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*************** LICENSE ***************

Copyright (c) 2022 PPPL All rights reserved.

SS: PLEASE FILL OUT THIS PAGE

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Questions to jardin@pppl.gov
Derived from the OSI 3-clause BSD
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1 Obtaining M3D-C1

1.1 License Agreement

M3D-C1 is a code developed with funding from the US Department of Energy, and is intended for
open scientific research. If you intend to run M3D-C1, please complete the following steps:

1. Sign the license agreement https://m3dc1.pppl.gov/M3D-C1_License.pdf and return to
nferraro@pppl.gov.

2. Request access to the code using the form https://pppl.tiny.us/code-release-form.
This step will involve review by PPPL to clear any potential export control issues.

Please be aware that permission to run M3D-C1 does not carry an implicit agreement to provide
technical support for compiling, running, modifying, or interpreting output of, M3D-C1.

1.2 Preinstalled M3D-C1 Executables

For the general user, we recommend using precompiled executables and associated modules for
release versions, where available. Installations are presently available on a number of systems,
including:

GA Iris:
module use /fusion/projects/codes/m3dc1/modules

module load m3dc1/1.13

NERSC Cori:
module use /global/cfs/projectdirs/mp288/C1/modules/cori

module load m3dc1/1.13-haswell for Phase I (Haswell) partition
module load m3dc1/1.13-knl for Phase II (KNL) partition

PPPL Cluster:
module use /p/m3dc1/modules

module load m3dc1/1.13

PU Stellar:
module use /projects/M3DC1/modules

module load m3dc1/1.13

These modules will modify the user’s enviroment variables appropriately to access the M3D-C1
executables, python libraries, and IDL routines.

7

https://m3dc1.pppl.gov/M3D-C1_License.pdf
mailto:nferraro@pppl.gov
https://pppl.tiny.us/code-release-form


1.3 Accessing the M3D-C1 Source Code

If you choose to build the code yourself, either to use an unreleased version or to do code develop-
ment yourself, you will need access to the M3D-C1 code repository. The M3D-C1 source code is
located in the Github repository: PrincetonUniversity/M3DC1. Access to this repository requires
a Github account and permission from Dr. Nate Ferraro.

1.4 Makefiles and Dependencies

Some of the build scripts depend on the following environment variables to be set, to specify the
location of the M3D-C1 source code and the directory in which to install any compiled executables:

M3DC1 DIR should be set to the directory containing the M3D-C1 source code. For example:
setenv M3DC1 DIR $HOME/src/M3DC1

M3DC1 INSTALL DIR should be set to the directory in which M3D-C1 will be installed. For example:
setenv M3DC1 INSTALL DIR $HOME/M3DC1

It is recommended to set these values in your login script.

Makefiles for a number of systems are included in the repository, with filenames $M3DC1 DIR/unstructured/*.mk.
For most of these systems, environment modules are also included in the repository. These mod-
ules will load the appropriate software modules for building on that particular system, and can be
loaded using:

NERSC Cori:
module use $M3DC1 DIR/modules/cori

module load m3dc1/devel-haswell for Phase I (Haswell) partition
module load m3dc1/devel-knl for Phase II (KNL) partition

NERSC Perlmutter:
module use $M3DC1 DIR/modules/perlmutter

module load m3dc1/devel

PPPL Cluster:
module use $M3DC1 DIR/modules/pppl

module load m3dc1/devel-centos7

PU Stellar:
module use $M3DC1 DIR/modules/stellar

module load m3dc1/devel

It is recommended to place the appropriate module use statement in your login script. The makefile
should have the name ${M3DC1 ARCH}.mk. If $M3DC1 ARCH is not defined, it will default to
$HOST, stripped of any trailing numbers identifying a node index on multinode systems (e.g. if
$HOST==‘‘sunfire06’’ then $M3DC1 ARCH will default to “sunfire”).
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If you are building M3D-C1 on a system for which no makefile or development module is provided,
please refer to the existing makefiles and modules as examples. In general, M3D-C1 requires the
following dependencies:

• Compilers for C, C++, and Fortran;

• MPI

• HDF5 compiled with support for Fortran and MPI

• netcdf

• GSL

• FFTW

• PETSc compiled with support for Fortran, complex-valued functions, MUMPS and/or Su-
perLU dist

• PUMI meshing libraries

1.5 Building

Once the appropriate makefile has been defined, the M3D-C1 executables can be built by entering
$M3DC1 DIR/unstructured and running

make all

This will run the following commands:

make OPT=1 Builds the 2D version
make OPT=1 COM=1 Builds the complex version
make OPT=1 3D=1 MAX PTS=60 Builds the 3D version
make OPT=1 3D=1 MAX PTS=60 ST=1 Builds the stellarator version
make a2cc Builds a utility for extracting coil currents from a-eqdsk files
make bin Puts executables into the $M3DC1 ARCH subdirectory

1.6 Regression Tests

The M3D-C1 source code includes a suite of regression tests that should be run before commiting
any new code to the repository. To run these tests:

cd $M3DC1 DIR/unstructured/regtest ./run <arch> <test>

where <arch> and <test> are optional arguments specifying the specific batch script to run, and
the specific regression test to run, respectively. By default, <arch>=$M3DC1 ARCH.

If <test> is not specified, then all the regression tests will be run, using the batch scripts
$M3DC1 DIR/unstructured/regtest/*/base/batchjob.<arch>.
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The run script will create new directories in which to run these regression tests, named
$M3DC1 DIR/unstructured/regtest/*/${M3DC1 VERSION} <arch>/.

If <test> is specified, then only $M3DC1 ARCH/unstructured/regtest/<test>/base/batchjob.<arch>

will be run (again, in a new directory named as described above). If <test> is specified, then <arch>

must also be specified.

To check the results of the regression tests

./check <arch>
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2 GITHUB

Retrieve the current version of M3D-C1 from the GIT repository. For the first time, to check out
the sources, do:

Initial access is with the clone command. This copies the source code from the master file into a
working directory on your machine. You only do this once on each computer you work on.

module load git

git clone https://github.com/PrincetonUniversity/M3DC1

Subsequent GIT commands used to commit:

• add/commit/push: You add files to a list of files to update, commit the chanes to your branch,
and then push the changes to the master branch.

• git commit -m “message describing changes” (adding -a commits all changes)

• diff lists the changes you made from the last commit, even if you haven’tpushed your commits
to github. To see how your files differ from what’s on github, you can do:

git fetch origin master

git diff origin/master

• status compares your branch with the master branch

• pull origin master updates your local branch to the current master branch

• stash takes uncommitted changes, saves them for later use, and reverts files in working direc-
tory

stash list stash drop stash apply stash pop (apply and drop)

• stash pop removes changes from your stash and reapplies them to working copy

• stash apply keeps changes in stash, but reapplies them to working copy

• reset -hard discards any changes to local branch since last commit

• branch tells you what branch you are in

• log (–oneline) (-after 2023-01-31) lists all the commits for the checked-out branch after that
date

• checkout hashtag replaces your version with the version that has hastag “hashtag” (need only
first 7 characters)

2.1 Branches in GIT

To make a new branch called fp-phase2:
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• git checkout master switch to the master branch

• git pull make sure the master branch is up to date

• git checkout -b fp phase 2 The =b creates a new branch. This will be identical tomaster to
start.

• git push –set-upstream origin fp phase2 push this new branch to the remote so others can
access it

2.2 Committing changes

For example, to commit changes to newpar.f90

• git pull Always do thi before you start committing

• git add newpar.f90 This stages the current changes in newpar.f90 for commit. You could then
make more change before committing, but you would have to add again to get those into the
commit. Or, you could add -a to the following to commit all changes.

• git commit -m “Changed newpar.f90” Commit changes to your local branch.

• git push Push commits to the remote repo. –set-upstream only needs to be done the first
time.

2.3 Merging branches

To merge changes on master into fp phase2

• git checkout master switch to the master branch

• git pull get the latest commits on the master branch

• git checkout fp phase2 switch back to fp phase2

• git pull to get the latest commits to fp phase2

• git merge master merge any new commits into fp phase2. This makes a commit. You may
need to resolve conflicts.

• git push Push the merged commit to remote repo

Inverting fb phase2 and master here would merge the development branch into master locally, then
the push wouuld send the merge tothe remote master
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3 Mesh Generation and Management

The process to generate M3D-C1 meshes for Tokamak geometries involves the use of specific software
and interaction with several files that contain the associated geometry and mesh information.

The first required software is Simmetrix which provides a set of tools and libraries for engineering
simulation including a state-of-art mesh generation. For more information, visit http://simmetrix.com.
The Simmetrix library is used to generate the M3D-C1 meshes. The Simmetrix meshing library is
used by m3dc1 meshgen for the actual mesh generation. The Simmetrix GUI can be used after the
execution of m3dc1 meshgen to apply additional mesh controls for the generation of meshes with
different mesh gradations.

As the mesh generation programs require Simmetrix licence and proper enviroment settings, the
user should load Simmetrix modules as the following:

module load simmodsuite/version simmodeler/version

The Simmetrix libraries and mesh generation programs are available on two machines PPPL Portal

and Princeton Stellar. For those machines, the modules to load and the location of programs
are as the following:

• Princeton Stellar

– modules: rlm/pppl simmodsuite/pppl/17.0-220903 simmodeler/pppl/11.0-220903

– location: /projects/M3DC1/scorec/intel ver.-mpi ver./simmodsuite ver./bin

For instance, for intel/2021.1.2, intelmpi/2021.3.1 and simmodsuite/17.0-220903, the
programs are available in
/projects/M3DC1/scorec/intel2021.1.2-intelmpi2021.3.1/17.0-220903/bin

For intel/2021.1.2, openmpi/4.1.0 and simmodsuite/17.0-220903, the programs are avail-
able in
/projects/M3DC1/scorec/intel2021.1.2-openmpi4.1.0/17.0-220903/bin

• PPPL Portal

– modules: simmodsuite/16.0-220226 simmodeler/10.0-220226

– location: /p/tsc/m3dc1/lib/SCORECLib/rhel ver./intel vers.-mpi ver.
/simmodsuite ver./bin

For instance, for Centos7, intel/2019.u3 openmpi/4.0.3, and simmodsuite/16.0-210626,
the programs are available in
/p/tsc/m3dc1/lib/SCORECLib/rhel7/intel2019u3-openmpi4.0.3/16.0-220226/bin

The second required software is PUMI (Parallel Unstructured Mesh Infrastructure) developed at
SCOREC, RPI. The PUMI is used to manage the mesh information as it is processed and within
the M3D-C1 code. For more information, visit http://www.scorec.rpi.edu/pumi.

13

http://simmetrix.com
http://www.scorec.rpi.edu/pumi


There are a number of files involved with housing the geometry and mesh information.

The model file extensions referred in this document is the following

• .smd: Simmetrix-readable binary format model file
The model generated with Simmetrix is saved in this format.

• .dmg: PUMI-readable binary format model file
The model generated from PUMI mesh

• .txt: M3D-C1-readable ascii format model file
The model is generated from mesh generation tool (See Section 3.1)

The mesh file extensions referred in this document is the following.

• .sms: Simmetrix-readable binary format mesh file

– The mesh generated with Simmetrix is saved in this format.

– If a mesh is serial (1-part), the mesh file doesn’t have a number before the extension

– If a mesh is distributed (P-part, P>1), the mesh file has a number before the extension
to represent the global part ID.

• .smb: PUMI-readable binary format mesh file

– This format is used in M3D-C1 to import/export a mesh

– No matter if a mesh is serial (1-part) or distributed (P-part, P>1), the mesh file has a
number before the extension to represent the global part ID.

• .vtu/pvtu: binary format mesh file for visualization with Paraview. For more information,
visit http://paraview.org.

An overview of the Model/Mesh requirements for the M3D-C1 mesh generation process are as
follows:

• The model and mesh shall be generated as described in Section 3.1.

• The mesh file must be PUMI-readable .smb file. Note that a mesh file name contains a
number before the extension (.smb) to denote a global part ID.

• The model and mesh file must be present in the work directory

• The name of model and mesh file must be specified in C1input file in the work directory

– mesh model = model file

– mesh filename = mesh file.smb (NOTE: do not specify a number before the file exten-
sion)

• In a 2D run with P processes, there should be P mesh files with part ID from 0 to P-1
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• In a 3D run with P×N processes where 2D mesh is distributed to P parts,

– there should be P mesh files with part ID from 0 to P-1

– in C1input file, specify nplanes to N (e.g. nplanes=8), where nplanes describes how
many 2D mesh copies to be loaded

– the M3D-C1 code should be compiled with options "3D=1, MAX PTS=60".

The rest of this section is organized as follows: Section 3.1 describes a mesh generation program
m3dc1 meshgen. Section 3.2 describes a mesh generation program m3dc1 mfmgen. Section 3.3
describes a mesh generation program polar meshgen. Section 3.5 presents a mesh partitioning
program "split smb" and "collapse" which changes the number of parts of the mesh. For how
to visualize a mesh with Paraview, see Appendix B.

3.1 m3dc1 meshgen

m3dc1 meshgen requires an ascii input file of arbitrary name that contains the following parameters.

• modelType: 0, 1, 2, 3, or 4

– Type 0: a parameterized vacuum region defined by five doubles for analytic expression.
For five doubles X0 X1 X2 Z0 Z1, vacuum boundary is defined by

X = X0 +X1cos(θ +X2 ∗ sin(θ)) (1)

Z = Z0 + Z1sin(θ) (2)

– Type 1: a vacuum region defined by piece-wise linear points

– Type 2: a vacuum region defined by piece-wise polynomials

– Type 3: spline-fitted 3-region model (plasma, wall and vacuum)

– Type 4: spline-fitted 3-region model (plasma, wall, and vacuum) with inner & outer
boundary points to set resistive wall

• reorder: if 1, reorder PUMI mesh based on adjacency (default: 0) and generate vtk folders
for mesh visualization. The mesh before and after reodering is saved in original-mesh.vtk

and reordered-mesh.vtk, respectively. Note that the element order of Simmetrix mesh is
not affected.

• inFile: (modelType 0) not required (modelType 1 and 2) geometry file describing the vacuum
(modelType 3 and 4) geometry file describing the inner plasma wall

• bdryFile: (modelType 0-3) not required (modelType 4) geometry file describing the outer
plasma wall

• outFile: output file name to save model and mesh

• meshSize: relative mesh size for each region (default 0.05)
for modelType 3, set three doubles for plasma, resistive, vacuum, respectively
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• useVacuumParams: for modelType 0 or 3, if 1, use parameterized vacuum wall (default 0)

• vacuumParams: five doubles to describe parameterized vacuum wall. Required if useVacu-
umParams=1.

• adjustVacuumParams: for modelType 0 or 3, if 1, multiply coordinates and parametric values
of nodes on vacuum wall by vacuumFactor. Valid only if useVacuumParams=1 (default 0)

• vacuumFactor: for modelType 0 or 3, an optional double value used to multiply coordinates
and parametric values of nodes on vacuum wall when adjustVacuumParams=1. Valid only if
adjustVacuumParams=1 (default 2×PI)

• numVacuumPts: optional # interpolation points on parameterized vacuum wall. Valid only
if useVacuumParams=1 (default 20)

• meshGradationRate: for modelType 3 or 4, optional mesh gradation rate (default: 0.3). This
value should be greater than or equal to 0.3. Otherwise the mesh will be fine everywhere.

• resistive-width: for modelType 3, the width of resistive wall. If resistive-width=0, only plasma
region is created (default 0.02)

• plasma-offsetX: for modelType 3, the offset in x direction to the left (default 0.0)

• plasma-offsetY: for modelType 3, the offset in y direction to the bottom (default 0.0)

• vacuum-width: for modelType 3 or 4, the width of vacuum region (default 2.5)

• vacuum-height: for modelType 3 or 4, the height of vacuum region (default 4.0)

Locate input parameter file and all files listed as bdryFile (if applicable) in the work folder and do
m3dc1 meshgen input param file, then the following output will be generated.

• The output model in three formats

– M3D − C1-readable .txt

– Simmetrix-readable file .smd and

– PUMI-readable .dmg

▷ For modelType 0-2, the model is saved in outFile.*

▷ For modelType 3 with resistive width R, vacuum-width W and vacuum-height H, the
model is saved in outFile-R-W-H.*.

▷ For modelType 4 with vacuum-width W and vacuum-height H, the model is saved in
outFile-W-H.*.

• The output mesh in three formats

– Simmetrix-readable.sms

– M3D − C1/PUMI readable .smb

– Paraview

▷ For modelType 0-2 with # mesh faces F,
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Figure 1: A mesh with vacuum region defined by five parameters for analytic expression

- if F > 1000, the mesh is saved in outFile-(F/1000).*

- if F < 1000, the mesh is saved in outFile-F.*

▷ For modelType 3 with # mesh faces F, resistive width R, vacuum-width W, vacuum-
height H,

- if F > 1000, the mesh is saved in outFile-R-W-H-(F/1000).*

- if F < 1000, the mesh is saved in outFile-R-W-H-F.*

▷ For modelType 4 with # mesh faces F, vacuum-width W and vacuum-height H,

- if F > 1000, the mesh is saved in outFile-W-H-(F/1000).*

- if F < 1000, the mesh is saved in outFile-W-H-F.*

3.1.1 Type 0 (parameterized vacuum)

The figure 1 illustrates a mesh generated by the following input file.

modelType 0

outFile analytic

meshSize 0.04

useVacuumParams 1

vacuumParams 1.65908 0.46 0.2 -0.02504 0.8

numVacuumPts 20
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Figure 2: A mesh generated with vacuum region parameters and mesh size 0.1

adjustVacuumParams 0

vacuumFactor 6.28319

The figure 2 illustrates a mesh generated with the same vacuum region parameters and a higher
mesh size value.

3.1.2 Type 2 (piece-wise polynomial vacuum)

The figure 3 illustrates a mesh generated by the following input file. The vacuum region’s geometry
information is defined by piece-wise polynomials and stored in the file in-poly.

modelType 2

inFile in-poly

outFile poly

The vacuum region’s geometry information is defined by piece-wise polynomials and stored in the
file in-poly and the example file can be found in

/p/tsc/m3dc1/lib/SCORECLib/rhel7/intel2019u3-openmpi4.0.3/16.0-220226/bin.
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Figure 3: A mesh with vacuum region defined by piece-wise polynomials

3.1.3 Type 3 (three-regions with inner wall points)

With the model type 3, a geometric model consists of three model faces where each represents
plasma region, resistive region and vacuum region, respectively. An ascii file name which describes
inner plasma wall boundary has to be provied with the parameter inFile.

The figure 4 illustrates a mesh generated by the following input file. In the figure, geometric model
faces are different colored.

modelType 3

inFile in-circle

outFile circle

meshSize 0.1 0.5 0.1

useVacuumParams 1

adjustVacuumParams 1

vacuumParams 5.0 1.5 0.0 0.0 1.5

numVacuumPts 20

meshGradationRate 0.4

resistive-width 0.4

The example files circle-input and in-circle can be found in

/p/tsc/m3dc1/lib/SCORECLib/rhel7/intel2019u3-openmpi4.0.3/16.0-220226/bin.
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Figure 4: A mesh with spline-fitted 3-region model

3.1.4 Type 4 (three-regions with inner & outer wall points)

With the model type 4, a geometric model consists of three model faces where each represents
plasma region, resistive region and vacuum region, respectively. The parameter inFile denotes a
file name that contains inner plasma wall boundary. The parameter bdryFile denotes a file name
that contains resistive wall boundary.

The figure 5 illustrates a mesh generated by the following input file. In the figure, geometric model
faces are different colored.

modelType 4

inFile inner_bdry.pts

bdryFile outer_bdry.pts

outFile iter

meshSize 0.7 0.5 0.7

useVacuumParams 1

adjustVacuumParams 1

vacuumParams 8.25 8.0 0.2 0.0 12.5

meshGradationRate 1

The example files bdry-input, inner bdry.pts and outer bdry.pts can be found in

/p/tsc/m3dc1/lib/SCORECLib/rhel7/intel2019u3-openmpi4.0.3/16.0-220226/bin.
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Figure 5: A mesh with inner & outer plama wall boundary points

3.2 m3dc1 mfmgen

m3dc1 mfmgen requires an ascii input file of arbitrary name that contains the following parameters.
The parameters can be in any order.

• numBdry: the number of boundary files defined by peice-wise linear points given for the
construction of the loops (default: 0)

– Each boundary file corresponds to a loop in PUMI

– For numBdry=N , N lines of bdryFile should be provided, N ≥ 0

• bdryFile: For each boundary file, the user has to provide its file name followed by the unique
loop ID and desired mesh size on the loop.

– Each boundary file corresponds to a loop in PUMI

– The unique ID can be an arbitrary integer defined by the user

– The unique ID is used with input parameter “faceBdry” to specify the boundaries (loops)
of model face

– For more than one boundary files (numBdry>1), the boundary files can be in any order

• useVacuum: A parameter to control the vacuum boundary

– The first number sets the mode of vacuum boundary and can be 0, 1 or 2. If 0, no
vacuum boundary will be created. If 1, vacuum boundary will be created without user
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defined parameters. If 2, a parameterized vacuum boundary will be created by using the
parameters defined in the parameter ”vacuumParams”.

– The second number is the desired unique loop ID for the vacuum loop

– The third number defines the mesh size on the vacuum boundary

• vacuumParams: if “useVacuum = 2”, the user has to provide five doubles to define parame-
terized vacuum wall

• numVacuumPts: if “useVacuum = 2”, # interpolation points on parameterized vacuum wall
(default=20)

• thickWall: three integers and one double to control finite thickness wall

– The first number can either be 0 or 1. If it is set to 0, no finite thickness wall will be
created. If it is set to 1, a finite thickness wall will be created

– The second number is the loop ID that will be offset for given thickness

– The third number is the desired unique loop ID for the new loop created from offsetting
for the finite thickness wall

– The last number is the desired wall thickness

• layeredMesh: two integers to create an extruded layeded mesh on the finite thickness wall

– The first integer is 0, no layered mesh will be created. If 1 (default), an extruded mesh
with desired number of mesh layers will be created

– The second integer defines the number of mesh layers

• numFace: the number of geometric model faces in PUMI (default 1)

– Each geometric face corresponds to regions (e.g. plasma, resistive, vacuum) in M3DC1

– For numFace=N , N lines of faceBdry should be provided, N > 0

• faceBdry: For each model face, the user has to provide the number of loops, loop ID(s), and
desired mesh size

– The first number gives the total number of loops bounding the face

– the first number is followed by the loops IDs of the bounding loops. If number of loops
= n, there should be n loop ID

– The last number is the desired mesh size on the geometric face

• meshGradationRate: Global mesh gradation rate for the meshing. This parameter is optional
and if not specified a default mesh gradation rate = 0.3 is used. This value should be greater
than or equal to 0.3. Otherwise the mesh will be fine everywhere.

• outFile: output file name to save model and mesh

Locate input parameter file and all files listed as bdryFile (if applicable) in the work folder and do
m3dc1 mfmgen input param file. The output files are the same as those of m3dc1 meshgen.
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Figure 6: Mesh with a parameterized vacuum region and different mesh size for model face (left)
0.2 (right) 0.09

3.2.1 Mesh with parameterized vacuum wall

This section presents a mesh created with a parameterized vacuum wall. This is equivalent to Type

0 mesh of m3dc1 meshgen.

numBdry 0

useVacuum 1 1 0.1

numFace 1

faceBdry 1 1 0.09

outFile analytic-0.09

The figure 6 presents the mesh generated by the input file above with two different mesh sizes.

3.2.2 Mesh with single boundary file

numBdry 1

bdryFile loop1.dat 3 0.1

numFace 1

faceBdry 1 3 0.2

outFile input1
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Figure 7: Mesh with single boundary file and no vacuum wall

The figure 7 presents the mesh generated by the input file above.

3.2.3 Mesh with two boundary files and a parameterized vacuum wall

This section presents a mesh created with two boundary files and a parameterized vacuum wall.
This is equivalent to Type 4 mesh of m3dc1 meshgen.

numBdry 2

bddyFile loop1.pts 1 0.5

bdryFile loop2.pts 2 0.5

useVacuum 2 3 0.5

vacuumParams 8.25 8.0 0.2 0.0 12.5

numFace 3

faceBdry 1 1 0.7

faceBdry 2 1 2 0.5

faceBdry 2 2 3 0.7

meshGradationRate 1

outFile iter

The figure 8 presents the mesh generated by the input file above. As you can see, the mesh in
Figure 8 and 5 are almost identical.
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Figure 8: Mesh with two boundary files and a parameterized vacuum region

3.2.4 Mesh with three boundary files

numBdry 3

bdryFile loop1.dat 3 0.1

bdryFile loop2.dat 10 0.05

bdryFile loop3.dat 11 0.09

numFace 3

faceBdry 1 3 0.2

faceBdry 2 3 10 0.1

faceBdry 2 10 11 0.09

outFile input3

The figure 9 presents the mesh generated by the input file above.

3.2.5 Mesh with seven boundary files and a vacuum wall

numBdry 7

bdryFile loop1.dat 3 0.2

bdryFile loop2.dat 10 0.3

bdryFile loop3.dat 11 0.4
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Figure 9: Mesh with three boundary files and different meshGradationRate (left) 0.3 (right) 0.9

bdryFile loop4.dat 21 0.4

bdryFile loop5.dat 25 0.4

bdryFile loop6.dat 17 0.2

bdryFile loop7.dat 19 0.1

useVacuum 1 9 0.1

vacuumParams 1.8 1.5 0.4 0.0 2.5

numFace 8

faceBdry 1 3 0.2

faceBdry 1 10 0.3

faceBdry 1 11 0.1

faceBdry 2 21 25 0.2

faceBdry 2 25 17 0.09

faceBdry 2 17 19 0.1

faceBdry 2 19 9 0.1

faceBdry 4 3 10 11 21 0.11

outFile input7

The figure 10 presents the mesh generated by the input file above.

26



Figure 10: Mesh with seven boundary files and a parameterized vacuum wall
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Figure 11: Add Caption Here

3.2.6 Mesh with finite thickness wall and layers

Add text here

3.3 polar meshgen

polar meshgen requires an ascii file of arbitrary name that contains input parameters as the fol-
lowing:

• inFile: input file name containing equilibrium generation by jsolver

• outFile: output file name to save model and mesh

• meshSize: relative mesh size for each region (default 0.05)

• reorder: if 1, reorder PUMI mesh based on adjacency (default: 0) and generate vtk folders
for mesh visualization. The mesh before and after reodering is saved in original-mesh.vtk

and reordered-mesh.vtk, respectively. Note that the element order of Simmetrix mesh is
not affected.
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Figure 12: Add Caption Here

The following presents an example input file “polar input”.

inFile POLAR

outFile polar

meshSize 0.04

To run polar meshgen, place polar input and POLAR in your work folder and do “polar meshgen

polar input”. The program will read POLAR and generate various model and mesh files starting
with “polar”. For instance, polar-2K0.smb, pol-2K.sms, pol-2K.vtk, polar.dmg, polar.smd,

polar.txt. If the resulting mesh is too fine, increase the value of meshSize. If the resulting mesh
is too coarse, decrease the value of meshSize. If meshSize is not specified in the input file, the
default value is 0.05.

The program read jsolver generates equilibrium and stores in the file POLAR. Given the input file
POLAR, m3dc1 meshgen generates the following files:

• model.dmg: PUMI-readable model file

• model.txt: M3DC1-readable model file

• mesh0.smb: PUMI/M3DC1-readable mesh file

• mesh.vtk: Paraview data files

• norm curv: ascii file containing nodes’ normal/curvature information

3.4 Mesh Control with SimModeler

SimModeler is a graphical user interface to the Simmetrix geometry and mesh generation software.
In cases where the currently available capabilities of m3dc1 meshgen do not provide a satisfactory
mesh, SimModeler can be used to apply alternative mesh control information to the Tokamak cross
section geometry to generate different meshes. The information below indicates the application of
a subset of the mesh controls that can be applied. For additional information of the full range of
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SimModeler mesh control options see: ********** FILL IN POINTER TO SIMMETRIX DOC-
UMENTATION ***** (Contributed by D. Pfefferle on 4/27/16) On PPPL Portal, load a module
simmodeler and run it.

1. From the menu "File→Open Model", load a model file (.smd) generated by m3dc1 meshgen

2. In the upper panel, in the views section, click on Front to view the model, then go to Meshing
tab

3. Select outer region, click + in Mesh Attributes and select Mesh Size→relative. Enter a
value (typically 0.1)

4. Select wall region, click + in Mesh Attributes and select Mesh Size→relative. Enter a
value (typically 0.02)

5. Select inner region, click + in Mesh Attributes and select Mesh Size→relative. Enter a
value (typically 0.04). Here, one can already generate the mesh by clicking on Generate Mesh

and verify if the mesh sizes are suitable

6. Select both inner and wall regions (holding shift key), click + in Mesh Attributes and select
Mesh Size→relative. Enter a function, e.g. 0.01×abs($y+1.5)^2+0.004 to specify an
anisotropic mesh density on top of previous settings
There are many available parameters for fine-tuning the mesh density. For example, Mesh
Curvature Refinement with parameter packs more elements near the edges of the resistive
wall.

7. Generate Mesh and Show Mesh to view result in new windows

8. If the result is satisfactory, from the menu File→Save Mesh, give it a meaningful name
with the extension .sms. The original model file .smd has been automatically saved by the
program with your mesh modifications.

9. Close simmodeler then it will release a license. Until you quit Simmodeler, no one cannot
run neither m3dc1 meshgen nor simmodeler.

10. Copy the .txt, .smd and .sms files to the simulation directory and run the following split-
ting routine to obtain PUMI-readable .smb mesh files.

/p/tsc/C1/m3dc1-sunfire.r6-1.5/bin/part mesh.sh model file.smd mesh file.sms X,
where X is the number of parts you need in the .smb mesh.

11. Modify the C1input file accordingly

mesh filename = ‘part.smb’

mesh model = ‘filename.txt’
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3.5 Mesh Partitioning

3.5.1 Splitting

The program split smb increases the number of parts in a mesh from P to N (P<N). In each
machine, the program split smb is availble in $SCOREC UTIL DIR provided in hostname.mk file.

In order to split P-part mesh to N parts (N>P), run "mpirun -np N ./split smb input-mesh(.smb)

output-mesh(.smb) X"

• the file extension of input-mesh should be .smb

• the file extension of output-mesh should be .smb

• N is the number of parts in the output mesh

• For a P-part input mesh, X must be N/P

• For both input and output mesh, do not specify a number before the file extension

• split smb will insert a number in the output mesh file. The number represents a global part
ID.

• Make sure that the output mesh doesn’t have any empty part. Otherwise, the program
crashes with the following error message:
APF warning: 1 empty parts

split smb: .../mds/mds.c:614: check ent: Assertion ‘e >= 0’ failed

Examples on portal:

1. To split a serial (1-part) mesh to 6 parts, run
"mpirun -np 6 ./split smb struct-curveDomain.smb part.smb 6"

• Input mesh: struct-curveDomain0.smb

• Output mesh: part0.smb, part1.smb, part2.smb, part3.smb, part4.smb, part5.smb

2. To split a 2-part mesh to 6 parts, run "mpirun -np 6 ./split smb struct-curveDomain.smb

part.smb 3"

• Input mesh: struct-curveDomain0.smb, struct-curveDomain1.smb

• Output mesh: part0.smb, part1.smb, part2.smb, part3.smb, part4.smb, part5.smb

See readme.split smb for detailed instructions and trouble shooting tips.
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3.5.2 Mesh Merging

The program collapse decreases the number of parts in a mesh from N to P (P<N). In each machine,
the program collapse is availble in $SCOREC UTIL DIR provided in hostname.mk file.

In order to merge N-part .smb mesh to P parts (P>0), run "mpirun -np N ./collapse input-mesh(.smb)

output-mesh(.smb) X"

• the file extension of input-mesh should be .smb

• the file extension of output-mesh should be .smb

• N is the number of parts in the input mesh

• For a P-part output mesh, X must be N/P

• For both input and output mesh, do not specify a number before the file extension

• collapse will insert a number in the output mesh file. The number represents a global part
ID.

Example on portal:
In order to merge 4-part mesh into a serial (1-part) mesh, run "mpirun -np 4 ./collapse part.smb

serial.smb 4"

• Input mesh: part0.smb, part1.smb, part2.smb, part3.smb

• Output mesh: serial0.smb

See readme.collapse for detailed instructions and trouble shooting tips.
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4 Mesh Adaptation by Error Estimator
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5 PETSc Option

5.1 2D

The petsc option to run 2D modes is default to superlu dist. You can add the following line on
your ”srun” command line to change to to mumps:

-pc_factor_mat_solver_type mumps

5.2 3D

When running M3D-C1 in the 3D nonlinear mode, you need to include PETSc Options file. There
is a number ”8” in the file below. It must be equal to the number of toroidal planes. It should be
changed whenever you change the number of toroidal planes in the C1input file. The recommended
options bjacobi file is as follows:

-pc_type bjacobi

-pc_bjacobi_blocks 8

(for 8 toroidal planes should be equal to nplanes in C1input)

-sub_pc_type lu

-sub_pc_factor_mat_solver_package superlu_dist

(can exchange mumps for superlu_dist)

-mat_superlu_dist_rowperm NOROWPERM (only needed for superlu_dist)

-mat_mumps_icntl_14 50 (only needed for mumps)

(50 means 50% of memory increase when needed.

Users can make it 100 or more if encountering a runtime memory issue.)

-sub_ksp_type preonly

-ksp_type fgmres

-ksp_gmres_restart 220

-ksp_rtol 1.e-9

-ksp_max_it 10000

-on_error_abort

-hard_pc_type bjacobi

-hard_pc_bjacobi_blocks 8

(for 8 toroidal planes...should be equal to nplanes in C1input)

-hard_sub_pc_type lu

-hard_sub_pc_factor_mat_solver_type superlu_dist

(can change mumps for superlu_dist)

-mat_superlu_dist_rowperm NOROWPERM

(only needed for superlu_dist)

-mat_mumps_icntl_14 50

(only needed for mumps.)

(50 means 50% of memory increase when needed.
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Users can make it 100 or more if encountering a runtime memory issue.)

-hard_sub_ksp_type preonly

-hard_ksp_type lgmres

-hard_ksp_lgmres_argument 4

-hard_ksp_gmres_restart 220

-hard_ksp_rtol 1.e-9

-hard_ksp_max_it 10000

5.3 More

More examples are in regtest/pellet/base/ directory, such as

options_bjacobi.type_superludist

options_bjacobi.type_mumps

The following are additional optional arguments:

-ksp_converged_reason

-ksp_view

-help

-options_table

-options_left

-trdump

-malloc_log

for diagnosing purpose.
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6 Running Jobs

Users can find almost all of the needed example batch scripts and input files to run a job on available
computing facilities from

unstructured/regtest/*/base/

directories.

6.1 Running 2D or Linear Jobs

In 2D, the run can be either linear or nonlinear, depending on the C1input parameter linear:

linear = 0 (non-linear run: must compile with the option RL=1)

linear = 1 (linear run: must compile with the option COM=1)

In both cases, set

nplanes = 1

For the linear case, use

ntor = nn

set the toroidal mode number.

To run your job on a scratch directory, copy the following files over:

executable (m3dc1_2d for non-linear run or m3dc1_2d_complex for linear run)

C1input

AnalyticModel (or MultiEdgeAnalyticModel)

struct-dmg.sms

(and geqdsk if needed)

To run non-linear job

mpirun {np 8 ./m3dc1_2d

To run linear job

mpirun {np 24 ./m3dc1_2d_complex -pc_factor_mat_solver_package mumps

36



6.2 Running 3D Nonlinear Jobs

For the 3D nonlinear run, set linear = 0 and set nplanes equal to the number of toroidal planes
in C1input file. The number of bjacobi blocks in the PETSc options file must also be equal to
nplanes. The total number of processors to request must be the product of nplanes and M (the
number of processors per plane, which equals the number of mesh partitions per plane).

Files required to be present to the local directory are:

executable (m3dc1 or m3dc1_st)

C1input,

partnn.smb (one for each poloidal plane partition)

options_bjacobi

m3dc1.xml (if using ADIOS)

geqdsk (if needed)

To run linear job

mpirun {np 16 ./ m3dc1 {ipetsc {options_file options_bjacobi (nplane=2, M=8)

See the previou section for the format of the PETSc option file options bjacobi. In this example
job, there are M = 8 mesh partition files:

part0.smb part1.smb part2.smb part3.smb part4.smb part5.smb part6.smb part7.smb

6.3 Graphics Files

The graphics files are of two types. There is a single file called: C1.h5 that contains all the
timedependent scalar information. This must be saved and be present in the directory of a job so
that it can be added to.

In addition to this file, each plot cycle will produce a file: time nnn.h5, where nnn is the plot cycle
number. The equilibrium is written into a file called equilibrium.h5. These must be stored in the
same directory as the C1.h5 file.

6.4 Restarting Jobs

By default hdf5 files are written in every time step. Therefore jobs can be restarted from the hdf5
“plot file”, the same one that is used by the idl routines to make plots.

By default, the hdf5 files are written in single precision. If idouble out is set to 1 in C1input file,
hdf5 files are written in double precision.
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6.4.1 Reading restart files for 2D real, 2D complex, or 3D real runs

To start a normal simulation with the hdf5 files, set the C1input parameter “irestart” to 1.

However, the files C1.h5 and the final time nnn.h5 file must be present in the working directory.
You may also restart from an intermediate time by setting irestart slice=nn where nn is the nnth
plot file. If this is not set, it will restart from the final plot file.

6.4.2 Reading real restart files to initialize 2D complex calculation

• Run 2D linear=0

• Copy 2D C1.h5 and the final time nnnn.h5 to the working directory

• Run 2D (complex) linear=1. In the initial restart, the time and cycle number will start from
t=0 and N=0 for the complex run

6.4.3 Running 3D real simulation from 2D real restart files

To start a 3D simulation with 2D restart files, do the following:

• Run 2D

• Copy 2D C1.h5 and the final time nnn.h5 to the working directory

• In 3D work folder, set the C1input parameter “irestart= 1” Regardless of the time step when
the restart files were written, the 3D simulation starts with time step 1.

6.5 Monitoring Jobs

You can monitor the progress of your running job in several ways:

A. C1ke file. Each time step, one line will be added to the ASCII C1ke file in the run directory
that you can open with a text editor. The first 4 fields are:

cycle time kinetic_energy growth_rate

B. C1.h5 file: You can monitor a time dependent run by using the idl utility described below.
Especially useful is the

plot_scalar,‘ke’

command and also
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plot_scalar,’ke’,/growth

C. You can use a text editor to monitor the log file slurm-nnnn.out file (where nnnn is the job
number assigned by SLURM)

6.6 Exporting Node/Vector/Matrix for Standalone Study

6.7 Archiving Data at PPPL
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7 Boundary Conditions

In all cases, f = 0 on the boundary, and therefore also t̂ ·∇f = 0. Some other boundary conditions
that may be specified are as follows:

No normal flow (inonormalflow=1) Holds n̂ · u constant.

No poloidal flow (inoslip pol=1) Holds t̂ · u constant.

No toroidal flow (inoslip tor=1) Holds φ̂ · u constant.

No normal current (Winocurrent pol inocurrent norm=1) Holds n̂ · J constant.

No poloidal current (inocurrent pol=1) Holds t̂ · J constant.

No toroidal current (inocurrent tor=1) Holds φ̂ · J constant.

n̂ · u = −Rt̂ · ∇U +
1

R2
n̂ · ∇χ (3)

t̂ · u = Rn̂ · ∇U +
1

R2
t̂ · ∇χ (4)

φ̂ · u = Rω (5)

n̂ ·B = − 1

R
t̂ · ∇ψ − 1

R2
n̂ · ∇fφ (6)

t̂ ·B =
1

R
n̂ · ∇ψ (7)

φ̂ ·B =
F

R
(8)

n̂ · J = − 1

R
t̂ · ∇F +

1

R2
n̂ · ∇ψφ (9)

t̂ · J =
1

R
n̂ · ∇(F + fφφ) +

1

R2
t̂ · ∇ψφ (10)

φ̂ · J = − 1

R
∆∗ψ (11)

In the above definitions, n̂ is the unit vector normal to the boundary surface, and t̂ = φ̂× n̂.
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8 Discretization

8.1 Finite Elements

Each field is represented as a linear combination of N basis functions νi on the computational
domain

U =
N∑
i=1

νiUi.

The finite element used in M3D-C1is the reduced quintic element [?], in which the basis functions
are fifth order polynomials. At each time step, the projection of the equations onto the basis
functions are computed and solved. For example, the equation

∂U

∂t
= F (U)

becomes the system of projection equations∫
dV νi

∂U

∂t
=

∫
dV νiF (U).

These projections equations are known collectively as the weak form of the equation. Solving the
equation in this manner is known as the Galerkin method. Hereafter the index i will be dropped
from νi.

Once the equations are cast in the weak form, integrations by parts may be carried out in order to
reduce the order of the differential operators acting on the physical fields. For example,∫

dV ν∇2U =

∫
dV ∇ · (ν∇U)−∇ν · ∇U

=

∮
dA · ∇Uν −

∫
dV ⟨ν,∇U⟩

= −
∫
dV ⟨ν, U⟩ .

It is found that using integrations by parts to re-cast the equations into a form in which a roughly
equal number of derivatives acts on the trial function as on the physical fields improves the numerical
stability of methods for solving the equations. Thus, in the above example, the form −⟨ν, U⟩ is
preferable to ν∇2U .

8.1.1 Weak form of Physical Equations

Integration Identities

Rather than performing integrations by parts directly on each term in equations (??), it is simpler
to begin directly from the vector form, equations (??) and use the following identities when applying
the operations to extract the scalar equations:

−
∫
dV R2ν∇φ · ∇ ×A = −

∫
dV A ·

[
∇(R2ν)×∇φ

]
∫
dV ν∇ ·A = −

∫
dV ∇ν ·A.
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(Note that the torodal operator, R2ν∇φ·, is not a differential operator and therefore the integration
by parts cannot be performed a priori.)

Similary, useful identities for the operators that will act on the stress tensor Π are:

R2ν∇φ · ∇ × (∇ · Π) = R2∂Zν∇φ · Π · ∇φ−∇ν · Π · ∇Z (12a)

+ r∇φ ·
[
∇∇(νr)×̇Π

]
+∇ ·A1

−R2ν∇φ · (∇ · Π) = R2∇ν · Π · ∇φ+∇ ·A2 (12b)

−ν∇ · (∇ · Π) = −∇∇ν : Π+∇ ·A3 (12c)

where

A1 = −R2ν∇φ× (∇ · Π)− rΠ · [∇φ×∇(rν)] + νΠ · ∇Z
A2 = −R2νΠ · ∇φ
A3 = ∇ν · Π− ν∇ · Π.

(These identities hold for any symmetric tensor Π.) The total divergences vanish upon integration.

8.1.2 Physical Equations after Integrations by Parts

∫
dV Nn =

∫
dV [NnU +Nnχ +NnD] (13a)∫

dV [UUn + Uχn] =

∫
dV [UUUn + UV V n + UUχn + Uχχn (13b)

+ Uψψ + UFF + UUµ + Uχµ + Ug

+ UUD + UχD + UΠ∥ + UΠ×

]
∫
dV VV n =

∫
dV [VV Un + VV χn + VψF + VV µ (13c)

+ VV D + VΠ∥ + VΠ×

]
∫
dV [XUn +Xχn] =

∫
dV [XUUn +XV V n +XUχn +Xχχn (13d)

+Xp +Xψψ +XFF +XUµ +Xχµ +Xg

+XUD +XχD +XΠ∥ +XΠ×

]
∫
dV Ψψ =

∫
dV [ΨψU +Ψψχ +ΨψFn +Ψψη] (13e)∫

dV FF =

∫
dV [FFU + FψV + FFχ + Fψn + FFn (13f)

+ Fpen + FFη]∫
dV Pp =

∫
dV [PpU + Ppχ + PpeFn + Pηψ + PηF (13g)

+ Pκ + Pκ∥ + Pκ×

]
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The terms in the above equations are categorized and defined in the following sections. Each term
has been integrated by parts to arrive at the simplest expression having for which the order of
differentiation on the trial function is roughly equal to that on the physical fields.

Basic Terms

The terms in this section are the basic terms in the two-fluid equations, which do not depend on
any specific choice of closure.

Nn(ν, ṅ) = νṅ
NnU (ν, n, U) = ν [U, n]
Nnχ(ν, n, χ) = n ⟨ν, χ⟩
NnD(ν, n,D) = −D ⟨ν, n⟩

(14)

UUn(ν, U̇ , n) = − 1
R2n

〈
R2ν, U̇

〉
Uχn(ν, χ̇, n) = −R2ν [n, χ̇]
UUUn(ν, U, U, n) = 1

R2n∆
∗U
[
R2ν, U

]
+ 1

2R2 ⟨U,U⟩
[
R2ν, n

]
UV V n(ν, V, V, n) = 1

2R2

[
ν,R2

]
V V n

UUχn(ν, U, χ, n) = 1
R2n∆

∗U
〈
R2ν, χ

〉
− [U, χ]

[
R2ν, n

]
Uχχn(ν, χ, χ, n) = 1

2 ⟨χ, χ⟩
[
R2ν, n

]
Uψψ(ν, ψ, ψ) = − 1

R2

[
R2ν, ψ

]
∆∗ψ

UFF (ν, F, F ) = −R2νF
[
F, 1

R2

]
UUD(ν, U,D) = 1

R2

〈
R2ν, U

〉
D

UχD(ν, χ,D) = −
[
R2ν, χ

]
D

(15)

VV n(ν, V, n) = νnV̇
VV Un(ν, V, U, n) = νn [U, V ]
VV χn(ν, V, χ, n) = −νn ⟨χ, V ⟩
VψF (ν, ψ, F ) = ν [F,ψ]
VV D(ν, V,D) = −νV D

(16)

XUn(ν, U̇ , n) = ν
[
n, U̇

]
Xχn(ν, χ̇, n) = −n ⟨ν, χ̇⟩
Xp(ν, p) = ⟨ν, p⟩
XUUn(ν, U, U, n) = − 1

R2n∆
∗U ⟨ν, U⟩+ 1

2n
〈
ν, ⟨U,U⟩

R2

〉
XV V n(ν, V, V, n) = 1

2nV V
〈

1
R2 , ν

〉
XUχn(ν, U, χ, n) =

(
n∇2ν + ⟨n, ν⟩

)
[U, χ] + n∆∗U [ν, χ]

Xχχn(ν, χ, χ, n) = 1
2n ⟨ν, ⟨χ, χ⟩⟩

Xψψ(ν, ψ, ψ) = 1
R2∆

∗ψ ⟨ν, ψ⟩
XFF (ν, F, F ) = 1

R2F ⟨ν, F ⟩
XUD(ν, U,D) = [ν, U ]D
XχD(ν, χ,D) = ⟨ν, χ⟩D

(17)

43



Ψψ(ν, ψ̇) = νψ̇
ΨψU (ν, ψ, U) = ν [U,ψ]
Ψψχ(ν, ψ, χ) = −ν ⟨χ, ψ⟩
ΨψFn(ν, ψ, F, n) = diν

1
n [ψ, F ]

Ψψη(ν, ψ, η) = − 1
R2

〈
ψ,R2νη

〉 (18)

FF (ν, Ḟ ) = νḞ

FFU (ν, F, U) = R2ν
[
U, F

R2

]
FψV (ν, ψ, V ) = R2ν

[
V
R2 , ψ

]
FFχ(ν, F, χ) = F

R2

〈
R2ν, χ

〉
Fψn(ν, ψ, ψ, n) = di

∆∗ψ
R2n

[
ψ,R2ν

]
FFn(ν, F, F, n) = diR

2νF
[

1
R2n

, F
]

Fpen(ν, pe, n) = diR
2ν
[
1
n , pe

]
FFη(ν, F, η) = − 1

R2 η
〈
R2ν, F

〉
(19)

Pp(ν, ṗ) = νṗ
PpU (ν, p, U) = ν [U, p]
Ppχ(ν, p, χ) = Γp ⟨ν, χ⟩+ (Γ− 1)ν ⟨p, χ⟩
Ppe,F,n(ν, pe, F, n) = di

(
1
nν [pe, F ] + Γνpe

[
1
n , F

])
Pη,ψ(ν, η, ψ, ψ) = (Γ− 1)ν (∆∗ψ)2

R2

Pη,F (ν, η, F, F ) = (Γ− 1)ν F
2

R2

(20)

Gravity

These terms are obtained assuming a gravitational force of the form given by equation (??).

Ug(ν, n) = grν [n,R]− gZrν ⟨n,R⟩
Xg(ν, n) = n

R2 (gr ⟨ν,R⟩+ gZr [ν,R])
(21)

Heat Flux Terms

These terms are obtained assuming a heat flux density of the form described in section ??.

Pκ(ν, κ, T ) = −(Γ− 1)κ ⟨ν, T ⟩
Pκ∥(ν, κ∥, T, ψ, ψ,B

−2) = −(Γ− 1)κ∥
1
B2 [ψ, ν] [ψ, T ]

Pκ×(ν, κ×, T, F,B
−2) = (Γ− 1)κ×

F
B [ν, T ]

(22)

T = p/n

B2 =
1

R2

[
⟨ψ,ψ⟩+ F 2

]
Isotropic Viscosity

These terms result from isotropic viscosity of the form given by equation (??).
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UUµ(ν, U, µ) = 1
R2

[(〈
µ,R2ν

〉
+ µ∆∗(R2ν)

)
∆∗U

+∇2µ
〈
R2ν, U

〉
+∆∗(R2ν) ⟨µ,U⟩

]
Uχµ(ν, χ, µ) = −∇2(R2ν) [µ, χ]−∆∗µ

[
R2ν, χ

]
− 1

R2∆
∗(R2χ)

[
R2ν, µ

]
VV µ(ν, V, µ) =

[
⟨ν, µ⟩+ 1

R2µ∆
∗(R2ν)

]
V

XUµ(ν, U, µ) = ∇2ν [µ,U ] +∇2µ [ν, U ] + ∆∗U [ν, µ]
Xχµ(ν, χ, µ, µc) = ∇2ν ⟨µ, χ⟩+∇2µ ⟨ν, χ⟩+ 2µc∇2ν∇2χ

(23)

Parallel Viscosity

These terms are obtained assuming a parallel viscosity of the form given in equation (??). These
equations were obtained using equations (12). For compactness, derivatives are written as subscripts
in the following expressions (i.e. νZ = ∂Zν).

UΠ∥U (ν, U) = µ∥UDU

UΠ∥V (ν, V ) = µ∥VDU

UΠ∥χ(ν, χ) = µ∥χDU

(24)

VΠ∥U (ν, U) = µ∥UDV

VΠ∥V (ν, V ) = µ∥VDV

VΠ∥χ(ν, χ) = µ∥χDV

(25)

XΠ∥U (ν, U) = µ∥UDX

XΠ∥V (ν, V ) = µ∥VDX

XΠ∥χ(ν, χ) = µ∥χDX

(26)

DU =
3

B2

{
−1

2
R2

[
ν,

⟨ψ,ψ⟩
R2

]
+ ⟨ψ, [ν, ψ]⟩ − 1

R2
F 2νZ

− 2

R2

[
νZ(ψ

2
Z − ψ2

R) + 2νrψrψZ
]}

DV = −3
F

B2
[ν, ψ]

DX = −∇2ν

(
1− 3

R2

⟨ψ,ψ⟩
B2

)
+

3

R2B2

(
1

2
R2

〈
ν,

⟨ψ,ψ⟩
R2

〉
− ⟨ψ, ⟨ν, ψ⟩⟩+ 1

R
F 2νr

)
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µ∥U = η0
piτi
R2B2

(
−1

2
R2

[
U,

⟨ψ,ψ⟩
R2

]
+ ⟨ψ, [U,ψ]⟩ − 1

R2
F 2UZ

)
µ∥V = −η0piτi

F

B2

[
ψ,

V

R2

]
µ∥χ = η0

piτi
R2B2

(
1

2
R2

〈
χ,

⟨ψ,ψ⟩
R2

〉
− ⟨ψ, ⟨χ, ψ⟩⟩+ 1

R
F 2χr

+∇2χ ⟨ψ,ψ⟩
)

Gyroviscosity

These terms are obtained using equations (12) assuming a gyroviscosity of the form given by
equation (??).

UΠ×U (ν, U) = − piF

2R3B2

×



(
1 + 3

2R2
⟨ψ,ψ⟩
B2

) (
[R3νZ ]Z − [R3νr]r

) ([
UR
R

]
Z
+
[
UZ
R

]
r

)
−
(
[R3νr]Z + [R3νZ ]r

) ([
UZ
R

]
Z
−
[
UR
R

]
r

) 
+ 9

2rB2

×

 (ψ2
Z − ψ2

R

)(
rνZ

[(
UZ
R

)
Z
−
(
UR
R

)
r

]
− 1

R3UZ
[
(R3νZ)Z − (R3νr)r

])
+ 2ψrψZ

(
rνZ

[(
UR
R

)
Z
+
(
UZ
R

)
r

]
− 1

R3UZ
[
(R3νr)Z + (R3νZ)r

])



UΠ×V (ν, V ) = − pi

B2

×



1
4R2

(
1− 3F 2

B2R2

)
×
(〈

V
R2 , R

4 [ψ, ν]
〉
−
〈
ψ,R4

[
ν, V

R2

]〉
+ 1

R2

[
ν,R6

〈
V
R2 , ψ

〉])
− 3

4B2

[
ψ, V

R2

]
×
(
2 ⟨ψ, ⟨ψ, ν⟩⟩ −R2

〈
ν, ⟨ψ,ψ⟩

R2

〉
−∆∗ν ⟨ψ,ψ⟩+ 6ψZ [ν, ψ]

)
+ 9F 2

2B2R2 νZ
〈
ψ, V

R2

〉


UΠ×χ(ν, χ) = − piF

2R3B2

×


[
(χRR − χZZ)

(
[R3νr]r − [R3νZ ]Z

)
+ 2χRZ

(
[R3νr]Z + [R3νZ ]r

)]
+ 3

R2B2

 (∆∗χ[ψ2
Z − ψ2

R]− χZZψ
2
Z + χRRψ

2
R

) (
[R3νr]r − [R3νZ ]Z

)
+ 2χRZ

(
ψ2
Z [R

3νr]Z + ψ2
R[R

3νZ ]r
)

− 2ψrψZ
([
χZZ − 1

Rχr
]
[R3νr]Z +

[
χRR − 1

Rχr
]
[R3νZ ]r

)



VΠ×U (ν, U) =
pi

4rB2

×


(
1− 3

R2
F 2

B2

) (
⟨ψ,R [U, ν]⟩+ ⟨ν,R [U,ψ]⟩ − 1

R3

[
U,R4 ⟨ν, ψ⟩

]
+ Ur [ν, ψ] +

2
RψZ ⟨ν, U⟩

)
+ 3

RB2 [ψ, ν]
(
2 ⟨ψ, ⟨U,ψ⟩⟩ −∆∗U ⟨ψ,ψ⟩ − 1

R2

〈
U,R2 ⟨ψ,ψ⟩

〉
+
[
ψ,R2

]
[ψ,U ]

)
− 18

R2
F 2

B2 [U,R] ⟨ν, ψ⟩


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VΠ×V (ν, V ) =
piFR

2

4B2

(
1− 3

R2

⟨ψ,ψ⟩ − F 2

B2

)[
ν,
V

R2

]

VΠ×χ(ν, χ) =
pi
B2

×


(

1
R2

〈
χ,R2 ⟨ν, ψ⟩

〉
− ⟨ν, ⟨χ, ψ⟩⟩ − ⟨ψ, ⟨ν, χ⟩⟩

)
+ 3

2rB2 [ψ, ν]
(
⟨ψ,R [χ, ψ]⟩ − 1

2r [χ, ⟨ψ,ψ⟩]
)

+ 3
4R2

F 2

B2 (⟨ψ, ⟨χ, ν⟩⟩+ ⟨ν, ⟨χ, ψ⟩⟩ − ⟨χ, ⟨ν, ψ⟩⟩ − 2∆∗χ ⟨ν, ψ⟩)



XΠ×U (ν, U) =
piF

2R2B2

×



⟨⟨ν, U⟩⟩ −R2 [[ν, U ]] + 1
R

[
Ur(νZZ − νRR)− 2UZνRZ − 1

RUrνr
]

+ 3
RB2



([
UZ
R

]
Z
−
[
UR
R

]
r

) (
νZZψ

2
R − νRRψ

2
Z + 1

Rνr[ψ
2
Z − ψ2

R]
)

+ 2νRZ

([
UR
R

]
Z
ψ2
R +

[
UZ
R

]
r
ψ2
Z − 1

R2UZ [ψ
2
Z − ψ2

R]
)

− 2ψrψZ

 [
UR
R

]
Z
νRR +

[
UZ
R

]
r
νZZ − 1

R2UZ [νZZ − νRR]

− 1
Rνr

[(
UR
R

)
Z
+
(
UZ
R

)
r

] 





XΠ×V (ν, V ) =
pi
4B2

×


(
1− 3

R2
F 2

B2

) (
1
R2

〈
ν,R2

〈
V
R2 , ψ

〉〉
−
〈
ψ,
〈
V
R2 , ν

〉〉
−
〈
V
R2 , ⟨ψ, ν⟩

〉)
+ 6

B2

[
ψ, V

R2

] (
1
R ⟨ψ,R [ν, ψ]⟩ − 1

2 [ν, ⟨ψ,ψ⟩]
)

− 6F
2

B2

〈
ψ, V

R2

〉 [(
νZ
R2

)
Z
+
(
νR
R2

)
r

]


XΠ×χ(ν, χ) = −piF
B2

×


(
1 + 3

2R2
⟨ψ,ψ⟩
B2

)
[⟨ν, χ⟩]

+ 3
2B2

 (
−1

2 [χ, ⟨ψ,ψ⟩] +
1
R ⟨ψ,R [χ, ψ]⟩

) ([
νR
R2

]
r
+
[
νZ
R2

]
Z

)
−
(
−1

2 [ν, ⟨ψ,ψ⟩] +
1
R ⟨ψ,R [ν, ψ]⟩

) ([χR

R2

]
r
+
[χZ

R2

]
Z

) 


8.1.3 Spatial Integration

The integrals required to calculate the weak-form equations of the Galerkin method are computed
numerically using a 79-point Gaussian quadrature. That is, the value of each field is calculated at 79
points for each triangular element, and a weighted sum of these values is computed to approximate
the integral. ∫

dA f(x) ≃
79∑
i=1

wif(xi),
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where the integrand f(x) is restricted to a single element. The sampling points and weights appro-
priate for a equilateral triangle are taken from ref. [?].

The coordinates of the sampling points are given in the “natural coordinates” (α, β, γ) in ref. [?].
These coordinates may be converted to cartesian coordinates (r, Z) for an equilateral triangle e
having vertices {(

−
√
3

2
,−1

2

)
,

(√
3

2
,−1

2

)
, (0, 1)

}
using the linear transformation

ϕn→e(α, β, γ) =

(√
3

2
(β − γ),

1

2
(3α− 1)

)
.

The weights must be multiplied by the Jacobian of this transformation,

Jϕn→e =
3
√
3

4
.

To find the coordinates of the sampling points for a general triangle g having vertices {(−b, 0), (a, 0), (0, c)},
as in ref. [?], one may use the linear transformation

ϕe→g(r, Z) =

(
a+ b√

3
x+

a− b

3
(1− y),

c

3
(2y + 1)

)
Jϕe→g =

2c

3
√
3
(a+ b).

The transformation from natural coordinates to cartesian coordinates for a triangle having vertices
{(−b, 0), (a, 0), (0, c)} is therefore

ϕn→g(r, Z) =

(
1

2
(a+ b)(β − γ) +

1

2
(a− b)(1− α), cα

)
Jϕn→g =

1

2
(a+ b)c.

The 79-point quadrature gives the exact results for integrands which are polynomials of degree 20 (or
less). In the case of quintic finite elements, this means the integration is exact for terms involving
products of three fields or fewer, not including the degree-five trial function ν. In cylindrical
geometry, the presence factors of 1/R will cause the quadrature not to be exact, as 1/R is not in
the form of a polynomial. The weights wi must also be multiplied by Ri in cylindrical coordinates
to account for the Jacobian of the transformation from cartesian to cylindrical coordinates.

8.2 Time Step

8.2.1 Implicit Time Advance

For the implicit time advance, equations (13) are evaulated at the θ-advanced time (e.g. F (ψ) →
F (ψ+θδtψ̇+ · · · )), linearized (i.e. O(δt2) and higher are dropped), and then discretized temporally
according to the chosen time integration method (i.e. ψ̇ → (ψ(n+1) − ψ(n))/δt).
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

Sv11 Rv11 Sv12 Rv12 Sv13 0 Rv14 Rv13
RB11 SB11 RB12 SB12 RB13 SB13 0 0
Sv21 Rv21 Sv22 Rv22 Sv23 0 Rv24 Rv23
RB21 SB21 RB22 SB22 RB23 SB23 0 0
Sv31 Rv31 Sv32 Rv32 Sv33 0 Rv34 Rv33
RB31 Sv31 RB32 Sv32 RB33 Sv33 0 0
Rn31 0 Rn32 0 Rn33 0 Sn 0
Rp31 0 Rp32 0 Rp33 0 0 Sp





U
ψ
V
F
χ
pe
n
p



(n+1)

=



Dv
11 Qv11 Dv

12 Qv12 Dv
13 0 Qv14 Qv13

QB11 DB
11 QB12 DB

12 QB13 DB
13 0 0

Dv
21 Qv21 Dv

22 Qv22 Dv
23 0 Qv24 Qv23

QB21 DB
21 QB22 DB

22 QB23 DB
23 0 0

Dv
31 Qv31 Dv

32 Qv32 Dv
33 0 Qv34 Qv33

QB31 Dv
31 QB32 Dv

32 QB33 Dv
33 0 0

Qn31 0 Qn32 0 Qn33 0 Dn 0
Qp31 0 Qp32 0 Qp33 0 0 Dp





U
ψ
V
F
χ
pe
n
p



(n)

+



Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8


(27)

8.2.2 Split Time Step Method

Time is advanced using a split time-step method in which the velocity field is advanced first, then
the density and total pressure fields are advanced separately, and finally the magnetic field and
electron pressure are advanced together. Though the velocity and magnetic field are advanced
separately, the Alfvén and magnetosonic waves are treated implicitly by using equations (??–??)
to calculate analytically the advanced-time values of the pressure and magnetic field for use in the
velocity time step.

Sv11 Sv12 Sv13
Sv21 Sv22 Sv23
Sv31 Sv32 Sv33

UV
χ

(n+1)

(28)

=

Dv
11 Dv

12 Dv
13

Dv
21 Dv

22 Dv
23

Dv
31 Dv

32 Dv
33

UV
χ

(n)

+

Qv11 Qv12 Qv13
Qv21 Qv22 Qv23
Qv31 Qv32 Qv33

ψF
p

(n)

+

Ov1Ov2
Ov3


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Snn(n+1) = Dnn(n) +
(
Rn1 Rn2 Rn3

)UV
χ

(n+1)

(29)

+
(
Qn1 Qn2 Qn3

)UV
χ

(n)

Spp(n+1) = Dpp(n) +
(
Rp1 Rp2 Rp3

)UV
χ

(n+1)

(30)

+
(
Qp1 Qp2 Qp3

)UV
χ

(n)

SB11 SB12 SB13
SB21 SB22 SB23
SB31 SB32 SB33

ψF
pe

(n+1)

(31)

=

DB
11 DB

12 DB
13

DB
21 DB

22 DB
23

DB
31 DB

32 DB
33

ψF
pe

(n)

+

RB11 RB12 RB13
RB21 RB22 RB23
RB31 RB32 RB33

UV
χ

(n+1)

+

QB11 QB12 QB13
QB21 QB22 QB23
QB31 QB32 QB33

UV
χ

(n)

+

OB1OB2
OB3


Linear Calculations

Linear calculations may be performed by calculating each matrix once, and recalculating the matrix-
vector products each time step with the updated vectors. This method is very efficient because the
S matrices need only be inverted once, and in all subsequent time steps the only matrix operations
carried out are addition and matrix-vector multiplication. Non-linear simulations require all the
matrices to be recalculated each time step, and the S matrices must be inverted each time step.

Implementation of Electron Pressure Equation

Because it is the electron pressure which appears in the generalized Ohm’s law, equation (??), if
the electron pressure equation is retained, it is solved with the magnetic field as the third row in
equation (31) so as to keep the fast magnetosonic wave implicit. In this case, the full pressure is
evolved independently in equation (30). If the electron pressure equation is not included, the third
row in equation (31) is the total pressure equation, and the electron pressure is assumed to remain
always at a specific fraction of the total pressure, which is determined by the initial conditions.
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8.2.3 Crank-Nicholson

The Crank-Nicholson time step is defined by the following discretization:

∂U

∂t
→ U (n+1) − U (n)

δt

U → θU (n+1) + (1− θ)U (n).

By Taylor expanding about U ,

U (n+1) = U + θ δt U̇ +
1

2
θ2δt2Ü +

1

6
θ3δt3

...
U + · · ·

U (n) = U + (θ − 1)δt U̇ +
1

2
(θ − 1)2δt2Ü +

1

6
(θ − 1)3δt3

...
U + · · ·

the trunctation error of the time-derivative operator can be calculated directly:

∆CN (δt, θ) =
U (n+1) − U (n)

δt
− U̇

=

(
θ − 1

2

)
δt Ü +

1

2

(
θ2 − θ +

1

3

)
δt2

...
U + · · · .

When θ = 1/2, the time differencing is “time-centered” because the two points involved in the time
differencing are equidistant in the logical time coordinate from the point at which the field itself is
evaluated. In this case, the leading-order truncation error is O(δt2):

∆CN (δt, θ = 1/2) =
1

24
δt2

...
U + · · · . (32)

8.2.4 BDF2

The BDF2 time step is defined by the following discretization:

∂U

∂t
→ 3U (n+1) − 4U (n) + U (n−1)

2 δt

U → U (n+1).

Taylor expanding about U :

U (n+1) = U

U (n) = U − δt U̇ +
1

2
δt2Ü − 1

6
δt3

...
U + · · ·

U (n−1) = U − 2 δt U̇ + 2 δt2Ü − 4

3
δt3

...
U + · · ·

and the truncation error is

∆BDF2(δt) =
3U (n+1) − 4U (n) + U (n−1)

2 δt
− U̇ = −1

3
δt2

...
U + · · · . (33)
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9 Input Parameters

9.1 Model Options

Option Default Description

numvar 3 MHD model. 1: 2-field; 2: 4-Field; 3: 6-Field.
linear 0 1: linear (perturbation terms only, no matrix recalculation)
eqsubtract 0 1: remove equilibrium terms from equations
icsubtract 0 set to 1 if PF coils are in the domain. These are defined in

the files “coils.dat” and “current.dat”
extsubtract 0 1: subtract fields from non-axisymmetric coils
idens 1 1: include density equation
ipres 0 1: include electron pressure equation
ipressplit 0 1: seperate pressure solve from the magnetic field solves when

isplitstep=1. (ipressplit must be 0 for isplitstep=0)
itemp 0 1: Advance temperatures rather than pressures (for ipress-

plit=1 only)
gyro 0 1: include Braginskii gyroviscous term. (note: needs db to

be nonzero also)
igauge 0 0: loop voltage applied to boundary psi only
inertia 1 1: Include u · ∇u terms
itwofluid 1 1: Include J×B and∇pe terms in Ohm’s law (electron form).

2: ion form (not recommended) 3: parallel pressure gradient
in Ohm’s law only (not recommended)

ibootstrap 0 1: include bootstrap current
ibootstrap model 0 1: J BS = alpha F ¡p,psi¿ B
bootstrap alpha 0 alpha parameter in bootstrap current model
imp bf 0 1: include implicit equation for f (recommended for 3D and

2D complex)
nosig 0 1: drop sigma terms from momentum equation
itor 0 0: cartesian; 1: cylindrical
istatic 0 1: Do not advance velocity
iestatic 0 1: Do not advance magnetic fields
chiiner 1. factor to multiply the chi equation inertial terms
ieq bdotgradt 1. 1: include equilibrium parallel T gradient
no vdg T 0 1: do notinclude V dot grad T in Temp equation (debug)
iwall is limiter 1 1: wall acts as limiter
kinetic 0 1: Use kinetic PIC for hot pressure, 2: Incompressible CGL,

3. Full CGL
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Option Default Description

iadiabat 1 1: Corrects several problems with itemp=1 option
irunaway 0 1: include runaway electron model
cre 0 runaway speed
imp temp 0 0: compute temperatures for isplitstep=0, itemp=0
iohmic heating 1 1: Include Ohmic heating term in heating
irad heating 1 1: Include radiation heat sink
gravr 0 gravitational acceleration in R-direction
gravz 0 gravitational acceleration in Z-direction
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9.2 Initial Conditions Options

Option Default Description

itaylor 0 Pre-defined initial conditions.
for itor=1 (toroidal geometry)
0: Tilting cylinder
1: Calls Grad-Shafranov solver
2: magneto-rotational equilibrium
3: rotational instability
40: Fixed boundary stellarator
41: Free boundary stellarator
for itor=0 (slab geometry)
0: Tilting cylinder
1: Taylor Reconnection
2: Force-Free equilibrium (Taylor
state)
3: GEM Reconnection
4: Wave Propagation
5: Gravitational Instability
6: Strauss equilibrium
7: circular field init
8,9: biharmonic
10,11,12,13:: analytic RWM test
problem
14: 3D wave test
15: 3D diffusion test
16: FRS cylindrical equilibrium
17: ftz init
18: eigen init
19: ASDEX profiles similar to YU’s
20: kstar profiles with multiple q=1
surfaces
21,22: fixed q(r) and p(r) profiles
23: Startsev equilibrium with
J = (1/R0q0)(1− r2)
27: cylindrical test problem
29: basicJ profiles

iupstream 0 1: addsdiffusion term to convection-like upstream differenc-
ing

magus 5.e-2 magnitude of the upstream diffusion term
iflip 0 1: Flip coordinate system handedness
iflip b 0 1: Flip sign of toroidal field
iflip j 0 1: Flip sign of toroidal current
iflip v 0 1: Flip sign of toroidal velocity
iflip z 0 1: Flip equilibrium across z=0 plane
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Option Default Description

icsym 0 Symmetry of random perturbations
0: No symmetry
1: Odd up-down symmetry (in U)
2: Even up-down symmetry (in U)

bzero 1 Bφ at rzero
bx0 0 Initial field in x-direction for some test problems
vzero 0 Initial toroidal velocity for some test problems
phizero 0 Initial velocity stream function for some test problems
v0 cyl 0 Central toroidal velocity for some test problems
v1 cyl 0 VZ=v0 cyl + v1 cyl*psin**beta
idevice 0 define coils for a particular device

-1: reads coil.dat file
0: generic dipole configuration
1: CDX-U
2: NSTX
3: ITER
4: DIII-D

iwave 0 defines what wave to initialize in wave propagation test
eps 0.01 Size of random perturbation
maxn 200 Maximum wavenumber of initial random noise
verzero 0 magnitude of initial vertical velocity
irmp 0 1: apply nonaxisymmetric fields

throughout plasma. reads
rmp coil.dat for (R,Z) of window
pane coils. reads rmp current.dat
for (+-) currents in kA and phases
in degrees. toroidal mode number of
current specified by ntor. requires
type ext field = 0.
2: apply nonaxisymmetric fields only
at boundaries.

type ext field -1 External field type 0: RMP or error field for tokamak ge-
ometry. 1: For free boundary stellara-
tor only: FIELDLINES or MGRID.

rmp atten 0 additional exponential decay of RMP field from r=1 for
irmp=2

iread ext field 0 1: read external field
beta 0 parameter used in some model equilibrium initializations
ln 0 length scale parameter used in some model equilibrium
elongation 1 elongation used in Solovev equilibrium
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Option Default Description

isample ext field 1 factor to down sample external field data toroidally
isample ext field pol 1 factor do down sample external field data poloidally
scale ext field 1 factor to scale external field
shift ext field 0 toroidal shift (in deg) of external fields
ibasicj solvep 0 0: uniform p, solve for F; 1: uniformF, solve for p
basicj nu 1 exponent in basicj equilibrium
basicj j0 1 On-axis current density in basicj equilibrium
basicj voff 1 Radial extent of flat toroidal rotation in basicj equilibrium
basicj vdelt 1 Width of velocity drop-off, as fraction of ln, in basicj equilib-

rium
basicj dexp 1 parameter for basicj equilibrium
basicj dvac 1 parameter for basicj equilibrium
basicj q0 0 parameter for basicj equilibrium
basicj qa 0 parameter for basicj equilibrium
pf shift 0 (array) horizontal shift of PF coil
pf shift angle 0 (array) direction of PF shift in degrees
pf tilt 0 (array) Angle of PF from vertical in degrees
pf tilt angle 0 (array) Axis of rotation for PF tilt in degrees
tf shift 0 horizontal shift of TF coils
tf shift angle 0 direction of TF shift in degrees
tf tilt 0 angle of TF from vertical in degrees
tf tilt angle 0 axis of rotation for TF tilt in degrees

56



9.3 Grad-Shafranov Solver Options

Option Default Description

inumgs 0 1: Use numerical def. of p and g from profile-p and profile-g
files

igs 80 Max number of Picard iterations
eta gs 1000. factor for smoothing nonaxisymmetries in psi in 3D GS solve
igs pp ffp rescale 0 1: rescale p’ and FF’ to match p and F
nv1equ 0 1:use numvar =1 equilibrium for numvar .GT. 1
tcuro 1 (scaled) plasma current in GS equilibrium
xmag 1 R-coordinate of magnetic axis
zmag 0 Z-coordinate of magnetic axis
xmag0 0 if nonzero, target magnetic axis R for feedback
zmag0 0 if nonzero, target magnetic axis Z for feecback
xlim 0 R-coordinate of limiter
zlim 0 Z-coordinate of limiter
xlim2 0 R-coordinate of limiter #2
zlim2 0 Z-coordinate of limiter #2
rzero 1 nominal major radius of device for itor=1
libetap 1.2 approximate value of li/2 + βP for free-boundary equ
p0 0.01 Pressure at magnetic axis
pi0 0.005 Ion pressure at magnetic axis
p1 0 p′(Ψ) at magnetic axis
p2 0 p′′(Ψ) at magnetic axis
pedge 0 Pressure in vacuum region
tedge 0 temperature in vacuum region (if .GT. 0). Only used in GS

solve. Boundary value of electron temp is twall = pedge ×
pefac/den edge

tiedge 0 ion temperature in vacuum region
expn 0 Fraction of pressure gradient due to density gradient: n =

pexpn.
q0 1 Safety factor at magnetic axis
djdpsi 0 J ′

φ(Ψ) at magnetic axis

th gs 0.8 implicitness of GS Picard iterations
tol gs 10−8 convergence criteria for GS iteration
pscale 1. factor multiplying pressure profile
bscale 1.0 Factor multipying toroidal field
bpscale 1.0 Factor multiplying F’ (keeping F0 constant)
vscale 1.0 Factor multiplying toroidal rotation profile
iread bscale 0 1: read profile bscale for factor to scale F
iread pscale 0 1: read profile pscale for factor to scale p and p′
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Option Default Description

batemanscale 1 Bateman scale the TF, keeping curent profile fixed
irot 0 1: include toroidal rotation in equilibrium calculatin
iscale rot by p 1 see below
alpha0 0 α0 in analytic rotation profile
alpha1 0 α1 in analytic rotation profile
alpha2 0 α2 in analytic rotation profile
alpha3 0 α3 in analytic rotation profile

For iread omega=0, the function α(ψ) is parameterized by:

α̃ = α0 + α1s+ α2s
2 + α3s

3

For iscale rot by p = 0: α = α̃× n(ψ)/p(ψ) .
For iscale rot by p = 1: α = α̃.

For iscale rot by p = 2: α =
[
α0 + α1e

−[(ψ−α2)/α3]
2
]
× n(ψ)/p(ψ)

In all cases, the angular velocity is then determined by:

ω =

[
2αp(ψ)

R2
0n(ψ)

] 1
2

idenfunc 0 0: n = den0× (p/p0)expn + denedge

1: n = den0× 1
2 ×

[
1 + tanh

(
ψ−(ψB+nO(ψB−ψM ))

∆×(ψB−ψM )

)]
2: n = den0 + 1

2 (den edge− den0)×
[
1 + tanh

(
ψ̃−nO

∆

)]
3: if ψ̃ .LT. nO and (ψ − ψM ) ×
[dψ/dx(x− xMA) + dψ/dz(z − zMA)] .GT. 0, then n =
den0. Else, n = den edge.
( ψB = psibound, ψM = psimin, ψ̃ = (ψ − ψM )/(ψB − ψM ) )

den edge 0.0 edge density. If 0, set to den0*(pedge/p0)**expn
den0 1.0 (scaled) central density
denoff 1.0 nO: offset for idenfunc=1,2,3
dendelt 0.1 ∆: width of transition region for idenfunc=1,2
divertors 0 Number of divertors (0–2)
divcur 0.1 Divertor current(s), as fraction of tcuro
xdiv 0 r-coordinate of divertor current(s)
zdiv 0 z-coordinate of divertor current. If divertors = 2, the sec-

ond divertor has z = −zdiv.
xnull 0 Guess for r-coordinate of x-point
znull 0 Guess for z-coordinate of x-point
mod null rs 0 if 1: you can reset xnull and znull from C1input
xnull0 0 Target R-Coordinate of x-point for feedback
znull0 0 Target Z-Coordinate of x-point for feedback
xnull2 0 Guess for r-coordinate of inactive x-point
znull2 0 Guess for z-coordinate of inactive x-point
mod null rs2 0 if1: you can reset xnull2 and znull2 from C1input
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Option Default Description

gs pf psi width 0 width of psi smoothing into provate flux region
gs vertical feedback 0 proportional feedback of each coil to (zmag-zmag0) (array)
gs vertical feedback i 0 integral feedback of each coil to (zmag-zmag0) (array)
gs vertical feedback x 0 proportional feedback of each coil to (znull-znull0) (array)
gs vertical feedback x i 0 integral feedback of each coil to (znull-znull0) (array)
gs radial feedback 0 proportional feedback of each coil to (xmag-xmag0) (array)
gs radial feedback i 0 integral feedback of each coil to (xmag-xmag0) (array)
gs radial feedback x 0 proportional feedback of each coil to (xnull-xnull0) (array)
gs radial feedback x i 0 integral feedback of each coil to (xnull-xnull0) (array)
igs extend p 0 1: extend p past pls=1 using ne and Te profiles
igs feedfac 1 proportionality factor for external field feedback
igs forcefree lcfs -1 1: ensure that GS solution is force free at LCFS
igs start xpoint search 0 number of GS iterations before searching for x-point
sigma0 0 width of Gaussian for initial current distribution for GS iter-

ation
igs extend diagmag 1 1: extend diamagnetic rotation past psi=1
adapt qs 0 Safety factor values to pack around (array)
adapt zlow 0 Z-coordinate below which SOL adaption is coarse
adapt zup 0 Z-coordinate above which SOL adaptation is coarse
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9.4 Transport Coefficients

Option Default Description

ivisfunc 0 select viscosity function
0: visc = amu

1: visc = amu + 1
2amu edge×

[
1.+ tanh

[
ψ−(ψl+ν0(ψl−ψ0))

ν∆(ψl−ψ0)

]]
2: visc = amu + 1

2amu edge×
[
1.+ tanh

[
ψ̃−ν0
ν∆

]]
or, if amuoff2 .ne. 0 and amudelt2.ne.0)

visc = amu+ 1
4amu edge×

[
2.+ tanh

[
ψ̃−ν0
ν∆

]
+ tanh

[
ψ̃−ν02
ν∆2

]]
3: visc = amu or amu edge depending on criteria in de-
fine fields

amu 0 core viscosity for ivisfunc =0,..,3
amu edge 0 edge viscosity for ivisfunc = 1,..,3
amuoff 0 ν0 in ivisfunc = 1,2
amuoff2 ν02 in ivisfunc = 1,2
amudelt 0 ν∆ in ivisfunc = 1,2
amudelt2 0 ν∆2 in ivisfunc = 1,2
amuc 0 Compressional viscosity coefficient
amupar 0 Parallel viscosity coefficient
amue 0 bootstrap viscosity coefficient

iresfunc 0 select resistivity function
0: eta = etar + eta0/Te**(3/2)

1: eta = etar + 1
2eta0×

[
1.+ tanh

[
ψ−(ψl+etaoff×(ψl−ψ0))

etadelt×(ψl−ψ0)

]]
2: eta = etar + 1

2eta0×
[
1.+ tanh

[
ψ̃−etaoff
etadelt

]]
The following two options are applied in a way that they
should not have negative values...even if the idl plots
indicate otherwise

3: eta = etar for ψ̃ < etaoff othrwise eta0
4: Spitzer resistivity with offset.
Define Twall = pedge*pefac/den edge

forTe > Twall − T offe , η = (Te − T offe )−3/2

forTe < Twall − T offe , η = (Twall − T offe )−3/2

can be increased by inputing eta fac > 1.
5: Simple neoclassical model:

η = eta0× (ne/pe)
3/2/(1.− 1.46(r/R)1/2)

etar 0 see description of iresfunc
eta0 0 see description of iresfunc
etaoff 0 see description of iresfunc
etadelt 0 see description of iresfunc

eta te offset 0 T offe for iresfunc=4

ikprad te offset 0 if 1, T offe also used in kprad and ablation
eta fac 0 for iresfunc=4, resistivity multiplied by eta fac
eta mod 0 if 1: remove d/dphi terms in resistivity
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Option Default Description

eta max 0 maximum resistivity in plasma (defaults to etavac)
eta min 0 minimum resistivity in plasma

ikappafunc 0 select thermal conductivity function

0: κ = kappat + kappa0× ∗(n3/p)1/2

1: κ = kappa0× 1
2

[
1 + tanh

[
ψ−(ψl+κ

0ff×(ψl−ψ0))
κ∆×(ψl−ψ0)

]]
2: κ = kappa0× 1

2

[
1 + tanh ψ̃−κoff

κ∆

]
forψ̃ < 1

2: κ = kappa0× 1
2

[
1 + tanh 2−ψ̃−κoff

κ∆

]
forψ̃ > 1

3: κ = kappat + kappa0× 1/(pn)1/2

4: κ = kappat + kappa0× (1.+ kappadelt× |∇Te|2)
5: κ = kappat + kappa0/Te limited by kappa max
10: read from profile kappa file in m2/sec
11: read from profile kappa file in normalized units
12: option to go with itaylor=27

kappa max 0 if .NE. 0, max κ for ikappafunc=5
kappai fac 1 ion thermal conduction is kappai fac* kappa
ikapscale 0 if 1: kappar gets scaled by kappa
ikappar ni 0 1: include 1/n terms in parallel heat flux
kappaoff 0 κoff see ikappafunc
kappadelt 0 κ∆ see ikappafunc
kappat 0 isotropic thermal conductivity
kappa0 0 see ikappafunc
ikapparfunc 0 select parallel thermal conductivity (PTC) function

0: PTC = kappar

1: PTC = kappar/
[
(Tcrit/T )

5/2 + 1
]

kappar 0 Parallel thermal conductivity
tcrit 0 Tcrit for ikapparfunc = 1
kappari fac 1 ion parallel thermal conductivity is kappari fac x electron

value
kappax 0 coefficient of B ×∇T temperature diffusion

kappah 0 if nonzero, kappa = kappah× tanh2
[
(ψ̃ − 1.)/2

]
kappaf 1 Factor multiplying kappa when ∇p < ∇pcrit
kappag 0 Thermal diffusion proportional to pressure gradient
gradp crit 0 ∇pcrit for kappaf,kappag model
k fac 1 Factor by which TF is multiplied in denominator of kappa par
temin q0 0 Min temperature used in equipartition for ipres=1

idenmfunc 0 selects from of particle diffusion (PD)
0: PD = denm
1: PD = denm + denmt/Te
10: read from file profile denm in m2/sec
11: read from file profile denm in normalized units

denm 0 see idenmfunc
denmt 0 multiplier of 1/Te for idenmfunc=1
denmmin 0 minimum value of denm
denmmax 1.E6 maximum value of denm
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9.5 Hyper-Diffusivity

Option Default Description

imp hyper 0 switch for evaluating hyper resistivity
0: λH∇2J explicit for ψ implicit for F

1: λH∇2J implicit for ψ implicit for F
2: (B/B2)∇ • λH∇σ implicit for ψ and F (σ = J •B/B2)

deex 1 scale length used in hyper
hyper 0 hyper coefficient for ψ equation
hyperc 0 hyper coefficient for poloidal velocity
hyperi 0 hyper coefficient for toroidal field
hyperp 0 hyper coefficient for pressure
hyperv 0 hyper coefficient for toroidal flow
ihypdx 2 hyper terms multiplied by deex**ihypdx
ihypeta 1 swithc for multipliers of hyper terms

1 magnetic field hyper multiplied by eta
2 magnetic field hyper multiplied by p

ihypamu 1 1: velocity hyper coefficient multiplied by amu
ihypkappa 1 1: pressure hyper coefficient multiplied by kappa

9.6 Unit Normalizations

Option Default Description

n0 norm 1014 Density normalization (in cgs)
b0 norm 104 Magnetic field normalization (in cgs)
l0 norm 100 Length normalization (in cgs)
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9.7 Boundary Conditions

Option Default Description

isurface 1 include surface terms in Galerkin method
icurv 2 if > 0, include curvature from mesh
nonrect 0 1: non-rectangular boundary
ifixedb 0 Set ψ = 0 on boundary
inonormalflow 1 1: No-normal-flow boundary
inoslip pol 0 1: No-slip boundaries for poloidal velocity
inoslip tor 1 1: No-slip boundaries for toroidal velocity
inostress tor 0 1: No-normal-stress boundary for toroidal velocity
iconst bz 1 1: Toroidal field held constant on boundary
iconst bn 1 1: Hold normal field constant on boundary
iconst n 0 1: Density held constant on boundary
iconst p 1 1: Pressure held constant on boundary
iconst t 0 1: Temperature held constant on boundary
inograd p 0 1: No normal pressure gradient
inograd t 0 1: No normal temperature gradient
inograd n 0 1: No normal density gradient
com bc 0 1: ∇2χ = 0
vor bc 0 1: ∆∗U = 0
inocurrent pol 0 1: no poloidal current on boundary
inocurrent tor 0 1: no toroidal current on boundary
inocurrent norm 0 1: no normal current on boundary
ifbound -1 boundary condition on f ′

1: Dirichlet
2: Neumann

iconstflux 0 1: conserves toroidal flux in nonlinear calculation
tebound -1 boundary condition for electron temperature
tibound -1 boundary condition for ion temperature
iper 0 1: Left/right boundaries periodic
jper 0 2: Top/bottom boundaries periodic
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9.8 Time Step

Option Default Description

dt 0.1 Initial size of ime step
ntimemax 20 Total number of time steps
integrator 0 0: Crank-Nicholson (CN); 1: BDF2
imp mod 0 0: θ-implicit

1: Implicit leapfrof (isplitstep = 1 only)

thimp 0.5 Implicitness parameter
thimpsm 1 Implicitness of the smoother functions
isplitstep 1 0: Fully implicit time step; 1: split time step.
iteratephi 0 1: Calculate transport coefficients after field advance, then

recalculate field advance.
idiff 0 1: solve for difference between n and n+1 in B,p
idifv 0 1: solve for difference between n and n+1 for V
irecalc eta 0 1:recalculate transport coefficients after density solve
iconst eta 0 1” don’t evolve resistivity
itime independent 0 1:exclude d/dt terms
harned mikic 0 coefficient of Harned-Mikic 2F stabilization term
isources 0 1:include source terms in velocity advance
nskip 1 number of time steps per matrix recalculation
pskip 1 number of timesteps the preconditioner is reused
iskippc 1 number of times preconditioner is reused
ddt 0 change in timestep per timestep
frequency 0 frequency in time-independent calculation
dtmin 4.0 minimum timestep for variable timestep calculation
dtmax 40. maximum timestep for variable timestep calculation
dtkecrit 0 lower timestep if ekin es above this (0.01 typical)
dtfrac .10 max fractional change of timestep in 1 cycle
max repeat 3 max number time step is repeated for ksp max iterations ex-

ceeded
ksp max 10000 max number of ksp iterations before repeating time step
ksp min 1200 increase dt if ksp ¡ ksp min
ksp warn 1600 decrease dt if ksp ¿ ksp warn
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9.9 Mesh

Option Default Description

nplanes 1 number of toroidal planes for 3D nonlinear
xzero 0 R-coordinate of bottom left corner of domain
zzero 0 z-coordinate of bottom left corder of domain
tiltangled 0 angle a rectangular mesh is tilted
mesh model model file name from which the mesh is generated
mesh filename mesh name of .smb files (without number)
imatassemble 0 1: use petsc matrix parallel assembly instead of scorec
imulti region 0 1: Mesh has multiple regions that include resistive wall and

vacuum. Wall resistivity is ”eta wall”, vacuum resistivity is
”eta vac”

toroidal pack angle 0 toroidal angle of maximum mesh packing
toroidal pack factor 1 ratio of longest to shortest toroidal element
iread vmec 0 1: read geometry from VMEC file
vmec filename geometry.nc name of vmec data file
nperiods 1 number of field periods
iread planes 0 Read positions of toroidal planes from plane positions
bloat distance 0 factor to expand VMEC domain
bloat factor 0 factor to expand VMEC domain
ifull torus 0 0: one field period, 1: full torus
igeometry 0 0: default, identity
xcenter 0 center of logical mesh (x)
zcenter 0 center of logical mesh (z)
bound type(i) 0 Boundary conditions to apply on mesh loop i. 0 = None, 1

= First wall, 2 = Domain boundary
zone type(i) 0 Physics model of mesh zone i. 1 = plasma, 2 = conductor,

3 = vacuum.

9.10 Solver

Option Default Description

solver type 0 for PETSc only, 0: direct solve, 1: iterative solver. for Trilin-
ios, iterative solver is used

solver tol 1.e-9 solver tolerance
num iter 100 maximum number of iterations

9.11 Mesh Adaptation (will be depricated soon)

Option Default Description

iadapt 0 0: no adaptation
1:adapt mesh from the flux field in equilibrium

65



9.12 Numerical Options

Option Default Description

int pts main 25 Sampling points for integrations in main time step matrices
int pts aux 25 Sampling points for integrations in calculations of auxiliary

variables
int pts diag 25 Sampling points for integrations in diagnostic calculations
int pts tor 5 Max number of toroidal integration points
ivform 0 0: u = ∇U ×∇φ+ V∇φ+∇χ

1: u = R2∇U ×∇φ+R2ω∇φ+R−2∇χ
Now depricated to ivform=1 only

jadv 0 1: Use toroidal current density equation instead of poloidal
flux equation.

max ke 1.0 Maximum value of kinetic energy before solution is rescaled
in linear simulations. (0 = don’t rescale)

equilibrate 0 1: scale trial function so L2 norm = 1
regular 0 regularization constant in chi equation
iset pe floor 0 1: do not let pe drop below pe floor
pe floor 0 minimum value for pe when iset pe floor=1
iset pi floor 0 1: do not let pi drop below pe floor
pi floor 0 minimum value for pi when iset pi floor=1
iset te floor 0 1: do not let te drop below te floor
te floor 0 minimum value for te when iset te floor=1
iset ti floor 0 1: do not let ti drop below ti floor
ti floor 0 minimum value for ti when iset ti floor=1
iprecompute metric 0 1: precompute metric temsor
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9.13 Input Options

Option Default Description

iread eqdsk 0 1: Read EFIT g-file ’geqdsk’
2: Read psi from geqdsk, but use analytic profiles for p and
F
3: read profiles from geqdsk, but not the psi

iread dskbal 0 1: Read BAL file ’dskbal’
iread jsolver 0 1: Read Jsolver file ’fixed’
iread omega 0 1: reads in rotation profile
iread omega ExB 0 1: read ExB rotation
iread omega e 0 1: read electron rotation
iread ne 0 1: read in electron density profile
iread te 0 1: read in temperature profile
iread p 0 1: read pressure profile from profile p
iread neo 0 1: read velocity profiles from NEO output
ineo subtract diamag 0 1: subtract diamagnetic term from input vel when reading

neo velocity
iread heatsource 0 1: read heat source profile (psi normalized) scaled by ghs rate
iread partilesource 0 1: read particle source profile (psi normalized) scaled with

pellet rate
iread f 0 1: read R x BT from file
iread j 0 1: read current density from a file
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9.14 Output Options

Option Default Description

ntimepr 5 Number of timesteps per full field output
iprint 0 1: Print detailed info to stdout
ifout -1 1: ourput f field
idouble out 0 1: use double precision floating in putput hdf5 files
itemp plot 0 1: output vdotgradt, deldotq perp, deldotq par, eta jsq
ibdgp 0 optons for plotting partial terms for bdgp plot

(1) [ψ,Φ], (2) (f ′,Φ), (3) −R−2FΦ′
iveldif 0 option for plotting partial terms for veldif plot

(1) |/psi, U |, (2) R−3(ψ, chi) +R−2|χ, f ′|
(3)R−1Φ′ (4) R−1Φ′+R−1FU ′
(5) |ψ,U |+R(U, f ′)−R−1FU ′ (6) R−2|/chi, f ′|

icalc scalars 1 1 : calculate scalar diagnostics
ike only 0 1 ” only calculate ke scalar diagnostic
ike harmonics 0 number of toroidal harmonics of kinetic energy to be calcu-

lated for diagnostics
ibh harmonics 0 number of toroidal harmonics of magnetic energy to be cal-

culated for diagnostics
irestart 0 0: start from timestep 0

1: normal restart (can restart 3D from 2D)
3: start a 2D complex run from a 2D real restart

irestart slice -1 if set to an integer, restart from that time slice
itimer 0 1: output internal timeing data
iwrite transport coefs 1 1: output transport coefficients fields
iwrite aux vars 1 1:output auxiliary variable fields
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9.15 Diagnostics

Option Default Description

xray detector enabled 0 1: enable xray detector
xray r0 0 R coordinate of xray detector
xray phi0 0 phi coordinate of xray detector
xray z0 0 Z coordinate of xray detector
xray theta 0 angle of xray detector chord (degrees)
xray sigma 1 spread of xray detector chord (degrees)
imag probes 0 number of magnetic probes
mag probe x(i) 0 R coordinate of magnetic probe i
mag probe phi(i) 0 phi coordinate of magnetic probe i
mag probe z(i) 0 Z coordinate of magnetic probe i
mag probe nx(i) 0 R component of normal vector of mag probe i
mag probe nphi(i) 0 phi component of normal vector of mag probe i
mag probe nz(i) 0 Z component of normal vector of mag probe i
iflux loops 0 number of flux loops
flux loop x(i) 0 R coordinate of flux loop i
flux loop z(i) 0 Z coordinate of flux loop i
ifixed temax 0 1: temax evaluated at (xmag0,0,zmag0)
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9.16 Sources/Sinks

Option Default Description

ibeam 0 neutral beam source
1:include neutral beam particle, energy, and momentum source:

S = nbn
4rπ2nbdr

exp−
[
(r − nbr)

2 + (z − nbz)
2
]
/2nb2dr

2:include only particle and energy source
3:include only energy source
4:include only momentum and energy source
5:include only momentum source

beam x 0 R coordinate of beam center (in m)
beam z 0 Z coordinate of beam center (in m)
beam v 1.e4 beam voltage (in volts)
beam rate 0 ions/second deposited by beam
beam dr .1 dispersion of beam deposition
beam dv 100. dispersion of beam voltage (in volts)
beam fracpar 1 cosine of beam angle relative to parallel (for momentum source)

vloop 0 initial loop voltage, NOTE: to change vloop at restart time, must
have control type = -1

tcur 0 target (scaled) plasma current for current control: µ0IP
tcuri 0 if tcuri .ne. tcurf, the target current is a function of time
tcurf 0 tcur = tcuri + (tcurf-tcuri) x .5 x (1. + tanh((t-tcur t0)/tcur tw))
tcur t0 0 see tcurf
tcur tw 0 see tcurf
control type -1. 0 old current control algorithm (not recommended)

1: standard PID control with the following control parameters
control p 0 proportional control coefficient
control i 0 integral control coefficient
control d 0 derivative control coefficient

ipellet 0 density source if non-zero (3D part equals 1 for 2D runs). Double-
digit values have volume integrals normalized to 1. Make netative
for initial perturbation only.

Define: G2D = 1
2πRV 2

P
exp

[
− (R−RP )2+(Z−ZP )2

2V 2
P

]
1: S = G2D × R√

2πVt
exp

[
−RRP (1−cos(ϕ−ϕP ))

V 2
t

]
2: S = den0× (max(p, pedge)/p0)

expn 2D and 3D
3: Gaussian sourrce proportional to pressure

S = p×G2D × R√
2πVp

exp
[
−RRP (1−cos(ϕ−ϕP ))

V 2
p

]
4: Same distribution as ipellet=1 in 3D

S =
√
2πRVp ×G2D × 1

2πVpVt
exp

[
−RRP (1−cos(ϕ−ϕP ))

V 2
t

]
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Option Default Description

11: Same as #1 but numerically normalized
12: Spherical, Cartesian Gaussian numerically normalized
2D: S = RG2D

3D: S = exp
[
− (R cosϕ−Rp cosϕp)2+(R sinϕ−Rp sinϕp)2+(Z−Zp)2

2V 2
P

]
13: Axisymmetric, toroidal Gaussian, numerically normalized 2D
and 3D: S = G2D

14: Toroidal distribution is a blend of a von Mises and Cauchy dis-
tribution

S = G2D × R√
2πVp

×(1− fc) exp

[
−RRp (1− cos(ϕ− ϕp))

V 2
t

]
+ fc ×

cosh( Vt√
RRp

)− cos(ϕp)

cosh( Vt√
RRp

)− cos(ϕ− ϕp)


15: Toroidal von-Mises distribution with angular half-width
S = G2D × exp

[
cos(ϕ− ϕp)/V

2
p

]
Pellet var tor radians for ipellet=15, distance otherwise

ipellet z 0 Atomic number of pellet (0 for main-ion species)
ipellet abl 0 Turn on pellet ablation. (Recommend double-digit ipellet for particle

conservation)
1: Include ablation model [Parks NF94] calibrated on DIII-D (Li)
2: Include new ablation model [Parks, 2015] for small pellets (Li)
3: Parks model developed 6/20/2017 (for Neon)

temin abl 0 Minimum temperature at which ablation turns on
iread pellet 0 0: Single pellet defined by scalar parameters below

1: Read pellet.dat, with one row per pellet. The 13 space-delimited
columns are:
pellet r, pellet phi, pellet z, pellet rate, pellet var, pellet var tor,
pellet velr, pellet vel phi, pellet vel z, r p, cloud pel, pellet mix,
cauchy fraction

pellet rate 0 Particle number injection rate
pellet var 1 Variance of injection profile
pellet var tor 0 toroidal spatial dispersion of pellet source (Vt). If zero, pellet var tor

= pellet var.
pellet R 0 R-coordinate of injection profile
pellet z 0 Z-coordinate of injection profile
pellet velr 0 initial radial velocity of the pellet
pellet velphi 0 initial toroidal velocity of pellet
pellet velz 0 initial vertical velocity of pellet
r p 1.e-3 initial pellet radius
cloud pel 1 Parameter used to change the width of the density source if ablating.

In this case, pellet var = cloud pel * r p
pellet mix 0 Molar fraction of diatomic main ion molecures in pellet (e.g., D2 )
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Option Default Description

irestart pellet 0 1: will read the following from C1input at restart (the rest from
*.h5) pellet rate, pellet rate D2, pellet var tor, pellet var, cloud pel,
pellet mix, cauchy fraction

abl fac 1.0 factor to multiply ablation rate from predefined formula

n control type -1 -1: no density control
0: old density control algorithm (not recommended)
1: Standard PID control with the following parameters:

n control p 0 proportional feedback constant
n control i 0 integral feedback constant
n control d 0 derivative feedback constant

igaussian heat source 0 1: include Gaussian heat fource
ghs x 0 R coordinate of Gaussian heat source
ghs z 0 Z coordinate of Gaussian heat source
ghs rate 0 amplitude of Gaussian heat source
ghs var 0 variance of Gaussian heat source
ghs phi 0 phi coordinate of Gaussian heat source
ghs var tor 0 toroidal variance of GAussian heat source

ionization 0 1: include neutral ionization source
ionization rate 0 Ionization rate coefficient
ionization temp 0.01 Ionization energy
ionization depth 0.01 Temperature scale-length of neutral burn-out

current drive source ψ̇ = ...+ η(∆∗ψ − JCD)
JCD = J0 exp−

[
(R−R0cd)

2 + (Z − Z0cd)
2
]
/Wcd −∆cd

icd source 0 1: include current drive
J 0cd 0 J0: Magnitude of Gaussian
R 0cd 0 R0cd: R coordinate of maximum
Z 0cd 0 Z0cd: Z coordinate of maximum
W cd 0 Wcd: Width of maximum
delta cd 0 ∆cd: shift of Gaussian

isink 0 number of density sinks: 0,1,or 2
sink1 x 0 R coordinate of first density sink
sink1 z 0 Z coordinate of first density sink
sink1 rate 0 rate of first density sink
sink1 var 1 variance of first density sink
sink2 x 0 R coordinate of second density sink
sink2 z 0 Z coordinate of second density sink
sink2 rate 0 rate of second density sink
sink2 var 1 variance of second density sink

idenfloor 0 1: density in vacuum pegged to den edge
alphadenfloor 0 multiplier of (den edge - den). Must be .lt. 1/DT

ipforce 0 1: include poloidal momentum source

F = f(ψ̃)∇ψ ×∇ϕ
f(ψ̃) = α(1− ψ̃)N δ2

(ψ̃−ψ0)2+δ2

2: Include Luca Guzzatto form of momentum source
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Option Default Description

dforce 0 δ
xforce 0 ψ0

nforce 0 N
aforce 0 α
iheat sink 0 1: special heat sink for itaylor=27
coolrate 0 S = coolrate*(pedge-p) for iheat sink = 1
iarc source 0 1: density source due to halo current
arc source alpha 0 parameter for arc source
arc source eta .01 parameter for arc source

9.17 Resistive Wall

Option Default Description

eta vac 1 resistivity of vacuum region
eta wall .001 resistivity of conducting wall regions
eta wallRZ .001 poloidal resistivity of wall region (if different from eta wall)
iwall break 0 number of wall breaks
eta break 1 resistivity of wall break (array)
wall break phimax 0 max phi coordinate for break (array)
wall break phimin 0 min phi coordinate for break (array)
wall break xmax 0 max R coordinate for break (array)
wall break xmin 0 min R coordinate for break (array)
wall break zmax 0 max Z coordinate for break (array)
wall break zmin 0 min Z coordinate for break (array)
iwall regions 0 number of resistive wall regions
wall region eta() 1.e-3 resistivity of each wall region
wall region etaRZ() 1.e-3 poloidal restivity (if different from wall region eta)
wall region filename() file name will wall contour points
eta zone(i) eta wall Resistivity of mesh region i. Only applies if zone type(i) = 2

(conductor).
etaRZ zone(i) eta zone(i) Poloidal resistivity of mesh region i. Only applies if zone type(i)

= 2 (conductor).
eta rekc 0 resistivity of runaway electron killer coil (REKC)
ntor rekc 0 toroidal mode number of REKC
mpol rekc 0 poloidal mode number of REKC
phi rekc 0 toroidal angle of fixed point of REKC
theta rekc 0 poloidal angle of fixed point of REKC
rzero rekc 0 R0 for computing theta of REKC
zzero rekc 0 Z0 for computing theta of REKC
isym rekc 0 if non-zero, coil is double helix with (+,-) mpol rekc
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9.18 Miscellaneous

Option Default Description

( gam 5/3 ratio of sepcific heatx
db 0 ion skin depth (overrides db fac
db fac 0 factor multiplying physical value of ion skin depth
mass ratio 0 ratio of ion to electron mass
lambdae 0 lambdae
z ion 1 Z-effective
ion mass 1 ion mass in units of m p
lambda coulomb 17 Couloumb logarithm
thermal force coeff 0 coefficient of thermal force
ntor 0 toroidal mode number for 3D linear (complex)
mpol 0 poloidal mode number for certain test problem initializations

9.19 Deprecated

Option Default Description

ipartitioned 0
igs method -1
ibform -1
delta wall 1.

9.20 Trilinos Options

Option Default Description

drop tolerance 0 ILU drop tolerance
graph fill 0 graph fill level
ilu fill level 1 ILU fill level
ilu omega 1 relaxation parameter for rILU
krylov solver gmres Krylov solver
poly ord 1 polynomial order for certain perconditioners
preconditioner dom decomp preconditioner
sub dom solver ilu subdomain solver in preconditioner
subdomain overlap 1 subdomain overlap
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9.21 Simple Radiation Model

Option Default Description

iprad 0 1: call Prad radiation module with one impurity species
Prad = nenDLD(Te) + nenZLZ(Te)

Cooling rate of deuterium is LD = 5.35× 10−37T
1/2
e [keV ]W −m

LZ(Te) taken from Post, et al, Atomic data and nuclear data tables,
20 pp. 397-439 (1977)

prad fz 1 density of impurity species as fraction of ne
prad z 1 Z of impurity species: Z=6(C), 18(Argon), 26(Fe) are available
iread prad 0 1: Read impurity density from profile nz (units of 1020/m3 )

9.22 KPRAD Radiation Model

Option Default Description

ikprad 0 1: KPRAD module with one impurity species
ikprad z 1 Z of impurity species in KPRAD module. Presently available: 2(He),

4(Be), 6 (C),10(Ne), 18 (Ar)
kprad fz 0 density of neutrals as fraction of ne
kprad nz 0 Density of neutral impurities
kprad nemin 10−12 Minimum normalized electron density for KPRAD evolution
kprad temin 2× 10−7 Minimum normalized electron temperature for KPRAD evolution
ikprad max dt 0 Set max time step for KPRAD ionization

0: MHD time step dt
1: RECOMMENDED: dt/( kprad z + 1 ) : ensures evolution
through all charge states.

ikprad evolve internal 0 Update local temperature during KPRAD subcycling:
0: Te fixed before subcycling
1: RECOMMENDED Local ne and Te used for KPRAD ioniza-
tion/radiation updated during subcycling each KPRAD time step
due to density and energy changes

ikprad evolve neutrals 0 Determines how KPRAD neutrals evolve spatially:
0: Neither advect nor diffuse
1: RECOMMENDED Advect and diffuse like other charge states
2: Diffuse but do not advect

ikprad min option 1 Determine how KPRAD behaves below minimum den-
sity/temperature (kprad nemin, kprad temin)
1: No radiation/ionization/recombination (based on ne/te before
subcycling)
2: RECOMMENDED Recombination but no radiation/ionization
(based on ne/Te during subcycling)
3: No radiation/ionization/recombination (based on ne/Te dur-
ing subcycling). NOTE: 1 and 3 behave the same if
ikprad evolve internal = 0)

iread lp source 0 Read impurity source from Lagrangian Particle code cloud.txt (UN-
DER DEVELOPMENT)
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9.23 Stellarator Geometry

Option Default Description

type ext field -1 External fields to be read in..
0: Axisymmetric only. For RMP and error fields.
1: Free-boundary stellarator (itaylor=41) data.
2: Free-boundary stellarator (itaylor=41) data with
extsubtract=1.

file ext field (string) Vacuum/external field to be subtracted for itaylor=41.
Currently supported: FIELDLINES, MGRID.
Must start with ‘fieldlines’ or ‘mgrid’.
Must have type ext field=2.

file total field (string) Total field for free-boundary stellarator (itaylor=41).
Currently supported: FIELDLINES, MGRID.
Must start with ‘fieldlines’ or ‘mgrid’.
Must have type ext field=1,2.

iread vmec 0 1: read VMEC file to determine geometry. Must be 1 for stellarator.
vmec filename (string) VMEC output .nc file
bloat factor 0 Free boundary only: Scale factor to bloat computational boundary

using input geometry.
bloat distance 0 Free boundary only: Distance to expand computational boundary

from input geometry.
igeometry 0 1: must be set to use stellarator version
nperiods 1 Number of field periods (stellarator geometry). Note nplanes should

be equal to at least 2 x (number of toroidal modes per field period)
x nperiods

ifull torus 0 0: Solve on one field period
1: Solve on full torus

nzer factor -1 (integer) Scale factor for resolution of Zernike polynomial (used for
interpolation of VMEC)
-1: n zeri= 2 x mpol (fixed boundary) and 1 x mpol (free boundary).
Otherwise: n zer = nzer factor x mpol where mpol is poloidal reso-
lution in VMEC

nzer manual -1 (int) Resolution of Zernike polynomial (mainly for testing)
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A IDL Postprocessor

A.1 Introduction

The IDL routines described here have been created for the purpose of reading, displaying, and
manipulating data written by M3D-C1 to an HDF5 output file. These routines are contained
within files stored in the subdirectory trunk/unstructured/idl/ in the M3D-C1 SVN repository.

Invoking IDL

First, IDL must be given access to the postprocessor routines. This may be accomplished either
by copying the *.pro files in the repository to the working directory where IDL will be run, or to
set the environment variable IDL PATH to include the directory where these files are located.

The IDL module must first be loaded to run IDL on portal.pppl.gov. This is done by

module load idl

IDL may then be invoked by

idl

Once IDL is running, the postprocessor routines must be compiled. This is done by

.run plot_routines

.run power_spectrum

.run read_h5

The functions and procedures described in the following section are now ready to use.

Help In IDL

IDL has an on-line help system which may be invoked from the IDL command prompt by

?

Information about a specific intrinsic IDL routine, <routine>, may be obtained by

? <routine>

Note on function/procedure descriptions

Functions and procedures in IDL are differentiated by whether a value is returned (as with functions)
or not (as with procedures). Both functions and procedures may take “arguments” and “keywords”
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as command line parameters. In the following descriptions, the arguments of the function or
procedure are shown with the command, and keywords are listed separately. Optional arguments
are enclosed by square brackets. Keywords are always optional. (This notation differs from that
in the on-line IDL help only in that keywords are not listed with the command.) Keywords are
specified on the command line by

<keywordname>=<value>

Writing

/<keywordname>

has the same effect as

<keywordname>=1

and is therefore useful for boolean options. Some common examples are given below.

Common Examples

To display the field “psi” at time slice 1 of file “C1.h5”, sampled on a regular 100× 100 grid, with
an overlay of the LCFS and the mesh,

plot_field, ’psi’, 1, filename=’C1.h5’, /iso, /lcfs, /mesh, points=100

To plot the time series of the kinetic energy of file “C1.h5” in domain 0 < t < 100,

plot_scalar, ’ke’, filename=’C1.h5’, xrange=[0,100]

To plot the flux-averaged temperature profiles of files “1/C1.h5” and “2/C1.h5” at time slice 1,
versus the normalized poloidal flux,

plot_flux_average, ’T’, 1, filename=[’1/C1.h5’, ’2/C1.h5’], /norm

A.2 Functions/Procedures in plot routines.pro

A.2.1 Procedure contour and legend

contour and legend, z [,x, y ]

Description

This procedure draws a two-dimensional color contour plot of the data z, with horizontal and
vertical coordinates x and y. nt frames are drawn.
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Arguments

Name I/O Type Description

z I float[nt,nx,nz ] The values of the field to plot
x I float[nx ] The values of the x-coordinate
y I float[nz ] The values of the y-coordinate

Keywords

Name I/O Type Description

label I string[nt ] The IDL-formatted label of the color
bar for each frame

title I string[nt ] The IDL-formatted title of the plot for
each frame

range I float[2,nt ] An array of the ranges of z to plot in
each frame

nlevels I int[nt ] The number of contour levels to plot
for each frame

lines I bool[nt ] Whether to draw contour lines for
each frame

zlog I bool[nt ] Whether to draw z on a log scale, for
each frame

jpeg I string Write the resulting .jpeg image to the
file jpeg

isotropic I bool Use an isotropic aspect ratio when
plotting

color table I int Which intrinsic IDL color table to use
when plotting

A.3 Functions/Procedures in read h5.pro

A.3.1 Function read field

field = read field(name, r, z, t)

Description

This function reads the raw field data associated with name in the specified output file. The data
is interpolated onto a uniform retangular grid, and returned in an array.

Return Value

float[nt, points, points] field containing the value of the field at points × points spatial sampling
points at nt time slices.

Arguments
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Name I/O Type Description

name I string The name of the field to read
r O float[points] The values of the r-coordinate
z O float[points] The values of the z-coordinate
t O float[nt ] The values of the t-coordinate

Keywords

Name I/O Type Description

filename I string The name of the HDF5 file to read
points I int Number of sampling points per

spatial dimension
rrange I float[2] Range of r-coordinate to read
zrange I float[2] Range of z-coordinate to read
h symmetry I ⟨ 1 | -1 ⟩ Return only left-right ⟨ symmetric

| anti-symmetric ⟩ part of field
v symmetry I ⟨ 1 | -1 ⟩ Return only up-down ⟨ symmetric

| anti-symmetric ⟩ part of field
diff I bool If set, name should be an array

with two filenames. The difference
of the fields from the two files is re-
turned.

slices O ⟨ int| int[2] ⟩ ⟨ Time slice | range of time slices ⟩
to read

mesh O

A.3.2 Function flux average

result = flux average(field, slice)

Description

This function finds the flux-surface average of the field field.

Return Value

float[bins] result contains the value of the flux-averaged field for a range of values of flux.

Arguments
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Name I/O Type Description

field I ⟨ string| float[1,points,points] ⟩ If field is type string, then
read field associated with
name field. Otherwise, field is
taken to contain the field data.

slice I int If field is type string, then
this is the time slice to read.
Otherwise, slice is ignored.

Keywords

flux average takes all of the optional arguments for read field. In addition,

Name I/O Type Description

filename I string The name of the HDF5 file to read
bins I int Number of bins to subdivide the flux
psi* I/O float[1,points,points] The flux field at the given time slice
x I/O float[points] r-coordinate values
z I/O float[points] z-coordinate values
t I/O float[points] t-coordinate values
flux O float[bins] The value of the flux for each bin
title O string The IDL-formatted title of the field
symbol O string The IDL-formatted symbol of the field
units O string The IDL-formatted units of the field

* If psi, x, z, and

t are all provided as input, the flux average will not read the flux field itself.

A.3.3 Function read scalar

result = read field(name)

Description

This function reads the scalar quantity associated with name in the specified output file. The data
is returned as an array .

Return Value

float[nt ] result contains the value of the scalar at each time step.

Arguments

Name I/O Type Description

name I string The name of the scalar to read

Keywords
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Name I/O Type Description

filename I string The name of the HDF5 file to read
time O float[nt ] The t-coordinate of each element
title O string The IDL-formatted title of the scalar
symbol O string The IDL-formatted symbol of the scalar
units O string The IDL-formatted units of the scalar

A.3.4 Procedure plot field

plot field, name, slice, r, z, t

Arguments

Name I/O Type Description

name I string The name of the field to read
slice I string The time slice to read
r O float[points] The values of the r-coordinate
z O float[points] The values of the z-coordinate
t O float[nt ] The values of the t-coordinate

Keywords

plot field takes all of the optional arguments for read field and contour and legend. In ad-
dition,

Name I/O Type Description

xrange I float[2] Range of r-coordinate to plot
yrange I float[2] Range of z-coordinate to plot
lcfs I bool Plot LCFS
mesh I bool Plot mesh

A.3.5 Procedure plot flux average

plot flux average, field, slice

Description

Plots the flux-surface average of a field as a function of poloidal flux. Data from multiple files or
multiple times may be plotted at once.

Arguments
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Name I/O Type Description

field I ⟨ string| float[1,points,points] ⟩ If field is type string, then
read field associated with
name field. Otherwise, field is
taken to contain the field data.

slice I int[nt ] If field is type string, then
this is the time slice(s) to read.
Otherwise, slice is ignored.

Keywords

Name I/O Type Description

filename I string[nfiles] Names of HDF5 file(s) to read
overplot I bool Plot over previous plot
lcfs I bool Plot LCFS
minor radius I bool Plot against flux-average minor radius
normalized flux I bool Plot against normalized flux
smooth I int Boxcar-average final data over neigh-

boring smooth bins

A.3.6 Procedure plot timings

plot timings

Description

This function plots the relative time spent in various subroutines of M3D-C1. This data is only
available if itimer = 1 was specified in the input file.

Keywords

plot flux average takes all of the optional arguments for flux average. In addition,

Name I/O Type Description

filename I string The name of the HDF5 file to read
overplot I bool Draws data over the

A.3.7 Procedure write geqdsk

write geqdsk

Description

This procedure writes equilibrium data do disk in the geqdsk format.

Arguments

None.

Keywords
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write geqdsk takes all of the optional arguments for read field and read parameter. In addition,

Name I/O Type Description

eqfile I string Filename to output geqdsk data
b0 I float Normalization of magnetic field, in Gauss
l0 I float Normalization of length scale, in cm
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Figure 13: To visualize a mesh, select .pvtu file from Open File menu

B Mesh Visualization

Paraview is program created by Kitware, Inc. which can visualize meshes and fields on meshes. It is
the program of choice for viewing meshes created by the PUMI libraries. The APIm3dc1 mesh write
writes a mesh either in “smb” or “vtk”.

// filename: output file name

// option: 0 vtk file with field; 1 smb file

m3dc1_mesh_write(char* filename, int *option)

If the first argument is “output”” and the second argument is 0, filename is output, it creates the
files output.pvtu. Opening the output.pvtu file in Paraview will show users the mesh. Figures 13
and 14 illustrate “Open File” window and a mesh rendered in “Surface” mode by default.

Changing “Surface” to “Surface with Edges” will outline each visible element. Figures 15 and 16
illustrate how to make the decomposition visible.

Also, the mesh by default is rendered in one “Solid Color”. There should be other options corre-
sponding to the fields and numberings that were on this mesh at the time of file writing. There is an
“apf part” alternative for files written by APF, which allows users to see the parallel partitioning
of the mesh in color.

Mesh generation program provides “gface” alternative, which allows users to see the geometric face
of the mesh in color. Figure 17 depicts a Paraview window with a mesh rendered with ”gface”.

Figure 18 illustrates the “Color Palette” tab of “Settings” menu which allows the users to change
the colors of “Render View” such as edges, background, etc..
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Figure 14: Initial Paraview window with a mesh

Figure 15: To render mesh decomposition, choose “Surface With Edge”
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Figure 16: A mesh with “Surface With Edge”

Figure 17: A mesh rendered with “gface”
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Figure 18: “Color Palette” tab of “Settings” menu”
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