity radiation: 

kprad_sigma_e Electron source  kprad_sigma_i Ion source 

kprad_rad Line radiation  kprad brem Bremsstrahlung radiation 

kprad_ion Total ionization  kprad_totden Total density of impurity ions 

kprad_reck Recombination (kinetic)  kprad_recp Recombination (potential) 

kprad_n_00 Density of ionization st. 0  kprad_n_01 Density of state 1, etc. 

 

5.1.4 Create postscript files from IDL 

To have the IDL output come out on postscript, include the commands: 
 
set_plot, ‘ps’ 
device, /color 
 
In the postscript file, you can change the line width: 
10 setlinewidth → 20 setlinewidth 
And the color:   r g b setrgbcolor   (note:  0 0 0 = black, 1 1 1 = white) 

 

5.1.5 Create geqdsk file from IDL 

write_geqdsk, points=400,  file=’C1.h5’, slice=0, eqfile=’geqdsk.out’ 
This will write two files geqdsk.out and jsfile (eqdskasci) that are processed as per the stability write-up 
in Section 6. 

 

5.1.6 XRAY synthetic diagnostic 

The xray signal is computed in the following way: 

xray_signal(r0) = integral(d3r S(r0-r) * P(r) / |r0-r|^2) 

 

P(r) is the bremsstrahlung power per volume:     P(r) = n(r) * sqrt[Te(r)] 

(no attempt at getting the overall units correct is made yet). S(r0-r) is the "shape" function of the 

detector:     S(r0-r) = Exp[-a^2/(2.*sigma^2)] 

where cos(a) = d.(r0-r)/|r0-r| and d is the unit vector in the direction of the chord of the detector. 

 

The relevant C1input variables are: 

xray_detector_enabled           (0 by default; 1 enables the signal  calculation). 

xray_r0, xray_phi0, xray_z0   (position of the xray detector) 

xray_theta                 (angle of the chord w.r.thorizontal, in degrees) 

xray_sigma                 (the variance of the shape function, in degrees) 
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The position of the detector should be outside the computation domain,  otherwise there will be 

division-by-zero problems.   For example, to set up a chord that extends vertically upwards from  (R, phi, 

Z) = (1.6, 0, -2.), with a "width" of 1 degree: 

 

xray_detector_enabled = 1 

xray_r0 = 1.6 

xray_phi0 = 0. 

xray_z0 = -2. 

xray_theta = 90. 

xray_sigma = 1. 

 

The xray_signal value is calculated at every timestep (note: you must  have ike_only=0 for this to be 

calculated).  The time series can be  plotted using "plot_scalar, 'xray_signal'" 

 

If you've set iwrite_aux_vars=1 (it is 1 by default), a field called  "chord_mask" will also be output that 

has the value S(r0-r)/|r0-r|^2.   Note that this field will usually be poorly resolved in the phi direction, 

since you would need ~360 planes to resolve a chord with a  width of 1 degree.  The actual diagnostic 

will not be so poorly  resolved though, because its resolution is set by the integration quadrature which 

has ~5x better toroidal resolution than the finite elements. 

 

5.2 Poincare Plots and q-Profiles 
 

To run the field-line tracing code, copy the program “trace” from: 

 

On the PPPL cluster: 

/p/tsc/fio/fio-sunfire.r6/bin/trace 

 

At NERSC: 

/project/projectdirs/mp288/fio/cori/bin/trace 

 

On stellar: 

/home/nferraro/fusion-io/bin/trace 

 

Below are two batch files; one computes   a q profile, the other makes a poincare plot.  Put these in the  

directory  with your C1.h5 and equilibrium.h5 and timennnn.h5 files and the “trace”  run file , and run 
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the appropriate one (make sure to make them  executable with "chmod +x q.bat" and "chmod +x 

poincare.bat", if  necessary.  The explanation of each batch file follows: 

 

(NOTE:  precede   ./trace with “mpiexec –np nproc”  at PPPL , etc) 

 

5.2.1 q-profiles 

q.bat: 

 

For a linear run or nonlinear run with eqsubtract=1: 

./trace \ 

        -m3dc1 C1.h5 \   ! Load equilibrium time slice from C1.h5 

        -m3dc1 C1.h5 1 1 \        ! Load time slice 1 from C1.h5 and multiply it by 1 

        -dR0 0.1 \                        ! First initial point for integration is at (R0 + 0.1, Z0) 

        -dR 0.005 \                      ! Each subsequent initial point is 0.005 m farther to the right 

        -t 100 \                              ! For each surface, do  100 toroidal transits 

        -s 50 \                               ! for each toroidal  transit, do 50 RK4 steps 

        -p 200 \                            ! Do 200 initial points 

        -qout 1 \                           ! Output q.out file 

        -pout 0                             ! Do not output poincare plot 

For a nonlinear run with eqsubtract=0: 

./trace \ 

        -m3dc1 C1.h5 42 \        ! Load time slice 42 from C1.h5 

        -dR0 0.1 \                        ! First initial point for integration is at (R0 + 0.1, Z0) 

        -dR 0.005 \                      ! Each subsequent initial point is 0.005 m farther to the right 

        -t 100 \                              ! For each surface, do  100 toroidal transits 

        -s 50 \                               ! for each toroidal  transit, do 50 RK4 steps 

        -p 200 \                            ! Do 200 initial points 

        -qout 1 \                           ! Output q.out file 

        -pout 0                             ! Do not output poincare plot 

 

After running q.bat, you can see the results by running "gnuplot", and within gnuplot running 

Plot 'q.out' with lines 
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Note:  you can also add the option “-tavg n” and the code will do a toroidal average over n sampling 

points. 

 

5.2.2 Poincare-plots 

poincare.bat: 

 

For a linear run or a nonlinear run with eqsubtract=1: 

./trace \ 

        -m3dc1 C1.h5 \               ! Load equilibrium time slice from C1.h5 

        -m3dc1 C1.h5 1 1 \        ! Load time slice 1 from C1.h5 and multiply it by 1 

        -dR0 0.1 \                        ! First initial point for integration is at (R0 + 0.1, Z0) 

        -dR 0.005 \                      ! Each subsequent initial point is 0.005 m farther to the right 

        -t 100 \                              ! For each surface, do  100 toroidal transits 

        -s 50 \                               ! for each toroidal transit, do 50 RK4 steps 

        -p 200 \                            ! Do 200 initial points 

        -qout  0 \                           ! Do not output q.out file 

        -pout  1                             ! Do output Poincare plot 

 

For a nonlinear run with eqsubtract=0: 

./trace \ 

        -m3dc1 C1.h5 42 \        ! Load time slice 42 from C1.h5 

        -dR0 0.1 \                        ! First initial point for integration is at (R0 + 0.1, Z0) 

        -dR 0.005 \                      ! Each subsequent initial point is 0.005 m farther to the right 

        -t 100 \                              ! For each surface, do  100 toroidal transits 

        -s 50 \                               ! for each toroidal transit, do 50 RK4 steps 

        -p 200 \                            ! Do 200 initial points 

        -qout  0 \                           ! Do not output q.out file 

        -pout  1                             ! Do output Poincare Plot 

 

The script poincare.bat will produce files “out00, out01, ….outnn”, one for each initial point that is 
successively outward.  If one or more of those starting points is outside the plasma, the corresponding 
outnn file will be of zero length.   You can check for this by running "ls -l out*" in the directory.    If this is 
the case, you must edit the gplot file and remove mention of these outnn files that are of zero length.  
 
You can see the results by running gnuplot and within gnuplot running: 
load 'gplot' 
 
The option “-phi0 0.0” will force all the lines to be launched from phi=0.    
The option  “–a nn”  sets the toroidal angle of the puncture plane to be nn. 
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5.2.3 Hard-copy plot options for gnuplot 

To  produce a jpeg (or png) file, precede  the “load ‘gplot’ ” command with: 

set terminal jpeg (png) 

set output ‘fname.jpeg’ (‘fname.png’) 

 

5.3 Visit 
Instructions for viewing results using VISIT are on: 

http://w3.pppl.gov/~efeibush/visit/m3dc1/ 

  

http://w3.pppl.gov/~efeibush/visit/m3dc1/
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6. Linear Stability Evaluation: 
For stability reference, see http://w3.pppl.gov/lmhd 

6.1 Transferring Equilibrium from geqdsk.out to Evaluate with PEST 
 

        (files should be available at pppl) 

(1) geq2ps -pprime –c_ratio:xx geqdsk.out filename.cdf 

a. Where .02 < xx < .15 is the curvature ratio that it cuts the boundary at.   This should be 

as small as possible (where jsolver still converges) 

(2) ps2jso –npsi:129 filename.cdf   (this produces an eqdska file that can be read by jsolver) 

 

6.2 Linear Stability Evaluation 
  

    (1) On Portal, copy files from /p/swim/jchen/IPS/lmhd with: 

           cp –r /p/swim/jchen/IPS/lmhd/* . 

 

     (2) All input files (including eqdska) must be put into the directory “input” 

 

     (3) To run starting from jsolver to pest1: (eqdska) 

           python lmhd_driver.py opt:jso file:jsolver stability:pest1 

 

     (4) To run starting from map1: (eqb1) 

          Python lmhd_driver.py opt:jso file:map1 stability:pest1 

 

     (5) Other stability options:  pest2, balloon, camino 
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7. PETSc Option File 
 
When running M3D-C1 in the 3D nonlinear mode, you need to include PETSc Options file as discussed in 
Section 4.2. There is a number "8" in the file below. It must be equal to the number of toroidal planes. It 
should be changed whenever you change the number of planes in the C1input file.  The recommended 
options_bjacobi file is as follows: 
 
-pc_type bjacobi  
-pc_bjacobi_blocks 8        (for 8 toroidal planes…should be equal to nplanes in C1input) 
-sub_pc_type lu  
-sub_pc_factor_mat_solver_package superlu_dist   (can exchange mumps for superlu_dist) 
mat_superlu_dist_rowperm NOROWPERM (only needed for superlu_dist) 
-mat_mumps_icntl_14 50     (only needed for mumps) 

(50 means 50% of memory increase when needed.  Users can make it 100 or more if 
encountering a runtime memory issue.) 

-sub_ksp_type preonly  
-ksp_type fgmres  
-ksp_gmres_restart 220 
-ksp_rtol 1.e-9 
-ksp_max_it 10000 
-on_error_abort 
 
-hard_pc_type bjacobi 
-hard_pc_bjacobi_blocks 8   (for 8 toroidal planes…should be equal to nplanes in C1input) 
-hard_sub_pc_type lu 
-hard_sub_pc_factor_mat_solver_type superlu_dist (can change mumps for superlu_dist) 
-mat_superlu_dist_rowperm NOROWPERM (only needed for superlu_dist) 
-mat_mumps_icntl_14 50    (only needed for mumps.) 
(50 means 50% of memory increase when needed.  Users can make it 100 or more if encountering a 
runtime memory issue.) 
-hard_sub_ksp_type preonly  
-hard_ksp_type lgmres 
-hard_ksp_lgmres_argument 4 
-hard_ksp_gmres_restart 220 
-hard_ksp_rtol 1.e-9 
-hard_ksp_max_it 10000 
 
Optional additional optional arguments: 
-ksp_converged_reason 
-ksp_view 
-help 
 
-options_table 
-options_left 
 
-trdump 
-malloc_log 
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8. Input Variables in C1input 

8.1 Model Options 
numvar    3 # of velocity variables 1: 2-Field; 2: 4-Field;  3: 6-Field 
linear     0 1: use linearized equations 
eqsubtract,   0 1: subtract equilibrium fields 
extsubtract   0 1: subtract external fields 
icsubtract   0 set to 1 if PF coils are in the domain    

These are defined in the files: “coil.dat” and “current.dat” 
idens    0 1: include density equation 
ipres    0 1: include total pressure and electron pressure equations 
         If itemp=1, include both electron and ion temperature  
     equations 
ipressplit    0 1: separate pressure solves from field solves when isplitstep=1 

(ipressplit must be 0 for isplitstep=0) 
itemp     0  1: advance temperatures rather than pressures 
         (if itemp=1 and ipres=1, advance both i and e temperatures) 
gyro     0  1: include Braginskii gyroviscosity  (note:  needs db .ne.0 also) 
igauge     0 0: loop voltage applied to boundary psi only 
inertia    1 1: include V.Grad(V) terms 
itwofluid   1 1: include two-fluid terms (electron form)    

2: ion form (not recommended) 
3: parallel pressure gradient in Ohm’s law only   
    (not recommended) 

ibootstrap    0 1: include bootstraph current 
ibootstrap_model    0 1:  J_BS = alpha F <p, psi> B 
bootstrap_alpha    0 alpha parameter in bootstrap current model 
imp_bf     0       1: Include implicit equation for f   

(recommended for 3D and 2D complex) 
nosig     0 1: drop sigma terms from momentum equation 
itor    0 1: use toroidal geometry 
gravr     0. 
gravz    0. 
istatic    0 1: do not advance velocity fields 
     3: zero out “chi” velocity field only 
iestatic    0 1: do not advance magnetic fields 
chiiner     1. factor to multiply the chi equation inertial terms 
ieq_bdotgradt    1. 1: include equilibrium parallel T gradient   
no_vdg_T   0 1: do not include V dot grad T in Temp equation (debug) 
iwall_is_limiter   1 1: wall acts as limiter 
kinetic    0 1: Use kinetic PIC for hot pressure 
     2:  Incompressible CGL 
     3:  Full CGL 



50 
 

iadiabat   0 1: Corrects several problems with itemp=1 option   
All new runs should have iadiabat=1 (added 6/2/2016) 

irunaway   0 1: include runaway electron model 
imp_temp   0 0: compute temperatures for isplitstep=0, itemp=0 
iohmic_heating   1 1= include Ohmic heating terms in heating 
irad_heating   1 1 = include radiation heat sink 

 

8.2   Equilibrium 
 
itaylor     0 switch for which of many test problems to initialize 
    for itor=1 (toroidal geometry) 

   itaylor=0:  tilting cylinder 
     itaylor=1: calls Grad-Shafranov solver 
     itaylor=2: magneto-rotational equilibrium 
     itaylor=3: rotational instability 
     itaylor=40: Fixed boundary stellarator 
     itaylor=41: Free boundary stellarator 
    for itor=0 (slab geometry) 
                      itaylor=0: tilting cyclinder 
     itaylor=1: Taylor reconnection 
     itaylor=2: force free taylor state 
     itaylor=3: GEM reconnection problem 
     itaylor=4: wave propagation 
     itaylor=5: gravitational instability equilibrium 
     itaylor=6: Strauss equilibrium 
     itaylor=7: circular_field_init 
     itaylor=8,9: biharmonic 
     itaylor=10,11,12,13 : analytic RWM test problem 
     itaylor=14: 3D wave test 
     itaylor=15: 3D diffusion test 
     itaylor=16 : FRS cyclindrical equilibrium (see Section 19.1) 
     itaylor=17: ftz_init 
     itaylor=18: eigen_init 
     itaylor=19: ASDEX profiles similar to Yu’s 
     itaylor=20: kstar profiles with multiple q=1 surfaces 
     itaylor=21,22: fixed q(r) and p(r) profiles 
     itaylor=23: startsev equilibrium with J = (2/R_0q_0)(1-r^2) 
     itaylor=27: cylindrical test problem (see Section 18) 
     itaylor=29:  basicj profiles 
iupstream   0 1: adds diffusion term to convection like upstream differencing 
magus    5.e-2 magnitude of the upstream diffusion term 
Iflip     0 1: flip handedness of coordinates 
iflip_b    0 1: reverse equilibrium toroidal field 
iflip_j     0 1: reverse equilibrium toroidal current 
iflip_v    0 1: reverse equilibrium toroidal velocity 
iflip_z    0 1: flip equilibrium across z=0 plane 
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icsym     0 symmetry of initial perturbation 
     0:  no symmetry, 1: even in U 2: odd in U 

     For icsym=3, maxn=1:  
22 /(ln)eps sin( )rU r e  −=  −   

bzero    1. vacuum toroidal field is bzero at R=rzero 
bx0     0. initial field in x-direction for some test problems 
vzero    0. initial toroidal velocity for some test problems 
phizero    0. initial poloidal velocity stream function for some test problems 
v0_cyl    0. Central toroidal velocity for cylindrical test problem 
v1_cyl    0. VZ = v0_cyl + v1_cyl*psi**beta     0 < psi < 1 for cyl. test problem 
idevice    0 define coils for a particular device 
     -1:  reads coil.dat file 
       0:  generic dipole configuration 
      1:  CDX-U 
      2: NSTX 
      3:  ITER 
      4:  DIII 
iwave     0 defines which wave to initialize in wave propagation test 
eps    0.01 magnitude of initial random perturbations 
maxn    200 maximum Fourier component for random initial perturbation 
verzero    0 magnitude of initial vertical velocity 
irmp    0 1: apply nonaxisym. fields throughout plasma 
      reads rmp_coil.dat for (R, Z) of window pane coils 

reads rmp_current.dat for (+-) currents in kA and 
phases in degrees 
toroidal mode number of current specified by ntor 

2: apply nonaxisym. fields only at boundaries 

rmp_atten   0 additional exponential decay of RMP field from r=1 for irmp=2 
iread_ext_field     0 1: read external field 
beta    0. parameter used in some model equilibrium initializaitons 
ln,     0 length scale parameter used in some model equilibrium  
elongation   1 elongation used in Solovev equilibrium 
isample_ext_field   1 factor to down-sample external field data toroidally 
isample_ext_field_pol   1 factor to down-sample external field data poloidally 
scale_ext_field     1 factor to scale external field 
shift_ext_field   0 toroidal shift (in deg) of external fields 
ibasicj_solvep   0 0: uniform p, solve for F; 1: uniform F, solve for p 
basicj_nu   1 exponent in basicj equilibrium 
basicj_j0   1 On-axis current density in basicj equilibrium 
basicj_voff   1 Radial extent of flat toroidal rotation in basicj equilibrium 
basicj_vdelt   1 Width of velocity drop-off, as fraction of ln, in basicj equilibrium 
basicj_dexp   1 parameter for basicj equilibrium 
basicj_dvac   1 parameter for basicj equilibrium 
basicj_q0   0 parameter for basicj equilibrium 
basicj_qa   0   parameter for basicj equilibrium 
pf_shift    0 (array) horizontal shift of PF coil 
pf_shift_angle   0 (array) direction of PF shift in degrees 
pf_tilt    0 (array) Angle of PF from vertical indegrees 
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pf_tilt_angle   0 (array) Axis of rotation for PF tilt in degrees 
tf_shift    0 horizontal shift of TF coil 
tf_shift_angle   0 direction of TF shift in degrees 
tf_tilt    0 angle of TF from vertical in degrees 
tf_tilt_angle   0 axis of rotation for TF tilt in degrees 
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8.3   Grad-Shafranov Solver   
 
For the definition of Grad-Shafranov solver, see Section 11. 

inumgs     0 1: use numerical def. of p and g from profile-p and profile-g files 
igs    80 max number of Grad-Shafranov iterations 
eta_gs    1000. factor for smoothing nonaxisymmetries in psi in 3D GS solve  
igs_pp_ffp_rescale   0 1: rescale p’ and FF’ to match p and F 
nv1equ    0 1: use numvar=1 equilibrium for numvar>1 
tcuro    1. scaled initial plasma toroidal current (

0 pI  in GS) 

xmag    1. R-coordinate of initial current centroid ( 0R in GS) 

zmag     0. Z-coordinate of initial current centroid 
xmag0    0. non-zero: specify target magnetic axis x-position for feedback 
zmag0    0. non-zero: specify target magnetic axis z-position for feedback 
xlim    0. R-coordinate of limiter #1 
zlim     0. Z-coordinate of limiter #1 
xlim2    0. R-coordinate of limiter #2 
zlim2     0. Z-coordinate of limiter #2 
 
rzero     1. nominal major radius of device for itor=1  

( rzero*bzero = 0g in GS) 

libetap,    1.2 approximate initial value of / 2i P+  for free-boundary equ. 

p0,    0.01 initial central pressure  
(if reading p from file, still used in density def) 

pi0     0.005 initial central ion pressure.   
electron pressure is pe = p0 – pi0 

p1     0 analytic pressure function parameter ( 1p in GS) 

p2     0 analytic pressure function parameter ( 2p in GS) 

pedge    -1. pressure outside separatrix (ignore if < 0) ( ep in GS).  Also, BC                 

     on pressure 
tedge     -1. temperature outside separatrix (ignore if < 0).   

Only used in GS solve. Boundary value of electron temp is  
twall = pedge*pefac/den_edge 

expn     0. density profile ( )
expn

0den0 / den_edgen p p=  +  for idens.ne.0  

     and idenfunc=0 

q0    1. central safety factor for analytic function( 0q in GS) 

djdpsi    0. parameter in analytic equilibrium function( J in GS) 

th_gs    0.8 implicitness of GS Picard iterations 
tol_gs     1.e-8 convergence criteria for GS iteration 
psiscale,   1. depricated 
pscale    1. factor multiplying pressure profile 
bscale    1. factor multiplying toroidal field profile 
bpscale    1. Factor multiplying F’ (keeping F0 constant) 
vscale    1. Factor multiplying toroidal rotation profile 
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iread_bscale   0 1: read profile_bscale for factor to scale F 
iread_pscale   0 1: read profile_pscale for factor to scale p and p’ 
batemanscale   1. Bateman scale the TF, keeping current profile fixed 
irot     0 1:  include toroidal rotation in equilibrium calculation 

 (see Section 12) 
iscale_rot_by_p    1 see below and Section 12 

alpha0    0. 0 in analytic rotation profile 

alpha1     0. 1  in analytic rotation profile 

alpha2     0. 2  in analytic rotation profile 

alpha3    0. 3  in analytic rotation profile 

For iread_omega=0, the function ( )  , is parameterized by: 

 2 3

0 1 2 3s s s    = + + +  

   For iscale_rot_by _p = 0:   ( ) / ( )n p   =   ,        

For iscale_rot_by_p =  1:    =   

For iscale_rot_by_p =  2:   
( )

2

2 3/

0 1 ( ) / ( )e n p
  

    
− −   = + 

  
  

In all cases, the angular velocity is then determined by: 

 

1/2

2

0

2 ( )

( )

p

R n

 




 
=  
 

 

  
 

idenfunc   0 select density function.   Here ( ) ( )min l min/    = − −   

   0: ( )
expn

0den0 / denedgen p p=  +   

   1:       
( )( )

( )

psibound+denoff (psibound-psimin)1
den0 1 tanh

2 dendelt (psibound-psimin)
n

  − 
 =   +  

    

  

   2: ( ) ( )( )1
2

den0+ den_edge-den0 1 tanh denoff dendeltn  =  + −    

   3: if denoff   and ( ) ( ) ( )0 MA MA 0l d dx x x d dz z z   −  − + −      

     Then den0n =   
     Else  den_edgen =   

 
den_edge   0. edge density.  If zero, set to den0*(pedge/p0)**expn 
den0    1. central density 
dendelt     0.1 width of transition region for idenfunc=1,2 
denoff    1. offset for idenfunc= 1,2,3 
 
divertors   0 number of divertors (for use in equilibrium field calculation) 
xdiv     0. R position of divertor coils 
zdiv     0 Z position of divertor coil 
divcur    0.1 normalized current in divertor coil 
xnull     0. guess for R-coordinate of active x-point 
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znull,       0 guess for Z-coordinate of active x-point 
mod_null_rs   0 if 1, you can reset xnull and znull from C1input at restart 
xnull0    0 Target R-coordinate of x-point for feedback 
znull0    0 Target Z-coordinate of x-point for feedback 
xnull2     0. guess for R-coordinate of inactive x-point 
znull2,       0 guess for Z-coordinate of inactive x-point 
mod_null_rs2   1 if 1, you can reset xnull2 and znull2 from C1input at restart 
gs_pf_psi_width   0 width of psi smoothing into private flux region 
gs_vertical_feedback   0  proportional FB of each coil to (zmag-zmag0)  (array) 
gs_vertical_feedback_i  0  integral FB of each coil to (zmag-zmag0)           (array) 
gs_vertical_feedback_x  0  proportional FB of each coil to (znull-znull0)  (array) 
gs_vertical_feedback_x_i 0  integral FB of each coil to (znull-znull0)            (array 
 
gs_radial_feedback   0  proportional FB of each coil to (xmag-xmag0)  (array) 
gs_radial_feedback_i  0  integral FB of each coil to (xmag-xmag0)            (array) 
gs_radial_feedback_x  0  proportional FB of each coil to (xnull-xnull0)  (array) 
gs_radial_feedback_x_i  0  integral FB of each coil to (xnull-xnull0)            (array 
 
igs_extend_p     0 extend p past pis=1 using ne and Te profiles 
igs_feedfac   1 proportionality factor for external field feedback 
igs_forcefree_lcfs    -1 ensure that GS solution is force-free at LCFS 
igs_start_xpoint_search  0  number of GS iterations before searching for x-point 
sigma0    0 width of Gaussian for initial current distribution for GS iteration 
igs_extend_diamag  1 1=extend diamagnetic rotation past psi=1 
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8.4   Transport Coefficients 
 
ivisfunc    0 select viscosity function: 
   0: visc = amu 

   1: visc = amu + 
( )( )

( )

   

 

  − +  − 
 +   

 −    

01
2

0

amuoff
amu_edge 1 tanh

amudelt

l l

l

 

   2: visc = amu +
 − 

 +  
  

1
2

amuoff
amu_edge 1 tanh

amudelt            

0

0b

 


 

−


−
 

    if (amuoff2.ne.0 .and. amudelt2.ne.0) 

        visc = amu +
  − −   

 + +    
    

1
4

amuoff amuoff2
amu_edge 2 tanh tanh

amudelt amudelt2
 

     
   3: visc=amu or amu_edge depending on criteria in define_fields 
amuoff     0. 
amudelt   0. 
amuoff2   0. 
amudelt2   0 
amu    0. isotropic viscosity 
amuc    0. compressional viscosity 
amue     0. bootstrap viscosity coefficient 
amupar    0. parallel viscosity 
amu_edge    0. 
iresfunc    0 select resistivity function 
    0: eta = etar + eta0 x (ne/pe)3/2 

    1: eta = etar + 
( )( )

( )
01

2

0

etaoff
eta0 1 tanh

etadelt

l l

l

   

 

  − +  − 
 +   

 −    

 

    2: eta = etar + 1
2

etaoff
eta0 1 tanh

etadelt

 − 
 +  

  
;     0

0b

 


 

−


−
 

    ---------------------------------------------------------------------------------------- 
The following two options are applied in a way that they should not 
have negative values…even if the idl plots indicate otherwise 

    3: ( ) ( )0 0/ l    = − −  

eta = etar for  < etaoff, otherwise eta0 

4:    eta = Spitzer resistivity with offset.  
  Define:   pedge*pefac/den_edgewallT    

                     
( )

( )

3/2

3/2

off off

e e e wall e

off off

wall e e wall e

T T T T T

T T T T T



−

−

 −  −

 −  −


      

Can be increased by inputing eta_fac > 1. 
------------------------------------------------------------------------------------------- 

5: simple neoclassical model:   
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eta = eta0 x (ne/pe)3/2/(1 – 1.46 (r/R)1/2) 

eta_te_offset   0. 
off

eT  for iresfunc=4 

ikprad_te_offset  0 if 1, off

eT  also applied in kprad and ablation routines 

eta_fac    1 for iresfunc=4, eta gets multiplied by eta_fac 
etaoff    0. see description of iresfunc 
etadelt     0. see description of iresfunc 
etar    0. see description of iresfunc 
eta0    0. see description of iresfunc 
eta_mod   0 1: remove d/dphi terms in resistivity 
eta_max   0 maximum resistivity in plasma region (defaults to etavac) 
ikappafunc   0 select electron thermal conductivity function 
   0: kappa = kappat + kappa0 x (n3/p)1/2 

   1: 
( )( )

( )
0

0

kappaoff1
kappa = kappa0 1 tanh

2 kappadelt

l l

l

   

 

  − +  −
  +  

  −   

  

   2: 

1 kappaoff
kappa0 1 tanh  for <1

2 kappadelt
kappa =  

1 2 kappaoff
kappa0 1 tanh  for 1

2 kappadelt







   −
 +   

   


  − −
 +   

  

  

   3: kappa= kappat +  kappa0 x 1 /(p n)1/2 

   4: kappa = kappat + kappa0*(1 + kappadelt*|Te|2) 
   5: kappa = kappat + kappa0/Te    …. Limited by kappa_max 
   10,11:  read from profile_kappa file in m2/s  (10) or normalized units (11) 
   12:  option to go with itaylor=27 
kappai_fac   1 ion thermal conduction is kappai_fac*kappa 
ikapscale    0 1:  kappar gets scaled by kappa 
ikappar_ni    0 1: include 1/n terms in parallel heat flux 
kappaoff    0. see ikappafunc 
kappadelt    0. see ikappafunc 
kappat     0. isotropic thermal conductivity 
kappa0    0. see ikappafunc 
ikapparfunc   0: Parallel thermal conductivity (PTC) = kappar 

PTC = ( )
1

5/2
kappar / 1eT T

−

  +
 

 

kappar     0. parallel thermal conductivity 
tcrit    0. Te for ikapparfunc = 1 
kappari_fac   1.  Ion parallel thermal conductivity is kappari_fac x 
electron value 
kappax    0. coefficient of B x Grad(T) temperature diffusion 

kappah    0. if kappah .ne. 0 ( )2kappa kappah tanh 1. .2=   −     

kappaf    1. Factor to multiply kappa when grad(p) < gradp_crit 
kappag    0. Thermal diffusion proportional to pressure gradient 
gradp_crit   0. Critical pressure gradient for kappaf, kappag model 
k_fac    1. Factor by which TF is multiplied in denominator of kappa_par 
temin_qd   0. Min temperature used in equipartition for ipres=1 
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idenmfunc   0 Selects form of particle diffusion 

0 denm79 = denm 
1 denm79 = denm + denmt/Te 
10 read from file profile_denm in m^2/sec 
11 read from file profile_denm in normalized units 
 

denm    0 
denmt    0 multiplier of 1/Te for idenmfunc = 1 
denmmin   0.  minimum value of denm 
denmmax   1.e6 maximum value of denm   
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8.5   Hyper Diffusivity 
 

imp_hyper   0 
2

H  J  explicit for , implicit for F 

    1 
2

H  J  implicit for , implicit for F 

2 
2( / ) HB   B  implicit for , implicit for F  ( 2/ B  J B  ) 

deex    1. scale length used in the hyper coefficients (see ihypdx) 
hyper     0. hyper coefficient for psi equation 
hyperc     0. hyper coefficient for poloidal velocity 
hyperi     0 hyper coefficient for toroidal field 
hyperp     0. hyper coefficient for pressure 
hyperv    0. hyper coefficient for toroidal flow 
ihypdx     2 hyper terms multiplied by deex**ihypdx  
ihypeta    1 1: magnetic field hyper coefficients multiplied by eta 

2: magnetic field hyper coefficients multiplied by p                    
(for  imp_hyper=1) 

ihypamu   1 1: velocity hyper coefficients are multiplied by amu 
ihypkappa    1     1: pressure hyper coefficients are multiplied by kappa 

 

8.6   Normalizations 
 
b0_norm   1.e4 normalization magnetic field (in G) 
n0_norm    1.e14 normalization density (in e-/cm3) 
l0_norm   100. normalization length (in cm) 

 

8.7   Boundary Conditions 
 
isurface     1 include surface terms in Galerkin method 
icurv     2 if > 0, include curvature from mesh 
nonrect    0 1: non-rectangular boundary 
ifixedb    0 1: force psi=0 on boundary 
com_bc    0 1: forces del^2(chi) = 0 on boundary 
vor_bc    0 1: forces del^*(phi) = 0 on boundary 
iconst_p   1 1: hold pressure constant on boundary 
iconst_n    1 1: hold density constant on boundary 
iconst_t     1 1: hold temperature constant on boundary 
iconst_bn    1 1: hold normal field constant on boundary 
iconst_bz    0 1: hold toroidal field constant on boundary 
     Linear runs should normally have iconst_bz=0 
     Nonlinear runs normally have iconst_bz=1  (See Section 20) 
inograd_p   0 1: no normal pressure gradient on bounday 
inograd_t   0 1: no normal temperature gradient on boundary 
inograd_n   0 1: no normal density gradient on boundary 



60 
 

inonormalflow     1    1: no-normal-flow boundary condition 
inoslip_pol    1  1: no-slip boundary condition on poloidal velocity 
    2: no-slip only on the sum of the two poloidal velocity componnets 
inoslip_tor    1 1: no-slip boundary condition on toroidal velocity 
inostress_tor    0 1: no stress (toroidal flow) on boundary 
inocurrent_pol    0 1: no poloidal current on boundary 
inocurrent_tor     0 1: no toroidal current on boundary 
inocurrent_norm    0 1: no normal current on boundary 
ifbound    -1 boundary condition on f    

1: Dirichlet, 2: Neumann (See Section 20) 
iconstflux    0  1: conserve toroidal flux in nonlinear calculation 
iper     0 1: periodic boundary condition in R direction 
jper     0 1: periodic boundary condition in Z direction 

 

8.8   Time Step 
 
ntimemax    20  total number of time steps 
integrator    0 0: Crank-Nicholson, 1: BDF2 
isplitstep    1 0: unsplit time step; 1: split time step 
iteratephi   0 1:  iterate field solve 
imp_mod    1 type of split step.   

0: standard, 1: caramana 
     For nonlinear runs, normally set imp_mod=0 (more stable) 
     For linear runs with isplitstep=1 set imp_mod=1 (more accurate) 
idiff    0 1:  solve for difference between n and n+1 in B,p 
idifv    0 1:  solve for difference between n and n+1 for V 
           For idiff=idifv=1, should increase ksp_rtol from 10-9 to 10-8 
irecalc_eta   0 1: recalculate transport coefficients after density solve 
iconst_eta   0 1: don’t evolve resistivity 
itime_independent  0 1: exclude d/dt terms 
thimp     0.5 implicitness of timestep (.5<thimp<1)"   
thimpsm   1. implicitness parameter for smoothers 
harned_mikic    0. coefficient of Harned-Mikic 2F stabilization term 
isources   0 1: include “source” terms in velocity advance 
nskip    1 number of times steps per matrix recalculation 
pskip    1 number of times the preconditioner is reused 
iskippc    1 number of times preconditioner is reused 
dt    0.1 initial size of time step.   Can only change on restart if dtkecrit=0 
ddt    0   
frequency   0 frequency in time-independent calculations 
 
! variable_timestep parameters: Timestep is constant unless dtkecrit.ne.0 
dtmin     4.0 minimum timestep for variable timestep calculation 
dtmax     40. maximum timestep for variable timestep calculation 
dtkecrit    0.       lower timestep if ekin is above this (0.01 typical) 
dtfrac     .10        max fractional change of timestep in 1 cycle 
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max_repeat   3 max # time step is repeated for ksp_max iterations exceeded 
ksp_max   10000 max number of ksp iterations before repeating time step 
ksp_min   1200 increase dt  if  ksp < ksp_min 
ksp_warn   1600 decrease dt if   ksp > ksp_warn 
 

 

8.9   Mesh 
 
nplanes    1 number of toroidal planes for 3D nonlinear 
xzero    0. R-coordinate of lower left corner for rectangular mesh 
zzero    0. Z-coordinate of lower left corner for rectangular mesh 
tiltangled    0. angle a rectangular mesh is tilted 
mesh_model          model file name from which the mesh is generated  

mesh_filename     mesh file name  

ipartitioned   0 obsolete 

 

NOTE: 

• The mesh file in the input directory must have a digit representing part ID between filename and 

.smb even when it's a serial mesh.  For instance, for 2D serial mesh, the mesh file in the input 

directory should NOT be struct-curveDomain.smb, BUT be struct-curveDomain0.smb.   However, 
in C1input, specify filename.smb (no part ID) for mesh_filename. 

• For more details on model and mesh file, see Section 2. 

 

Imatassemble   0 1: use petsc matrix parallel assembly instead of scorec 

imulti_region 0 1: Mesh has multiple regions that includes resistive wall and  
vacuum. Wall resistivity is “eta_wall” (poloidal resistivity is 
eta_wallRZ.  Vacuum resistivity is “eta_vac” 

toroidal_pack_angle  0 toroidal angle of maximum mesh packing 

toroidal_pack_factor   1 ratio of longest to shortest toroidal element 

 

8.10   Solver 
NOTE:   These are over written by petsc options file (see Section 7) 

solver_type   0 for PETSc only. 0: direct solver, 1: iterative solver 
     for Trilinos, iterative solver is used 
solver_tol   1.e-9 solver tolerance  
num_iter   100 maximum number of iterations 
 

8.11   Mesh Adaptation (Will be deprecated soon) 
 
iadapt     0 0: no adaptation 

1: adapt mesh from the magnetic flux field in the equilibrium (A) 
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2: adapt mesh from the estimated error in the solution field (B) 
3: run both (A) and (B) 

adapt_control   1 
adapt_hmin    0.001 
adapt_hmin_rel   0.5 
adapt_hmax    0.1 
adapt_hmax_rel  2 
adapt_ke   0 
adapt_pack_factor  0.02 
adapt_psin_vacuum  0 treat the entire vacuum region as having that value of psin 
adapt_psin_wall  0 treat the entire wall as having that value of psin 
adapt_smooth    2./3. 
adapt_target_error  0.0001 
iadapt_max_node  10000 
iadapt_ntime   0 
iadapt_order_p   3 
iadapt_pack_rationals  0 number of mode-rational surfaces to pack mesh around 
iadapt_removeEquiv  0 
iadapt_useH1   0 
iadapt_writesmb  1            if 1, write the adapted mesh in “tsN-adapted.smb”, N=time step 
iadapt_writevtk   0            if 1, write the initial and adapted mesh in vtk format  
                                                                   The initial mesh before adaptation is written in folder “ts0-initial” 
                                                                   The adapted mesh is written in folder “tsN -adapted”, N=time step 
adapt_coil_delta  0. Width parameter for packing mesh around coil locations 
     must include files adapt_coil.dat and adapt_current.dat 
adapt_pellet_length  0. Length of pellet path to pack mesh along 
adapt_pellet_delta  0. Width parameter for packing mesh along pellet path 
adapt_factor   1 
adapt_qs(array )  0 Safety vactor values (up to 32) about which to adapt.  Literally,  

the normalized  flux used for adaptation gets hacked so that it’s  
close to unity near the specified safety factors 

 
See Section 16.2 for the details of mesh adaptation. 

 

8.12   Numerical Options 
 
jadv    1 1: use Del*(psi)  (ie, current) eqn. instead of psi eqn. 
ivform    1 V = R^J Grad(U)XGrad(phi) + R^K V Grad(phi) + R^L Grad(chi)  

0: J=0, K=0, L=0;   
1: J=2, K=2, L=-2 

int_pts_main   25 must be consistent with MAX_PTS at compile time 
int_pts_aux   25 MAX_PTS must be GE int_pts_tor*int_pts_nnn for 3D 
int_pts_diag   25 
int_pts_tor   5 
max_ke    1. value of ke at which linear runs are rescaled 
equilibrate   0  1: scale trial functions so L2 norms=1 
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regular     0. regularization constant in chi equation 
iset_pe_floor   0 1: do not let pe drop below pe_floor 
pe_floor   0 minimum allowed value for pe when iset_pe_floor=1 
iprecompute_metric  0 1: precompute full metric tensor 

 

8.13   Input 
 
iread_eqdsk   0 1: read geqdsk equilibrium file (see Section 3.1) 
     2: read psi from geqdsk, but uses analytic profiles for p and F 
     3: read profiles from geqdsk, but not the eqdsk psi 
iread_dskbal    0 1: read dskbal equilibrium 
iread_jsolver    0 1: read equilibrium file “fixed” from jsolver (see Section 3.2) 
iread_omega    0 nonzero: reads in rotation profile 
iread_omega_ExB     0 read ExB rotation (same options as ireead_omega) 
iread_omega_e    0 read electron rotation (same options as iread_omega) 
iread_ne    0 nonzero: read in electron density profile 
iread_te    0 nonzero: read in temperature profile 
iread_p    0 1:  read pressure profile from profile_p 
iread_neo    0 1: read velocity profiles from NEO output 
ineo_subtract_diamag    0 1: subtract diamag term from input vel when reading neo  

velocity 
iread_heatsource   0 1: read heat source profile (psi normalized) scaled by ghs_rate 
iread_particlesource   0 1: read particle source profile (psi normalized) scaled with  

pellet_rate 
iread_f    0 if 1, read R BT from file 

 

8.14   Output 
 
iprint    0 1,2:  additional debug output 
ntimepr    5 number of time steps per field output 
ntimers    0 number of time steps per restart output (defaults to ntimepr) 
iglobalout   0 1: write global restart files 
iglobalin   0 1: read global restart files 
iwrite_adios   0 1: write adios restart files (no longer supported) 
ifout     -1 1: output f field 
idouble_out   0 1: use double-precision floating in output hdf5 files 
itemp_plot   0 1: output vdotgradt, deldotq_perp, deldotq_par, eta_jsq 
ibdgp    0 option for plotting partial terms for bdgp plot 

   ( ) 2(1) , , (2) , , (3)f R F −   −    

iveldif    0 option for plotting partial terms for veldif plot 
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( )

( ) ( )

1 1

3 2 1

1 2

(1) , , (4)

(2) , , (5) , ,

(3) (6) ,

U R U f R R FU

R R f U R U f R FU

R R f



   



− −

− − −

− −

  +  +

  + + −

 

  

icalc_scalars    1 1: calculate scalar diagnostics 
ike_only    0 1: only calculate ke scalar diagnostic 
ike_harmonics   0 number of toroidal harmonics of kinetic energy to be calculated  

for diagnostics 
ibh_harmonics   0 number of toroidal harmonics of magnetic energy to be  

calculated for diagnostic 
irestart     0 0: start from time step 0 
     1: normal restart 
     3: in 2D complex run, read a 2D real restart file 
irestart_factor                                1             if >1, multiply the number of planes in 3D run  
iread_hdf5   1 restart runs from hdf5 file (now default) 

Also, best to have idouble_out=1 
irestart_slice   -1 If set to a value (n), and iread_hdf5=1, will restart from 

a time-step other than the last one 
iread_adios    0 1: restart using adios (no longer supported) 
itimer     0 1: output internal timer data 
iwrite_transport_coeffs   1 output transport coefficient fields 
iwrite_aux_vars     1  output auxiliary variable fields 

 

8.15   Diagnostics 
 
xray_detector_enabled   0 1: enable xray detector 
xray_r0    0. R coordinate of xray detector 
xray_phi0   0 phi coordinate of xray detector 
xray_z0     0 Z coordinate of xray detector 
xray_theta   0 angle of xray detector chord (degrees) 
xray_sigma    1. spread of xray detector chord (degrees) 
 
imag_probes: number of mag probes 
mag_probe_x(i):  0 R-coordinate of mag probe i 
mag_probe_phi(i):   0 phi-coordinate of mag probe i 
mag_probe_z(i):   0 Z-coordinate of mag probe i 
mag_probe_nx(i):   0 R-component of normal vector of mag probe i 
mag_probe_nphi(i)  0 phi-component of normal vector of mag probe i 
mag_probe_nz(i)  0 Z-component of normal vector of flux loop i 
 
These values can be plotted using the plot_mag_probe s IDL routine.  (see Section 5.1.2) 
 
iflux_loops:    0 number of flux loops 
flux_loop_x(i):    0 R-coordinate of flux loop i 
flux_loop_z(i):   0 Z-coordinate of flux loop i 
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These values can be plotted using the plot_flux_loops IDL routine.  (see Section 5.1.2) 

 
ifixed_temax   0 if nonzero, temax evaluated at (xmag0,0,zmag0) 
 

8.16   Sources/Sinks 
 
! beam source 
Ibeam    0   

1: include neutral beam particle, energy, and momentum 
source 

     ( ) ( )
2 2 2

2 2
exp / 2

4

n
r z dr

dr

nb
S r nb z nb nb

r nb
 = − − + −
 

 

     2: include only particle and energy source (no torque) 
     3: include only energy source (no torque or particle source) 
     4: include only momentum and energy (no particle source) 
     5: include only momentum (no energy or particle source) 
beam_x    0 R-coordinate of beam center (m)s 
beam_z    0 Z-coordinate of beam center (m) 
beam_v    1.e4 beam voltage (in volts) 
beam_rate   0. ions/second deposited by beam 
beam_dr   0.1 dispersion of beam deposition 
beam_dv   100. dispersion of beam voltage (in volts) 
beam_fracpar   1 cos of beam angle relative to parallel (for momentum source) 

 

0

3

0 0 0 0

1/2
8

0

0

10 10 24

4 14

0 0 0 0 0 0

100 100
beam_rate beam_x beam_z

2(beam_zeff) e (beam_v)10100
beam_dr /

4.8032 10 2.9979 10 (ion_mass) 1.6726 10

100 10 10 / (4

n r z

c
dr v

i

c i

i

t
nb nb nb

n l l l

nb nb V
l cM

e c M

l b n V b M n

− + −

= = =

  
= =  

 

=  =  =  

= = = = 1/2

0 0 0) /t l V=

 

 ( )  

( )

2 * 2

2 2 21
2

( , )

( , )

( , ) 2

v

v dv v

n S r z

R R R S r z nb R

p S r z nb nb nb R R

   

 

= +

=  + −

 = + + − +
 

 

vloop    0. initial loop voltage.   NOTE:  to change vloop at restart time 
     must have control_type=-1 
tcur     0. target (scaled) plasma current for current control:  

0 PI   

 
tcuri    0 if tcuri .ne. tcurf, the target current is a function of time 

tcurf    0    ( )( )tcur = tcuri + (tcurf-tcuri) .5 1 tanh (t tcur_t0) tcur_tw  + −   

tcur_t0    0 
tcur_tw     
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control_type   0 current control type:   

-1:  no current control.   Constant vloop applied 
0:    old current control algorithm (not recommended) 
1:    standard PID control with the following control parameters 

control_p   0. proportional control coefficient 
control_i   0. integral control coefficient 
control_d   0. derivative control coefficient 
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! density source 
 ipellet    0 density source if non-zero (3D part equals 1 for 2D simulations) 

Double-digit values have volume integrals normalized to 1 
Make negative for initial perturbation only 

     With 𝐺2𝐷 =
1

2𝜋𝑅𝑉𝑝
2 exp [−

(𝑅−𝑅𝑝)
2
+(𝑍−𝑍𝑝)

2

2𝑉𝑝
2 ] 

1: 𝑆 = 𝐺2𝐷 ×
𝑅

√2𝜋𝑉𝑡
exp [−

𝑅𝑅𝑝(1−cos(𝜑−𝜑𝑝))

𝑉𝑡
2 ] 

  

    2:            ( )= 
exp

0den0 max( , ) 2  and 3D
n

edgeS p p p D   

 
    3:            Gaussian source proportional to pressure 

 𝑆 = 𝑝 × 𝐺2𝐷 ×
𝑅

√2π𝑉𝑝
exp [−

𝑅𝑅𝑝(1−cos(𝜑−𝜑𝑝))

𝑉𝑝
2 ]   

      
    4.           Same distribution as ipellet=1 in 3D 

     𝑆 = √2π𝑅𝑉𝑝 × 𝐺2𝐷 ×
1

2π𝑉𝑝𝑉𝑡
exp [−

𝑅𝑅𝑝(1−cos(𝜑−𝜑𝑝))

𝑉𝑡
2 ]  

 
    11: Same as #1 but numerically normalized 
 
    12: Spherical, Cartesian Gaussian; numerically normalized  

 2D: 𝑆 = 𝑅𝐺2𝐷 

 3D: 𝑆 = exp [−
(𝑅cos𝜑−𝑅𝑝cos𝜑𝑝)

2
+(𝑅sin𝜑−𝑅𝑝sin𝜑𝑝)

2
+(𝑍−𝑍𝑝)

2

2𝑉𝑝
2 ]  

 
    13: Axisymmetric, toroidal Gaussian; numerically normalized 

 2D & 3D: 𝑆 = 𝐺2𝐷 
 
14:  Toroidal distribution is a blend of a von Mises and Cauchy 
distribution  

𝑆 = 𝐺2𝐷 ×
𝑅

√2𝜋𝑉𝑡

{
 
 

 
 

(1 − 𝑓𝑐) × exp [−
𝑅𝑅𝑝 (1 − cos(𝜑 − 𝜑𝑝))

𝑉𝑡
2 ]

+ 𝑓𝑐 ×

cosh(
𝑉𝑡

√𝑅𝑅𝑝
) − cos(𝜑𝑝)

cosh (
𝑉𝑡

√𝑅𝑅𝑝
) − cos(𝜑 − 𝜑𝑝)

 

}
 
 

 
 

 

 Here:  fc = cauchy_fraction (default: 0.) 
 
 
15. Toroidal von-Mises distribution with angular half-width 

 2

2 exp cos( ) /D p pS G V  =  −    

 Pellet_var_tor radians for ipellet=15, distance otherwise 
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ipellet_z   0 Atomic number of pellet (0 for main-ion species) 
ipellet_abl   0 Turn on pellet ablation 

Recommended: double-digit ipellet for particle conservation 
1: include ablation model [Parks NF94] calibrated on DIII-D (Li) 

     2. Include new ablation model [Parks,2015] for small pellets (Li) 
     3. Parks model developed 6/20/2017 (for Neon) 

temin_abl   0 Minimum temperature at which ablation turns on 
iread_pellet   0 0:  Single pellet defined by scalar parameters below 
     1:  Read pellet.dat, with one row per pellet 

      13 space-delimited columns are: 
             pellet_r   pellet_phi   pellet_z   pellet_rate   pellet_var … 

        pellet_var_tor   pellet_velr   pellet_velphi   pellet_velz … 
        r_p   cloud_pel   pellet_mix   cauchy_fraction 

pellet_r    0. initial radial position of pellet ( pR ) 

pellet_phi   0 initial toroidal position of the pellet ( P ) 

pellet_z    0. initial vertical position of pellet ( pZ ) 

pellet_rate   0. Density source is pellet_rate × 𝑆 as defined by ipellet; 
     If ipellet_abl.ne.0, ablation routines define pellet_rate 

pellet_var   1. poloidal spatial dispersion of pellet source (𝑉𝑝) 

pellet_var_tor   0 toroidal spatial dispersion of pellet source (𝑉𝑡) 
     If zero, pellet_var_tor = pellet_var 

pellet_velr   0 Initial radial velocity of the pellet2 
pellet_velphi   0 Initial toroidal velocity of pellet2 
pellet_velz   0 Initial vertical velocity of the pellet2 
r_p    1.e-3 Initial pellet radius 
cloud_pel                               1. Parameter used to change the width of the density source if  
      ablating. In this case, pellet_var = cloud_pel * r_p 
pellet_mix   0 Molar fraction of diatomic main-ion molecules in pellet (e.g., D2) 
irestart_pellet   0 will read all pellat attributes from the *h5 file at restart 

1 will read the following from C1input at restart 
pellet_rate 
pellet_rate_D2 
pellet_var_tor 
pellet_var 
cloud_pel 
pellet_mix 
cauchy_fraction 
Other pellet parameters from the *.h5 file 
 

abl_fac    1.0 factor to multiply ablation rate from predefined formulae 
 
            

 
2 Note that pellets are ballistic; velocities are in internal (normalized units).   They’re converted to Cartesian 
coordinates and then held constant 
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n _control_type   -1 no density control type 
-1: density control.   
0: old density control algorithm 

1: standard PID control with the following control parameters 
n_target   1. target density 
n_control_p   0.  proportional feedback constant 
n_control_i   0. integral feedback constant 
n_control_d   0. derivative feedback constant 
 
 
igaussian_heat_source  0  1: include Gaussian heat source 
ghs_x    0.  R coordinate of Gaussian heat source 
ghs_z    0. Z coordinate of Gaussian heat source 
ghs_rate   0. amplitude of Gaussian heat source 
ghs_var    1. variance of Gaussian heat source 
ghs_phi    0 phi coordinate of Gaussian heat source 
ghs_var_tor   0 toroidal variance of Gaussian heat source 
ionization   0 
ionization_rate   0. 
ionization_temp  0.01 
ionization_depth  0.01 
 

! current drive source   
* 2 2 2

0 0 0... ( ) exp[ ( ) ( ) ] /cd cd CD CDJ J J R R Z Z W  = +  − = − − − − −   

icd_source   0 1:  include current drive 
J_0cd    0 magnitude of Gaussian:  

0J   

R_0cd    0 R-coordinate of maximum:  
0R   

Z_0cd    0 Z-coordinate of maximum:  
0Z   

W_cd    0 width of Gaussian:  
CDW   

delta_cd   0 shift of Gaussian:  
CD   

 
 
isink    0      density sink 
sink1_x    0. 
sink1_z    0. 
sink1_rate   0. 
sink1_var   1. 
sink2_x    0. 
sink2_z    0. 
sink2_rate   0. 
sink2_var   1 
 
idenfloor   0 1: density in vacuum pegged to den_edge 
alphadenfloor   0 multiplier of (den_edge – den) must be .lt. 1/DT 
 
! Poloidal Momentum source 
ipforce    0 1: include poloidal momentum source 
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( ) ( ) ( )

( ) ( )
( )
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=    − −

 
= −  

− +  

F

 
dforce    0.   

xforce    0. c  

nforce    0 N  

aforce    0 a  

2: include Luca Guzzatto form of momentum source 

 

2

min max

min

max min

ˆ cos
2

ˆ 1

S a n
  

   
 

 


 

  
=   

  

−
= −

−

 

iheat_sink   0 if 1, special heat sink for itaylor=27 
coolrate   0 S = coolrate*(pedge – p) for iheat_sink=1 
 
iarc_source   0 1:  density source due to halo current 
arc_source_alpha  0 parameter for iarc_source 
arc_source_eta   .01 parameter for iarc_source 
 

8.17 Resistive Wall 
eta_vac    1 resistivity of vacuum region 

eta_wall   0.001 resistivity of conducting wall regions 

eta_wallRZ   0.001 poloidal resistivity of wall region (if different from eta_wall) 

iwall_breaks   0 number of wall breaks 

eta_break   1 resistivity of wall break (array) 

wall_break_phimax  0 max phi coordinate for break (array) 

wall_break_phimin  0 min phi coordinate for break (array) 

wall_break_xmax  0 max x coordinate for break (array) 

wall_break_xmin  0 min x coordinate for break (array) 

wall_break_zmax  0 max z coordinate for break (array) 

wall_break_zmin  0 min z coordinate for break (array) 

iwall_regions   0 number of resistive wall regions 

wall_region_eta()  1.e-3 resistivity of each wall region 

wall_region_etaRZ()  1.e-3 poloidal resistivity (if different from wall_region_eta) 

wall_region_filename()  - file name with wall contour points 

 

eta_rekc   0 resistivity of runaway electron killer coil (REKC) 

ntor_rekc   0 toroidal mode number of REKC 
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mpol_rekc   0 poloidal mode number of REKC 

phi_rekc   0 toroidal angle of fixed point of REKC 

theta_rekc   0 poloidal angle of fixed point of REKC 

rzero_rekc   0 R0 for computing theta of REKC 

zzero_rekc   0 Z0 for computing theta of REKC 

isym_rekc   0 if non-zero, coil is double helix with (+,-) mpol_rekc 

 

8.18 Miscellaneous 
 
gam    5/3 ratio of specific heats 
db    0 ion skin depth (overrides db_fac) 
db_fac    0 factor multiplying physical value of ion skin depth 
mass_ratio   0 ratio of ion to electron mass 
lambdae   0 lambdae 
z_ion    1. Z-effective 
ion_mass   1. ion mass in units of m_p 
lambda_coulomb  17. Coulomb logarithm 
thermal_force_coeff  0 coefficient of thermal force 
 
ntor    0 toroidal mode number for 3D (complex) linear 
mpol    0 poloidal mode number for certain test problem initialization 
 

8.19   Deprecated 
 

ipartitioned   0  

igs_method   -1 now deprecated. 

    Formerly defined as follows: 

    1: use node-based method (fastest, least accurate) 

    2: use element-based method and calculate p from input p profile 

    3: use element-based method and calculate p from input p’ profile 
ibform    -1 
delta_wall   1. wall thickness 
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8.20  Trilinos Options 
drop_tolerance   0 ILU drop tolerance 

graph_fill   0 graph fill level 

ilu_fill_level   1 ILU fill level 

ilu_omega   1 relaxation parameter for rILU 

krylov_solver   gmres Krylov solver 

poly_ord   1 polynomial order for certain preconditioners 

preconditioner   dom_decomp preconditioner 

sub_dom_solver  ilu subdomain solver in preconditioner 

subdomain_overlap  1 subdomain overlap 

 

8.21   Simple Radiation Model 
iprad    0 1: call Prad radiation module with one impurity species 
         ( ) ( )loss e D D e e Z Z eP n n L T n n L T= +   

     Cooling rate of deuterium is 
37 1/2 35.35 10 [keV]W mD eL T−=     

    ( )Z eL T  taken from Post, et al, Atomic data and nuclear  

    data tables, 20 pp. 397-439,(1977) 
prad_fz    1 density of impurity species, as fraction of :  prad_fze Z en n n=     

prad_z    1 Z of impurity species (Z=6(C), 18(Argon), 26(Fe) are available 
iread_prad   0 1: Read impurity density from profile_nz (units of 1020/m3) 

 

8.22   KPRAD Radiation Model 
ikprad    0 1: KPRAD module with one impurity species 

kprad_z    1 Z of impurity species in KPRAD module..Presently available: 

     2  Helium 

     4  Beru;;oi, 

     6  Carbpm 

     10 Neon 

     18 Argon 

kprad_fz   0 Density of neutrals as fraction of ne 

kprad_nz   0 Density of neutral impurities 

kprad_nemin   1e-12 Minimum (normalized) electron density for KPRAD evolution 

kprad_temin   2e-7 Minimum (normalized) electron temp. for KPRAD evolution 

      

ikprad_max_dt   0 Set max time step for KPRAD ionization 

0: MHD time step dt 

1: RECOMMENDED:    dt/(kprad_z + 1)  (ensures evolution 

through all charge states) 

 

ikprad_evolve_internal  0 Update local temperature during KPRAD subcycling 

0:  Te fixed before subcycling 
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1: RECOMMENDED Local ne and Te used for KPRAD 

ionization/radiation updated during subcycling each 

KPRAD time step due to density and energy changes 

 

ikprad_evolve_neutrals  0 Determine how KPRAD neutrals evolve spatially 

     0:  Neither advect nor diffuse 

     1:  RECOMMENDED Advect and diffuse like other charge states 

     2:  Diffuse but do not advect 

 

Ikprad_min_option 1 Determines how KPRAD behaves below minimum density  

 /temperature (ikprad_nemin/kprad_temin) 

1:  No radiation/ionization/recombination (based on ne/te 

before sybcycling) 

2:  RECOMMENDED Recombination but no radiation/ionization 

(based on ne/Te during subcycling) 

3:  No radiation/ionization/recombination (based on ne/Te 

during subcycling) 

NOTE:  1 & 3 behave the same if ikprad_evolve_internal=0) 

 

iread_lp_source  0 1: Read impurity source from Lagrangian Particle code cloud.txt 

         (UNDER DEVELOPMENT) 

8.23 Stellarator geometry 
type_ext_field   0 1: reads either VMEC or MGRID file 
file_ext_field (string) FIELDLINES/MGRID file. Must start with ‘fieldlines’ or 

‘mgrid’ 
iread_vmec  0 1: read VMEC file to determine geometry. 

Must be =1 for stellarator 
vmec_filename    (string) VMEC output .nc file  
bloat_factor 0 Free boundary only: Scale factor to bloat computational 

boundary using input geometry. 
bloat_distance 0 Free boundary only: Distance to expand computational 

boundary from input geometry 
igeometry   0 1: Must be set to use stellarator version 
nperiods 1 Number of field periods (stellarator geometry). Note nplanes 

should be equal to at least 2*(# toroidal modes per field 
period)*nperiods 

ifull_torus   0 0: Solve on one field period 
1: Solve on full torus 

nzer_factor -1 (integer) Scale factor for resolution of Zernike polynomial 
(used for interpolation of VMEC) 
-1: n_zer=2*mpol (fixed boundary) and 1*mpol (free boundary) 
Otherwise: n_zer=nzer_factor*mpol 
where mpol is poloidal resolution in VMEC. 

nzer_manual  -1 (int) Resolution of Zernike polynomial (mainly for testing). 
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Note: Overridden by nzer_factor=-1 if less than the 
corresponding value.  

9.0 Relation between itor=1 and itor=0 
The vector fields for itor=1 and itor=0 are defined as follows: 

itor=1 itor=0 
f F  ⊥
=   − + B  ˆ ˆy f Fy ⊥

=   − +B  
2 2 2R U R R   −

⊥=   +  + V  ˆ ˆU y y ⊥=   + +V  

Note that this implies that when comparing a itor=1 run with major radius R0 with a itor=0 run with 

rzero: 

1. When applying a loop voltage to a configuration with a given resistivity, the voltage is applied in 

such a way that the total plasma current and wall current ‘IP,IW’ and current density ‘jy’ should 

be comparable for itor=0,1 if the cross section is the same and rzero=R0 

2. The IDL quantity “jphi”(itor=1) should be compared with jphi*rzero (itor=0) 

3. The velocity variables , ,U   (itor=1) should be compared with 2/rzero, /rzero, (rzero)U     

  



75 
 

10. Dimensionless Scaling 
 

Herein we consider the scale factors that make the internal equations dimensionless.    Consider first the 

momentum equation: 
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Next, define: 
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Then, the momentum equation becomes simply:   + =  + 2d
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The magnetic field evolution equation (electron form) is: 
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The ion form of the magnetic evolution equation is: 
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Next, consider the energy equation: 
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Temperature and resistivity: 
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Thermal conductivity:   =  26 1/2
0 0 0 02.18 10 [ ] [ ] [20]m B T n  

 
If we input the magnetic field in Tesla and all the lengths in meters, then 0 0 1B = = , and the only 

quantity we need to scale with is the density 
0n (in units of 1020). 
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11. Grad-Shafranov Solver 
 

The poloidal flux function is initialized to solve the plasma equilibrium equation: 

 ( ) ( )
1 1 1

( , )J R Rp gg
R R R Z R Z R



 
  

     
 = + = − + 

     
                                (12.1) 

Here ( )p  is the plasma pressure and ( )g  is the toroidal field function so that ( ) /g R is the 

toroidal field strength, and prime denotes a derivative with respect to  , the solution.    When 

importing an equilibrium solution from a file, the functions ( )p  and ( )g  are read from the file.   

For a stand-alone calculation, the following functional forms are used.    Let ( )0 /s    −  be the 

normalized poloidal flux, where 0L   −  (the difference between  at the limiter, or separatrix, 

and the magnetic axis).  The pressure is defined as the following polynomial in s : 

 

2 3 4

1 2 1 2 1 2

0 5 6

1 2 1 2

1 (20 10 4 ) (45 20 6 )
( )

(36 15 4 ) (10 4 )
e

p s p s p p s p p s
p s p p

p p s p p s

 + + − + + + + +
= + 

− + + + + +  
 

 

The toroidal field function is of the following form: 

 ( )2 2

0 2 2 3 3 4 4

1 1
( ) ( ) ( )

2 2
g s g G s G s G s  = + + +  

where 

3 4 5 6

2

2 3 4 5 6

3

3 4 5 6

4

( ) 10 20 15 4

( ) 4 6 4

( ) 1 20 45 36 10

G s s s s s s

G s s s s s s

G s s s s s

= − + − +

= − + − +

= − + − +

 

The pressure is thus specified by the three input variables:  0 1 2, ,p p p .    The three constants in the 

toroidal field function definition are used to prescribe the total plasma current
pI , the safety factor on 

axis 0q , and the measure of the slope of the current density near the axis J .  The constant 0g is the 

value of the toroidal field function due to the external fields.   It is seen that near the magnetic axis, 

( )0s = the pressure and toroidal field functions have the form: 
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Terms of order 2s and higher have been dropped.   We write the current density near the axis as 

 ( ) 0

0 0 2

0

8
,

g J
J R J s

R



  = + , 

and note that the central current density and the central safety factor are related by:  2

0 0 0 02 /J g R q= . 

Evaluating Eq. (12.1) near the magnetic axis then gives the following expressions for 2  and 3 .    

 
( )

( )

2

2 0 0 1 0 0 0

2

3 0 0 0 0 2

2 /

4 /

R p p g R q

g J R R p p

 

 

= − + 

= −  +
 

Here, 0R  is the major radius of the magnetic axis and the integrals over the plasma area are given by: 

 
1

1
k kI dA Rp I dA G

R
 = =   

 The expression for 4 constrains the total plasma current to be equal to the input variable
pI . 

( )4 2 2 3 3 1 4/PI I I I I  = − − + + +  
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12. Grad-Shafranov Solver with Toroidal Flow 
 

When toroidal flow is included, the pressure is no longer solely a function of  but is given by: 

 ( )
2 2

0

2

0

( , ) ( )exp
R R

p R p
R

   
  −

=   
   

 

The function ( )  , proportional to the square of the angular velocity is parameterized by: 

 2 3

0 1 2 3s s s    = + + +  

For iscale_rot_by_p = 0:   ( ) / ( )n p   =   ,        

For iscale_rot_by_p = 1:    =   

For iscale_rot_by_p = 2:   
( )

2

2 3/

0 1 ( ) / ( )e n p
  

    
− −   = + 

  
  

 

In all cases, the angular velocity is then determined by: 

 

1/2

2

0

2 ( )

( )

p

R n

 




 
=  
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13. Accessing TRANSP Data 
 

To search for information on which TRANSP runs were performed for a particular shot on the PPPL unix 

system (NSTX shot 124379), you can type: 

“ls /p/transpgrid/inf_new/NSTX/*/124379*.INF  >  lsout”  

Then, individual files (such as …./124379A32TR.INF) can be examined with a text editor. 

Data files can be obtained from:  /p/transparch/result/NSTX/*/124379*.CDF 

rplot can then be run with the following input options: 

rplot 
T 
Y 
NSTX.07 
N 
124379A30 
Q  
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14. Suggested Boundary Conditions 
As of 5/17/2015 we recommend: 

inoslip_pol = 0   (for time-independent runs) 

inoslip_pol=1     (for time-dependent runs) 

inoslip_tor = 1 

inonormalflow = 1 

inocurrent_norm = 0 

inocurrent_tor = 0 

inocurrent_pol = 1 

iconst_bz = 0    (may need to be =1 for 2F runs if I is perturbed at boundary 

iconst_bn = 1 

iconst_p = 1 

iconst_n = 1 

15. Magnetic Boundary Conditions 
 

Definitions: 

2

0

*

2

0

ˆlnR f F RZ

f F

f F

F F R f

  

  

  

⊥

⊥

=   +  −

=   − + 

=   − + 

 + •

A

B
 

Time advance: 

 
t


= −



B
E                                                                              (1) 

 

2

( )

1
( )

t

F
R

 




 • = −• 



= •  

B
E

E

  

Or, substituting from the definition of F   

 
02

1
0F f

R
⊥

 +•  −  = E                                                                    (2) 

Integrate Eq. (2) over the boundary contour and apply Gauss’s Theorem letting dS RdRdZ=  : 
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02

02

1
0

1
ˆ 0

F dS f dS
R

F dS n f Rd
R





⊥

⊥

 + •  −  = 

 + •  −  = 

 

 

E

E

  

 0 2

1
ˆ

f
F dS Rd t d

R n


+ = 

   E                                                                (3) 

Here we assume ( )ˆˆˆ, ,n t  form a right-handed system that represents the normal, toroidal, and 

tangential directions.   Another way to obtain the same result: 

 
t


= − −



A
E   

 2

0
ˆlnR f F RZ   ⊥

     +  − = − −
 

E   

 
0

1 ˆlnf F RR
R

 ⊥ + =  + E                                                             (4) 

Multiply Eq. (4) by ˆR d n   and integrate around the boundary contour, noting that   is single valued, 

and using the identity: 

 
2

1 1ˆ ˆln R R nd dS dRdZ
R R

 = =     ,                                                         (5) 

 we also obtain Eq. (3).  

Now, from integrating the toroidal component of Eq. (1) over an area, we have: 

 
2

1
ˆF dS t d

R
=   E                                                                          (6) 

Equating the LHS of Eq. (3) and (6) gives a solvability condition: 

 0 2 2

1 1f
F dS Rd F dS

R n R


+ =

                                                            (7) 

Assuming that the solvability constraint is satisfied at time t=0, we can integrate Eq. (7) in time.   Then, a 

consistent set of boundary conditions is: 

 0
f

n


=


                                                                                   (8a) 

 

1

0 1

FR dRdZ
F

R dRdZ

−

−
=



                                                                         (8b) 

Eq. (8a) is enforced by setting ifbound = 2.    Equation (8b) needs to be implemented. 

 

Suggested options: 
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1. Set iconst_bz=1 as this just keeps .F const=  on the boundary, so that the boundary toroidal field 

remains equal to the vacuum value, which is set by the current in the TF coils. 

and 

2. Either:   (a) set ifbound=1 to keep 0f =  on the boundary, and f n   should adjust to Eq. (7). 

 

Or (b) set ifbound=2, to keep 0f n  =  (8a) but adjust 
0F  each time step according to (8b) 

   

16. Mesh Generation and Adaptation 
 

(Contributed by Fan Zhang 9/2/2015) 

This section describes how to generate a mesh with an enclosed vacuum vessel domain and how to 

perform mesh adaptation in M3D-C1. All the examples shown in this document are made in PPPL portal 

except for converting the initial Simmetrix mesh (.sms) into .vtk and .smb files used for Paraview and 

PUMI, respectively.  

Section 16.1 presents how to generate a model and mesh files used in M3D-C1. Section 16.1 describes 

how to run mesh adaptation in M3D-C1. 

16.1 Mesh Generation (deprecated) 
 

Load following modules on portal: 

Intel/2015.u1  openmpi/1.8.4  paraview 

16.1.1 Example 1: NSTX-1 

• Location: /p/tsc/m3dc1/lib/develop.petsc3.Fan/MeshDemo/NSTX-1 

• To run:  
cp /p/tsc/m3dc1/lib/SCORECLib/rhel6/openmpi-1.8.4/utilities/create_mesh/create_smd your_folder 

cd your_folder 

./create_smd 

• Input: 
o The file “input” with the meshing control parameters 

▪ modelType:  0 for interpolate analytic model, 1 for piece-wise, 2 for three 
region model, 3 for piece-wise polynomial 

▪ modelName 
▪ pointFile: a file to describe the geometry 
▪ meshSizes: mesh size for the plasma (used by all types), wall (used by type 

2) and vacuum (used by type 2) areas 
▪ meshGradationRate 
▪ numInterPts: parameter for type 0 
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▪ thickness: wall thickness, only for type 2 
▪ height/width, offsetX, offsetY: for vacuum vessel in type 2 

o NSTX: the ordered set of points on the wall boundary. 
▪ In the file “input”, parameter “pointFile” is set to “NSTX”. 

• Output 
o NSTX0.02.smd: Simmetrix model file. 
o NSTX0.02.txt: geometric model file used by M3D-C1 
o NSTX0.02.sms: mesh in PUMI .sms format 

• Converting .sms mesh to .vtk and visualizing in portalr5 
cp /p/tsc/m3dc1/lib/SCORECLib/rhel5/utilities/convert_sms/convert_sms your_folder 

cd your_folder 

./convert_sms NSTX0.02.sms mesh.vtk 

module load paraview 

paraview& 

• Converting .sms mesh to .smb mesh partitioned into N parts in portalr5  
mpirun -np N /p/tsc/m3dc1/lib/SCORECLib/rhel5/utilities/split_sms/split_sms NSTX0.02.sms  

mesh.smb 

 

To use the geometry and the mesh by M3D-C1, specify model/mesh file in C1input 

• Set the parameter “mesh_model” to “NSTX0.02.txt” 
• Set the parameter “mesh_filename” to “mesh.smb” 

 

Alternatively, an initial mesh can be generated through simmodeler. Launch simmodeler in portal. The 

model file, NSTX0.02.smd, can be opened through simmodeler. The mesh generated is saved as 

Simmetrix .sms file and can be converted to .smb file by the following steps.  

• Converting a serial Simmetrix mesh (.sms) to PUMI mesh (.smb) in portal 
cp /p/tsc/m3dc1/lib/SCORECLib/rhel6/openmpi-1.8.4/utilities/create_mesh/convert_sim_sms 

your_folder 

cd your_folder 

./convert_sim_sms NSTX0.02.smd NSTX0.02.sms in-mesh.smb 

 

• Splitting a serial PUMI mesh (.smb) to N parts in portal 
cp /p/tsc/m3dc1/lib/SCORECLib/rhel6/openmpi-1.8.4/bin/split_smb/make_model your_folder 

cp /p/tsc/m3dc1/lib/SCORECLib/rhel6/openmpi-1.8.4/binsplit_smb/split_smb your_folder  

cd your_folder 

mpirun –np 1 ./make_model in-mesh.smb model.dmg 

mpirun –np N ./split_smb model.dmg in-mesh.smb mesh.smb N 

 

16.1.2 Example 1: NSTX-2 

Change “meshSizes” in input from “0.05 0.1 0.1” to “0.05 0.1 0.2” and see coarser mesh in the vacuum 

area. 
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16.1.3 Example 3: NSTX-3 

Change parameters “width”, “height”, and “offsetX”, to adjust the size and position of the vacuum area. 

 

 

Figure 1 Mesh under NSTX-1, NSTX-2, NSTX-3 

 

16.1.4 Example 4: NSTX-4 

Due to improper parameters in input, the geometry will be invalid. Therefore, you will see the error 

message. 

“Error: Code: 1103 String: Unable to mesh face 3” 

 

Visualize the model with simmodeler and change the parameters to shift the vacuum curve. 
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Figure 2 Invalid geometry 

16.2 Anisotropic Mesh Adaptation (Will be deprecated) 
 

The mesh is adapted to match the mesh size field defined either by post-processed magnetic flux field in 

the equilibrium or the estimated error in solution fields [1].  

16.2.1 Adaptation by magnetic flux field 
The mesh size field is defined as:  

The normalized poloidal flux is defined as:  00
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Note that 

1h is the length normal to the surfaces and 
2h the length tangential.   
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The mesh adaptation by the post-processed magnetic flux field requires a file “sizefieldParam” in your 

work directory to specify 13 size field parameters in the following order (single line, space delimited)  

a1 a2 a3 a4p a4v a5p a5v a6 a7 lc1 lc2 Wc c 

 

• The mesh adaptation is performed before time steps if the C1input parameter “iadapt” is 1 

or 3 

• After adaptation, the initial equilibrium is re-calculated on adapted mesh so the analysis can 
continue 

• Parallel anisotropic mesh size smoothing is not supported. (Will be available later) 

• a6/a7 affects the aspect ratio of the element in the adapted mesh at the flux surface with the 
normalized psi value equaling to a1. 

 

16.2.2 Adaptation by error estimator 
The mesh adaptation by error estimator is performed at the end of time step if one of the following 

conditions is met and the C1input parameter “iadapt” is set to 2 or 3 

(1) iadapt_ntime > 0 and mod (current time step, iadapt_ntime) = 0 

(2) linear=0 and iadapt_ntime = 0 

(3) linear=1, adapt_ke > 0 and kinetic energy > adapt_ke 

For the detailed discussions on mesh adaptation by error estimator, see Chapter 3 of Dr. Fan Zhang’s 

dissertation, which is available in https://www.scorec.rpi.edu/~seol/m3dc1/fanzhang-thesis-chap3.pdf 

 

16.2.3 Control parameters in C1input 

 

• iadapt 
o 0: no adaptation 
o 1: adapt mesh from the magnetic flux field in the equilibrium  
o 2: adapt mesh from the estimated error in the solution field 
o 3: adapt mesh from the magnetic flux field and the estimated error 

• adapt_hmin, adapt_hmax 
o maximum and minimum sizes of the mesh elements in the adapted mesh. 

• adapt_hmin_rel, adapt_hmax_rel 
o bounds of a mesh element that can be changed from its original size in the adapted 

mesh (rel=relative). 

• adapt_target_error 
o target discretization error on the adapted mesh. 

• iadapt_order_p 
o target mesh size of a mesh element is proportional to the original mesh size as (τ/horg)-p-1 

[2], where τ is the estimated error contributed by the mesh element. The value is no larger 
than 3 in H2 space for M3D-C1 [3].  

https://www.scorec.rpi.edu/~seol/m3dc1/fanzhang-thesis-chap3.pdf
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• iadapt_max_node 
o maximum node number in the adapted mesh. If the estimated mesh node number from 

adapt_target_error exceeds iadapt_max_node, the target mesh size in the adapted 
mesh is scaled such that the mesh node number is below iadapt_max_node. 

• adapt_ke 
o For linear, if adapt_ke >0 and kinetic energy is greater than adapt_ke, run mesh 

adaptation by error estimator 

• iadapt_ntime 

• adapt_control:  
o 0: adapt_target_error is global (integral over the domain) [2] 
o 1: adapt_target_error is local (integral over the element) 

• iadapt_useH1:  
o set value to 1 if fluid viscosity and electrical resistivity << 1  

• iadapt_removeEquiv:  
o set value to 1 to remove the terms containing the equilibrium solution in the estimated 

error 

• iadapt_writesmb 
o if  1, write the adapted mesh in “tsN-adapted.smb”, N: time step when the mesh 

adaptation is performed (default 1) 

• iadapt_writevtk 
o if  1, write the initial and adapted mesh in VTK format  (default: 0) 
o the initial mesh is written in the folder “ts0-initial” 
o the adapted mesh is written in the folder “tsN-adapted”, N: time step when the mesh 

adaptation is performed 
 

16.2.3 Examples 
 

The examples presented in this document are available in  M3D-C1 repository/DATA/adapt as well as 

/p/tsc/m3dc1/lib/develop.petsc3.Fan/Aug26/DATA/adapt/ 

[1] adapt/anisotropic (4 processes) 

Plasma equilibrium is obtained by Grad-Shafranov solver in M3D-C1.  

[C1input] 

iadapt=1 

iadapt_writevtk=1 

  

[sizefieldParam] 

0.9 2 1 .05 .5 .05 .5 .1 .01 5. 5. 0.3 0.148 
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Figure 3 Initial meshes, adapted mesh and its close-up under folder adapt/anisotropic 

 

[2] adapt/anisotropic2 (4 processes) 

[C1input] 

iadapt=1 

iadapt_writevtk=1 

  

[sizefieldParam] 

 0.8 2 1 .05 .5 .05 .5 .1 .02 5. 5. 0.3 0.148 

 

Figure 4 Initial meshes, adapted mesh and its close-up under folder adapt/anisotropic2 

 

 



90 
 

[3] adapt/tilt 

This example presents the mesh adaptation with the error estimation using the tilt mode. The solution is 

transferred to the new mesh in the non-linear simulation.  

[C1input] 

mesh_filename = tilt.smb 

mesh_model = tilt.txt 

iadapt = 2 

iadapt_ntime = 4 

adapt_target_error = 0.02 

adapt_control = 0 

iadapt_max_node = 600 

iadapt_writevtk = 1 

iadapt_order_p = 1.5 

adapt_hmin = 0.03 

adapt_hmax = 0.4 

ntimemax=200 

To visualize the result, launch IDL and enter the following 

plot_field, 'jphi', 

 file='/p/tsc/m3dc1/lib/develop.petsc3.Fan/Aug26/DATA/adapt/tilt/C1.h5',  

00, /mesh 

 

To visualize jphi field on the adapted mesh in different time slice, change 00 to 30, 60, 90, or 200.  
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Figure 5 jphi field on the adapted mesh in time step 00, 30, 60, 90 and 200 

 

[4] adapt/ELM (8 processes) 

The mesh is adapted from the estimated error in the eigen mode. 

   [C1input]       

  mesh_filename = Analytic.smb 

  mesh_model = AnalyticModel 

  iadapt = 2    

        iadapt_max_node = 15000 

       iadapt_useH1=1 

       iadapt_removeEquiv =1 

       adapt_target_error = 0.005 
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       adapt_hmin = 0.005 

        adapt_hmax = 0.1 

       adapt_ke = 5e-2 

        iadapt_order_p = 2 

       iadapt_writevtk = 1 

 

In order to visualize the growth rate on the adapted mesh, launch IDL and enter the following 

plot_scalar, 'ke',  

file='/p/tsc/m3dc1/lib/develop.petsc3.Fan/Aug26/DATA/adapt/ELM/C1.h5',  

/growth, yrange=[0.,0.15] 

 

 

Figure 6 Growth rate of kinetic energy on the adapted mesh (the mesh is adapted 7 times) 

To start a new simulation with the adapted mesh, 

cd adapt 

mkdir ELM2 

cd ELM2 

cp  ../ELM/adapt943*smb . 

./change_name.sh adapt943 adapt 8 

Copy the input files from adapt/ELM 

Modify C1input to set mesh_filename to “adapt.smb” 

Run the simulation 

 

Enter the following command in IDL to view the growth rate. 

plot_scalar, 'ke', file='/p/tsc/m3dc1/lib/develop.petsc3.Fan/Aug26/DATA/adapt/ELM2/bk/C1.h5', 

/growth, yrange=[0.145,0.15] 
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Figure 7  Growth rate of kinetic energy starting from the previously adapted mesh 

 

 

Figure 8 Adapted meshes for ELM after 0, 1, 6, 13 times adaptation  

(Visualized with Paraview, note that the current IDL will only show mesh at time 0 for linear runs)  

 

[5] adapt/doubleTearing (8 processes) 

The mesh is adapted from the estimated error in the eigen mode. 

   [C1input]       

  mesh_filename = Analytic.smb 

          mesh_model = AnalyticModel 

  iadapt = 2     
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  iadapt_order_p = 2 

  adapt_target_error = 1e-16  

  adapt_hmin = 0.01 

  adapt_hmax = 0.1 

  adapt_hmin_rel = 0.3 

  adapt_hmax_rel = 3. 

  iadapt_max_node = 8000 

  iadapt_useH1=1 

  iadapt_removeEquiv =1 

  iadapt_writevtk = 1 

  iadapt_ntime = 300 
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17. Mesh Generation with Simmodeler GUI 
 

(Contributed by D. Pfefferle 4/27/16) 

More info: http://redmine.scorec.rpi.edu/projects/pafs/wiki/Mesh_Generation_for_PPPL 

1. Login and load environment: 
module load simmodeler 
 

2. Create ascii_file as in Step 2 of Section 2.2. For modelType 3 (3 region model), inFile is a file with 
a list of points describing the resistive wall. The input files (nstx-input and 
nstx_conduct_vessel_spline.dat) used herein can be found under the directory 
/p/m3dc1/dpfeffer/NSTX-VDE/Shot132859/MeshGen/. 

 

3. Run 
/p/tsc/m3dc1/lib/SCORECLib/rhel6/openmpi-1.8.4/bin/m3dc1_meshgen nstx-input 

It will complain that the license is not working but it will correctly generate the .smd and a .txt 

file.  

4. Run Simmodeler 
 

simmodeler 

5. File->Open Model->nstx-xxx-xxx-xxx.smd (where the xxx are numbers related to characteristic 
widths) 

6. In the upper panel, in the views section click on “Front” to view the model, then go to Meshing 
tab 

7. Select outer region, click “+” in “Mesh Attributes” and select “Mesh Size”->”relative”. Enter a 
value (typically 0.1) 
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8. Select wall region, click “+” in “Mesh Attributes” and select “Mesh Size”->”relative”. Enter a 
value (typically 0.02) 

9. Select inner region, click “+” in “Mesh Attributes” and select “Mesh Size”->”relative”. Enter a 
value (typically 0.04). 

 
Comment: here, one can already generate the mesh by clicking on “Generate Mesh” and verify if 
the mesh sizes are suitable  

10. Select both inner and wall regions (holding shift key), click “+” in “Mesh Attributes” and select 
“Mesh Size”->”relative”. Enter a function, e.g. 0.01*abs($y+1.5)^2+0.004 to specify an 
anisotropic mesh density on top of previous settings 
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Comment:  there are many available parameters for fine-tuning the mesh density.  For example the Mesh 

urvature Refinement with parameter packs more elements near the edges of the resistive wall.  

11. “Generate Mesh” and “Show Mesh” to view result in new windows 
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12. If the result is satisfactory, File->Save Mesh, give it a meaningful name with the extension .sms.  
Close Simmodeler. The original .smd has been automatically saved by the program with your 
mesh modifications.  

13. Copy the .txt, .smd and .sms files to the simulation directory and run the following splitting 
routine to obtain .smb parts 
/p/tsc/C1/m3dc1-sunfire.r6-1.5/bin/part_mesh.sh nstx-xxx-xxx-xxx.smd mygeneratedmesh.sms X 

where X is the number of .smb parts you need. 

14. Modify the C1input file accordingly 
mesh_filename = 'part.smb' 

 mesh_model = 'nstx-xxx-xxx-xxx.txt' 

17.1 No more Simmetrix licenses available: 
NOTE:   If you get a message that there are no more Simmetrix licenses available, to see who is using: 

cd /usr/pppl/Simmetrix 

./rlmutil rlmstat -a 
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18. ITAYLOR=27, IKAPPAFUNC=12, IRESFUNC=0 
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Define ( ) ( )
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19. Example and Test Programs 
 

19.1 Regression Tests 
 
Start an interactive session with 8 processors. 
Go to the directory …./unstructured/regtest and run “make N=8” (if necessary, first run “make clean”) 
The tests will take 5-10 min to run 
If each test succeeds, “Success!” will be printed 
If not, the tests will stop with an error. 
Details of each test case are in the README file in that directory. 
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19.2 Test Programs 
The following is a series of test problems that a new user can use as a guide to running M3D-C1.  

Directories are subdirectories of PPPL directory:  /p/tsc/m3dnl/Test 

Test1:   CMOD equilibrium with q0=0.6  (COM=1,  4-5 min) 

This is a complete “step-by-step” guide to perform a first run with the M3D-C1 code for new users.  It 

assumes that the code has already been downloaded from the GIT repo (as explained in Sec. 1.2) and 

compiled (Sec. 1.4.2) 

 

1. Copy the files into your own directory and submit the batch file batchr8 via the command: 

“sbatch batchr8”. This will generate the mesh, split it into 8 partitions, and solve the Grad Shafranov 

equation on the mesh.   Note that you can change the shape of the mesh boundary with the parameters 

“vacuumParams” and can change the mesh resolution with “meshsize”.   These are all parameters in the 

file analytic-input 

 

2. Verify from the output file (slurm-####.out) that the GS equilibrium iteration has converged. (search 

for Converged GS error).  You can also see the error in previous iterations (this error is set with the 

variable tol_gs in the C1input file. 

 

3. View the equilibrium fields with idl postprocessor:    psi, I, jy, p, pe, den,eta,visc, kappa.   (Add cutz=0 

to view midplane profiles.)   IDL must be configured as explained in Sec. 5.5.5.   Go to the IDL directory 

to plot.  Example (Sec. 5.1.2) “plot_field, ‘psi’,file=’path to your Test 1 files/C1.h5’, 0 

 

4. View the surfaces and q-profile with the Poincare postprocessor (Section 5.2). 

 

5. Optional:  repeat with different mesh size to verify results are converged 

 

Test2:  CMOD linear stability (COM=1, ~ 15 min) 

1. This is the same as Test 1, except it runs for 100 time steps instead of 0.  Compare C1input files from 

Test2 and Test1 to verify. 

2. Submit job by executing “sbatch sbatchc8. 

3. View mode growth rate with idl postprocessor:   plot_scalar,’ke’,/growth,yrange=[0,.01].   Adjust 

yrange min and max to obtain growth rate to 3 digits. 

4. View the surfaces with the Poincare postprocessor (subdirectory Plots).   Note that the multiplier may 

need to be adjusted. 

5. View the eigenfunction with the idl postprocessor:  plot_field,’jphi’,1,/linear  (also, ‘phi’, etc) 

6. Test2a:  Repeat this with numvar=1 (reduced MHD) and compare the difference in the growth rate 

and eigenfunction for full MHD and reduced MHD 

7. Test2b:  Repeat this with numvar=3; ipres=1, gyro=1, db=0.1, itwofluid=1 and compare the difference 

in the growth rate and eigenfunctions for two-fluid MHD, full MHD, and reduced MHD. 

9. Optional:  repeat with finer mesh and smaller resistivity to determine scaling of growth rate with 

resistivity, etc. 
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Test3:  FRS Tearing mode using adaptive mesh (COM=1, ~ 2 hours) 

This is a high-resolution test case of a m=2, n=1 tearing mode in a cylindrical tokamak with equilibrium 

profiles taken from Furth, Rutherford, Selberg 1973 (FRS).   It is a tokamak of aspect ratio 10 taken as a 

cylinder in the large aspect ratio limit.   The cross section is a circle of radius 1.  The plasma extends from 

r=0 to r=1 and there is a perfectly conducting wall at r=1.   Itaylor=16 corresponds to the peaked 

equilibrium profile from FRS for the current, and a parabolic pressure profile p=p0*(1-r**2). 

The mesh is adapted to be finer at the rational surface by doing the following: 

1. A uniform mesh is created by running “sbatch batch” in directory MESH.   It is split into 16 parts which 

are stored in partnn.smb. 

2. M3DC1 is then run with iadapt=1 by running “sbatch batchr16” in directory ADAPT.   The parameters 

of the mesh adaptation are in sizefieldParam.  This creates the adapted mesh files adaptednn.smb 

3. Switch to the directory “Run” and run with the adapted mesh for 500 time steps with dt=10 by 

executing “sbatch batchc16. 

4. View the growth rate with the idl postprocessor:  plot_scalar,’ke’,/growth,yrange=[ymin,ymax] 

5. View the eigenfunction with the idl postprocessor:  plot_field,’jphi’,2,/linear     (also ‘vr’) 

 

Test4:  Double tearing Mode 

Execute the batch script via “sbatch batchc8”.   This will generate a mesh, partition it into 8 partitions, 

solve the Grad-Shafranov equation for an equilibrium with 2 q=2 surfaces, and calculate the linear 

eigenfunctions and growth rate of a double tearing mode in this equilibrium. 

 

Test5:  2D long time evolution in CMOD (RL=1, ~ 3 hrs) (Not presently available) 

1. Prepare and submit a batch file with the REAL 2D code version. 

2. Note that the C1input file has control systems specified to keep the plasma current and total number 

of particles constant in time. 

3. Verify with the idl postprocessor that the toroidal plasma current “it” and the number of particles 

“particles” remain approximately constant in time.   The loop voltage “vl” varies to keep “it” constant. 

 

Test6:  NSTX linear stability with strong rotation starting from geqdsk file (COM=1, ~ 3 hrs) (Not 

presently available) 

1.  Using the AnalyticModel file in this directory, generate a mesh with mesh size .04 

2.  First calculate an equilibrium (ntimemax=0, irestart=0) and verify that it is diverted by (1) finding 

“Plasma is diverted” after the last GS iteration in the output file, and (2) in the idl postprocessor: 

“plot_field,’jphi’,0,/lcfs “   You should see the last closed flux surface and x-point in red. 

3.  Can you calculate the ratio of the maximum toroidal velocity to the Alfven velocity?   To the sound 

velocity? 

4.  In the same directory, change the C1input variables (ntimemax=100, irestart=1) and resubmit.  

Calculate the growth rate to 3 digits with the idl routine:  “plot_scalar,’ke’,/growth,yrange=[min,max]” 

by adjusting the min and max. 

5.  Test4a:  Repeat this with irot = 0 to verify it is stable without rotation.   
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Test7:  3D nonlinear run (3D=1, 6 hours) (Not presently available) 

This is a nonlinear 3D run using an initial equilibrium similar to Test2a,  Note this is NUMVAR=1 (reduced 

MHD) with 8 planes.   You must generate 2 partn.sms files by running PTNMESH with M=2 using the 

struct-curveDomain.sms file from Test1.   (see Section 2.4) 

1. First set (irestart=0, ntimemax=0) and submit (~ 20 min).   Verify that the equilibrium has converged. 

2. Next, set (irestart=1,  ntimemax=100)  and submit (~ 6 hrs).   This nonlinear run should develop the 

instability seen in Test2a.  You can plot the energy and the growth rates of the different toroidal 

harmonics with “plot_kehmn”.   Add /ylog or /growth to get a logarithmic scale or the growth rate.   Add 

yrange=[min,max] to adjust the scale.   Compare the growth rate of the n=1 harmonic with that 

obtained for the growth of the kinetic energy in the linear run Test2a. 

3. Run the Poincare plotter in the subdirectory:  Plots to view the island  

4. If islands are not yet visible, restart calculation to timestep 250 and run Poincare plotter again. 

5. Repeat this run at NERSC with more planes, smaller grid size, and lower resistivity (eta).   Also, repeat 

with NUMVAR=3 and compare growth rate with that obtained in Test2. 

6. At NERSC:  change the parameter “eqsubtract” from 1 to 0 so that the equilibrium is not being 

subtracted off.    Add density evolution (idens=1) and controllers for the current and density as in the 2D 

run inTest3. 

7. At NERSC, include 2-fluid effects by setting:  itwofluid=1, gyro=1, db=.04, harned_mikic=.05) 

 

Test8:  n=1 plasma response to DIII-D RMP coils (COM=1 7 min) (Not presently available) 

An example M3D-C1 case for n=1 response in M3D-C1 

 

This is a low-resolution case, with 1 kA in the I-coils in even parity configuration.  The (R, Z) locations of 

the I-coils are defined in rmp_coil.dat, and the currents in each coil are defined in rmp_current.dat.  Aside 

from that and C1input, the other input files are: 

 

geqdsk: the EFIT “g” file 

profile_omega: the ExB toroidal rotation frequency in krad/s, versus psi_norm 

profile_te: the Te profile in keV, versus psi_norm 

profile_ne: the ne profile in 10^20/m^3, versus psi_norm 

 

This is a time-independent calculation, so there is only one time step.  There will be two times output:  

time0, which contains the vacuum fields, and time 1, which contains the full time-independent plasma 

response. 

 

In C1input, you can specify whether the calculation is time-independent or not with 

“itime_independent”.  If you want, you can try running a time-dependent case to steady-state as 

well.  Assuming that there’s no instability, the time-independent solution should be the same as the time-

dependent solution when it has reached steady-state.  Of course, the time-independent calculation is 

much more efficient. 
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20. Instructions for using qsolver to initialize a toroidal m3dc1 run 
1. Copy the executable “go” and the input files “inequ” and “eqxz” from the PPPL directory 

/p/tsc/m3dnl/Qsolver/Testcase.    You can run it with the command “./go” and it will produce the two 

output  files “profiles-g” and “profiles-p” and the restart file “eqb1”. 

This corresponds to a fixed boundary equilibrium with outermost flux surface given by: 

X(theta) = xzero + aguess*cos(theta + sin-1(dguess)*sin(theta)) 

Z(theta) = aguess*eps*sin(theta) 

 

The pressure and q profiles are given by: 

P = p0*(1.0 – psinorm**beta)**alpha 

q = q0   for psinorm < qalph 

    = q0 + qdp0*(psinorm – qalph)**qpof 

 

Note that all these input quantities need to be in a special place in the inequ file.   The first 2 digits of 

each input line indicates what it expects to find on that line.   The 7 fields on each line start in column 

number 11,21,31, etc.   If an input variable is in the wrong field it will be misread. 

 

2. Changes must be made incrementally.   After each run, copy eqb1 to eqxz.     The p0 in the original file 

was 0.020.    Let’s say you want to increase it to 0.025.   Change p0 in the input file and run:  ./go.   When 

it converges, part of the printout (29th line from the bottom) will give the value of p(0).   In this case:     

p(0)=.024953.   Note that this differs from the input value p0 = .025.   To get them to agree, you must 

rerun with a different value of aisw2. (type 04 field 6).   P(0) will be a linear function of aisw2 so you 

should only need to rerun 3 times at most.   Each time you rerun, copy eqb1 to eqxz.   I found that by 

increasing aisw2 from 7.85 to 7.8575 the output value of p(0) = 2.5000E-02, correct to 5 digits. 

 

3. Now copy files profiles-g and profiles-p to a directory where you are running m3dc1.  In the m3dc1 

C1input file you must set itor=1 and inumgs=1 

 

4. For the m3d-c1 run, a mesh file must first be prepared using the method described in Sec. 2.2, model 

type 0.   Note that this parameterization of the boundary must be exactly the same as that used in step 

1 above.   (Note that due to differing convention X2 must be set to sin-1(dguess) ) 

 

5. A sample m3dc1 run using the files generated from qsolver can be found in 

/p/tsc/m3dnl/Qsolver/TestStab 

21. Running with stellarator geometry 
Presently, it is possible to do 3D runs in stellarator geometry. (The presence of toroidal mode coupling in 

stellarator geometry means a generalization of the linear capability is less straightforward.). Running the 

code in stellarator geometry is very similar a standard 3D run (see 4.2) although additional parameters 

must be specified, primarily to describe the geometry. 
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For both fixed- and free-boundary runs, the following options must be set in C1input: 

igeometry = 1 
type_ext_field = 1 
iread_vmec = 1 
 
Fixed boundary:  

1. For a fixed boundary run, the geometry must be specified by providing a VMEC wout*.nc file in the 

working directory. In C1input, set vmec filename to the name of the VMEC wout file. This will determine 

the geometry and the initial fields. 

2. In C1input, ensure nperiods is set equal to the number of field periods. Set ifull_torus = 0 (one field 

period) or 1 (full torus).  

3. Run the code with the executable m3dc1_3d_st (see 1.4.2). 

 
Free-boundary: 
1. For a free-boundary run, the following flags must be set in C1input (along with what is required for a 
fixed-boundary run): 
 
iread_ext_field = 1 
type_ext_field = 1 
 
2. Like a fixed-boundary run, the geometry is specified by a VMEC wout*.nc (vmec_filename). The initial 
fields are given by either a FIELDLINES (vacuum or finite-beta) or MGRID (vacuum) file. In C1input, set 
file_ext_field to the name of the file. Note that it must start with either ‘fieldines’ or ‘mgrid’. 
 
3. The domain for free-boundary calculations is obtained by ‘bloating’ the geometry given by the VMEC 
file and can be set with either bloat_factor or bloat_distance. Note that bloat_distance overrides 
bloat_factor. 
 
4. Run the code with the executable m3dc1_3d_st (see 1.4.2). 

 

22. Future Work 
 

22.1   Demonstrate that JADV=0 and JADV=1 give the same (converged) results for the GEM problem.  

Extend this to use the ion form of the 2F equations.   Can NUMVAR=1 be run with JADV=0? 

22.2   Restore iper=1 options for slab geometry with multiple processors 

22.3  Explore use of GPUs to do integrations 

22.4  Implement better, more scalable preconditioners.    
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Can the pressure matrix use multigrid in phi? 

Can we reorder the velocity variables to have 3 SuperLU solves per plane 

22.5  Routine nonlinear 2F capabilities 

22.6 Implement better transport models 

22.7 Symmetric matrices? 

22.8 Full neoclassical model 

22.9 Add the ability of the idl postprocessor to plot the difference of 1 time slice at two toroidal angles. 

22.10 allow itemp=1 with ipressplit=0 
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